# Circuits for Unbounded Computation 

Thomas Colcombet, Amaldev Manuel

LIAFA, Université Paris-Diderot

## Introduction

- Unbouded computation is when the primitive operations are defined for arbitrary input domains, for instance $\mathbb{N}, \mathbb{Z}$.


## Summary

A notion of circuits computing functions with integer domain $\left(\mathbb{Z}^{n}\right)$ is introduced and a lowerbound is shown.

## What is a circuit?



- Our gates are all partial functions of the form $f: E_{1} \times E_{2} \cdots \times E_{k} \rightarrow F$, where $E_{1}, \ldots, E_{k}, F \subseteq \mathbb{Z}$.
- The gate $f$ has type $E_{1} \times E_{2} \cdots \times E_{k} \rightarrow F$ and composition of gates respect types.


## Depth vs Width

Given any $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ there is a circuit computing $f$ with constant height and unbounded fan-in.


## Depth vs Width

Given any $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ there is a circuit computing $f$ with logarithmic depth and fixed fan-in.


- Any function on $\mathbb{Z}^{n}$ is computed by $\log$-depth, i.e. $O(\log n)$, and fixed fan-in circuits.
- Any function on $\mathbb{Z}^{n}$ is computed by constant-depth and unbounded fan-in circuits.


## Hence,

- We need to fix the height,
- but have to see the whole input,
- while not adding too much power.


## Combinatorial circuits

Observe our gates $f: E_{1} \times E_{2} \cdots \times E_{k} \rightarrow F$, where $E_{1}, \ldots, E_{k}, F \subseteq \mathbb{Z}$ are
finitary when $E_{1} \times E_{2} \cdots \times E_{k}$ is finite, examples are $\wedge, \neg, \vee$,
binary when $E_{1} \times E_{2} \cdots \times E_{k}$ is not finite, examples are ,$+ \times, \log$, iszero.

Combinatorial circuits - Circuits of constant depth where

- finitary gates, i.e. gates with finite domain, has unbounded fan-in,
- binary gates, i.e. gates with infinite domain, has fixed fan-in, without loss of generality 2.


## Combinatorial circuits

## Definition (Combinatorial circuits)

A combinatorial circuit $C$ with input $x_{1}, \ldots, x_{n}$ is a directed acyclic graph with labelled vertices such that,

- input vertices labelled by $x_{1}, \ldots, x_{n}$,
- finitary gates labelled by $f: E_{1} \times E_{2} \cdots \times E_{k} \rightarrow F$ where $E_{1} \times E_{2} \cdots \times E_{k}$ is finite, has fan-in exactly $k$,
- binary gates labelled by $f: E_{1} \times E_{2} \rightarrow F$, has fan-in 2 ,
- output vertex labelled by out.


## Combinatorial circuits - contd.

Example (All $x_{1}, \ldots, x_{n}$ are non-zero)

$$
\bigwedge\left(z \operatorname{ero}\left(x_{1}\right), \ldots, z \operatorname{ero}\left(x_{n}\right)\right)
$$

Example (Parity: $\left.x_{1} \ldots, x_{n} \rightarrow \sum x_{i} \bmod 2\right)$

$$
+{ }_{2}\left(\bmod _{2}\left(x_{1}\right), \ldots, \bmod _{2}\left(x_{n}\right)\right)
$$

Can we compute $x_{1}+x_{2} \ldots+x_{n}$ ?

## Normal form for circuits

## Proposition

Every circuit $C(\bar{x})$ of depth $k$ is equivalent to a circuit of the form ,

where $b$ is a binary gate, $f$ is a finitary gate and $G, H_{1}, \ldots, H_{l}$ are binary circuits of depth $k$.

## Proof.

Inductively transform the circuit.


## Summing $x_{1}, \ldots, x_{n}$

Assume there is a circuit of depth $k$ computing the sum of $x_{1}, \ldots, x_{2^{k}+1}$.


## Summing $x_{1}, \ldots, x_{n}$

Assume there is a circuit of depth $k$ computing the sum of $x_{1}, \ldots, x_{2^{k}+1}$.


- $G$ has depth $k$ so sees at most $2^{k}$ variables, choose the variable $x$ not seen by $G$, w.l.o.g. the right most one.


## Summing $x_{1}, \ldots, x_{n}$

Assume there is a circuit of depth $k$ computing the sum of $x_{1}, \ldots, x_{2^{k}+1}$.


- $G$ has depth $k$ so sees at most $2^{k}$ variables, choose the variable $x$ not seen by $G$, w.l.o.g. the right most one.
- Remember each of $H_{1}$ to $H_{k}$ maps to a finite domain w.l.o.g. $E$.


## Summing $x_{1}, \ldots, x_{n}$

Assume there is a circuit of depth $k$ computing the sum of $x_{1}, \ldots, x_{2^{k}+1}$.


- $G$ has depth $k$ so sees at most $2^{k}$ variables, choose the variable $x$ not seen by $G$, w.l.o.g. the right most one.
- Remember each of $H_{1}$ to $H_{k}$ maps to a finite domain w.l.o.g. $E$.
- Fix all other inputs $\bar{x}$ and consider $\langle\bar{x}, 0\rangle,\langle\bar{x}, 1\rangle, \ldots$


## Summing $x_{1}, \ldots, x_{n}$

Assume there is a circuit of depth $k$ computing the sum of $x_{1}, \ldots, x_{2^{k}+1}$.


- $G$ has depth $k$ so sees at most $2^{k}$ variables, choose the variable $x$ not seen by $G$, w.l.o.g. the right most one.
- Remember each of $H_{1}$ to $H_{k}$ maps to a finite domain w.l.o.g. $E$.
- Fix all other inputs $\bar{x}$ and consider $\langle\bar{x}, 0\rangle,\langle\bar{x}, 1\rangle, \ldots$
- The infinite set $\{\langle\bar{x}, 0\rangle,\langle\bar{x}, 1\rangle, \ldots\}$ is colored with finitely many colors $E^{l}$.


## Summing $x_{1}, \ldots, x_{n}$

Assume there is a circuit of depth $k$ computing the sum of $x_{1}, \ldots, x_{2^{k}+1}$.


- $G$ has depth $k$ so sees at most $2^{k}$ variables, choose the variable $x$ not seen by $G$, w.l.o.g. the right most one.
- Remember each of $H_{1}$ to $H_{k}$ maps to a finite domain w.l.o.g. $E$.
- Fix all other inputs $\bar{x}$ and consider $\langle\bar{x}, 0\rangle,\langle\bar{x}, 1\rangle, \ldots$
- The infinite set $\{\langle\bar{x}, 0\rangle,\langle\bar{x}, 1\rangle, \ldots\}$ is colored with finitely many colors $E^{l}$.
- Hence by pigeonhole there should exist distinct $\langle\bar{x}, a\rangle$ and $\langle\bar{x}, b\rangle$ on which the finitary gate $f$ outputs the same. Hence the circuit outputs the same value. Contradiction.


## Null Sum

Let us define the function NS as

$$
\text { NS : } x_{1}, \ldots, x_{2^{k}+1} \rightarrow \begin{cases}1 & \text { if } \sum_{i=1}^{2^{k}+1} x_{i}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Let us try to prove that NS is not computable in depth $k$. Our circuit has finite co-domain hence it is of the form,


## Null Sum

Let us define the function NS as

$$
\text { NS : } x_{1}, \ldots, x_{2^{k}+1} \rightarrow \begin{cases}1 & \text { if } \sum_{i=1}^{2^{k}+1} x_{i}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Let us try to prove that NS is not computable in depth $k$. Our circuit has finite co-domain hence it is of the form,


The previous argument breaks!.
We need two tuples $\bar{u}$ and $\bar{v}$ on which $f$ outputs the same value but $\sum \bar{u}=0$ and $\sum \bar{v} \neq 0$. Pigeonhole does not help.

We need stronger arguments.

## Reformulation



- The finitary gate $f$ sees the input through a $2^{k}$ sized window via the binary circuits $H_{i}$ by mapping it to a color in $E^{l}$.
- Let us call the coloring $\chi: \mathbb{Z}^{2^{k}} \rightarrow E^{l}$.
- Two inputs $\bar{u}$ and $\bar{v}$ appear the same to $f$ if for any window $i_{1}, \ldots, i_{2^{k}} \in\{1, \ldots, n\}^{2^{k}}$,

$$
\chi\left(u_{i_{1}}, \ldots, u_{i_{k}}\right)=\chi\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) .
$$

- We say $\bar{u}$ and $\bar{v}$ are $\chi$-indiscernible in which case.

If we can prove that for every $\chi$ there are two $\chi$-indiscernible tuples $\bar{u}$ and $\bar{v}$ such that $\sum \bar{u}=0$ and $\sum \bar{v} \neq 0$, then we are done.

## Reformulation contd.

- We saw for any window $i_{1}, \ldots, i_{2^{k}} \in\{1, \ldots, n\}^{2^{k}}$, the coloring function $\chi$ defines you a coloring.
- Let us define in one shot all the colorings of all the windows, i.e, big coloring $\Psi$ defines all the colors given by $\chi$ for all the windows , that is $\Psi(\bar{u}):\{1, \ldots, n\} 2^{k} \rightarrow E^{l}$, where

$$
\Psi(\bar{u}): \text { a window } w \rightarrow \text { coloring } \chi(w) \text { of the window }
$$

Now $\bar{u}$ and $\bar{v}$ are $\chi$-indiscernible iff $\Psi(\bar{u})=\Psi(\bar{v})$.
Restating our aim,
If we can prove that for every $\chi$ there are two $\chi$-indiscernible tuples $\bar{u}$ and $\bar{v}$ such that $\sum \bar{u}=0$ and $\sum \bar{v} \neq 0$, then we are done.

## Gallai-Witt

## Theorem (Gallai-Witt)

- Fix a finite set of colors $C$,
- Choose a finite set of points $F \subseteq \mathbb{N}^{k}$,
- Gallai-Witt will give you an $n$ such that,
- for any coloring of $[n]^{k}$ with $C$ colors, you can find a monochromatic scaled translated copy of $F$ inside.
Scaled translated copy of $F$ is $\bar{a}+\lambda F$ for some $\bar{a} \in \mathbb{N}^{k}$ and a positive integer $\lambda$.


## Applying Gallai-Witt

For every $\chi: \mathbb{Z}^{k} \rightarrow C$ there are two $\chi$-indiscernible tuples $\bar{u}$ and $\bar{v}$ of length $k+1$ such that $\sum \bar{u}=0$ and $\sum \bar{v} \neq 0$.

- Choose the set of colors to be windows $\rightarrow C$.
- Take $F \subseteq \mathbb{N}^{k}$ as

$$
\{(0, \ldots, 0),(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots,(0,0, \ldots, 1)\} .
$$

- Gallai-Witt gives an $n$.
- Apply the following coloring to $[n]^{k}$ as

$$
\operatorname{color}\left(x_{1}, \ldots, x_{k}\right)=\Psi\left(x_{1}, \ldots, x_{k},-\sum x_{i}\right)
$$

and obtain $\bar{a} \in \mathbb{N}^{k}$ and a positive integer $\lambda$.
Choose

$$
\bar{u}=\left(a_{1}, \ldots, a_{k},-\sum a_{i}\right) \quad \bar{v}=\left(a_{1}, \ldots, a_{k},-\sum a_{i}+\lambda\right)
$$

They are $\chi$-indiscernible.

## Lowerbound

Let us define the function NSM as

$$
\text { NSM : } x_{1}, \ldots, x_{n}, x_{n+1} \rightarrow \begin{cases}1 & \text { if } \sum_{i=1}^{n} x_{i}=0 \quad \bmod x_{n+1} \\ 0 & \text { otherwise }\end{cases}
$$

## Theorem

NSM is not recognizable. (More precisely NSM $_{2^{k}+2}$ is not recognized by depth $k$-circuits).

## Theorem (Definability)

A language $L$ is recognizable if and only if $\forall n \in \mathbb{N}$ there is a finite set of colors $C$ and a coloring $\chi: \mathbb{N}^{2} \rightarrow C$ such that

$$
\forall \bar{u}, \bar{v} \in \mathbb{N}^{n}, \text { if } \bar{u} \sim_{\chi} \bar{v} \text { then } \bar{u} \in L \Leftrightarrow \bar{v} \in L
$$

Thanks to Holger and Thomas for helping me to prepare.

## Thank you for your attention.

