Circuits for Unbounded Computation

Thomas Colcombet, Amaldev Manuel

LIAFA, Université Paris-Diderot

● Unbouded computation is when the primitive operations are defined for arbitrary input domains, for instance ℕ,ℤ.

Summary

A notion of circuits computing functions with integer domain (\mathbb{Z}^n) is introduced and a lowerbound is shown.

What is a circuit?

- Our gates are all partial functions of the form $f: E_1 \times E_2 \cdots \times E_k \rightarrow F$, where $E_1, \ldots, E_k, F \subseteq \mathbb{Z}$.
- The gate *f* has type *E*₁ × *E*₂ ··· × *E_k* → *F* and composition of gates respect types.

Given any $f : \mathbb{Z}^n \to \mathbb{Z}$ there is a circuit computing f with constant height and unbounded fan-in.

Depth vs Width

Given any $f : \mathbb{N}^n \to \mathbb{N}$ there is a circuit computing f with logarithmic depth and fixed fan-in.

- Any function on Zⁿ is computed by log-depth, i.e. O(log n), and fixed fan-in circuits.
- Any function on Zⁿ is computed by constant-depth and unbounded fan-in circuits.

Hence,

- We need to fix the height,
- but have to see the whole input,
- while not adding too much power.

Observe our gates $f : E_1 \times E_2 \cdots \times E_k \to F$, where $E_1, \ldots, E_k, F \subseteq \mathbb{Z}$ are

finitary when $E_1 \times E_2 \cdots \times E_k$ is finite, examples are \land, \neg, \lor , **binary** when $E_1 \times E_2 \cdots \times E_k$ is **not** finite, examples are $+, \times, \log, iszero.$

Combinatorial circuits - Circuits of constant depth where

- **finitary** gates, i.e. gates with finite domain, has unbounded fan-in,
- binary gates, i.e. gates with infinite domain, has fixed fan-in, without loss of generality 2.

Definition (Combinatorial circuits)

A combinatorial circuit *C* with input x_1, \ldots, x_n is a directed acyclic graph with labelled vertices such that,

- input vertices labelled by x_1, \ldots, x_n ,
- finitary gates labelled by $f : E_1 \times E_2 \cdots \times E_k \rightarrow F$ where $E_1 \times E_2 \cdots \times E_k$ is finite, has fan-in exactly k,
- **binary gates** labelled by $f: E_1 \times E_2 \rightarrow F$, has fan-in 2,
- output vertex labelled by out.

Example (All x_1, \ldots, x_n are non-zero)

 \bigwedge (zero(x₁),...,zero(x_n))

Example (**Parity**:
$$x_1 \dots, x_n \to \sum x_i \mod 2$$
)

 $+_2(mod_2(x_1),\ldots,mod_2(x_n))$

Can we compute $x_1 + x_2 \dots + x_n$?

Normal form for circuits

Proposition

Every circuit $C(\bar{x})$ of depth k is equivalent to a circuit of the form ,

where *b* is a binary gate , *f* is a finitary gate and G, H_1, \ldots, H_l are binary circuits of depth *k*.

Proof.

Inductively transform the circuit.

Assume there is a circuit of depth *k* computing the sum of x_1, \ldots, x_{2^k+1} .

• *G* has depth *k* so sees at most 2^{*k*} variables, choose the variable *x* not seen by *G*, w.l.o.g. the right most one.

- *G* has depth *k* so sees at most 2^{*k*} variables, choose the variable *x* not seen by *G*, w.l.o.g. the right most one.
- Remember each of *H*₁ to *H_k* maps to a finite domain w.l.o.g. *E*.

- *G* has depth *k* so sees at most 2^{*k*} variables, choose the variable *x* not seen by *G*, w.l.o.g. the right most one.
- Remember each of *H*₁ to *H_k* maps to a finite domain w.l.o.g. *E*.
- Fix all other inputs \bar{x} and consider $\langle \bar{x}, 0 \rangle$, $\langle \bar{x}, 1 \rangle$, ...

- *G* has depth *k* so sees at most 2^{*k*} variables, choose the variable *x* not seen by *G*, w.l.o.g. the right most one.
- Remember each of *H*₁ to *H_k* maps to a finite domain w.l.o.g. *E*.
- Fix all other inputs \bar{x} and consider $\langle \bar{x}, 0 \rangle$, $\langle \bar{x}, 1 \rangle$, ...
- The infinite set $\{\langle \bar{x}, 0 \rangle, \langle \bar{x}, 1 \rangle, \ldots\}$ is colored with finitely many colors E^l .

- *G* has depth *k* so sees at most 2^{*k*} variables, choose the variable *x* not seen by *G*, w.l.o.g. the right most one.
- Remember each of *H*₁ to *H_k* maps to a finite domain w.l.o.g. *E*.
- Fix all other inputs \bar{x} and consider $\langle \bar{x}, 0 \rangle$, $\langle \bar{x}, 1 \rangle$, ...
- The infinite set $\{\langle \bar{x}, 0 \rangle, \langle \bar{x}, 1 \rangle, \ldots\}$ is colored with finitely many colors E^l .
- Hence by pigeonhole there should exist distinct $\langle \bar{x}, a \rangle$ and $\langle \bar{x}, b \rangle$ on which the finitary gate f outputs the same. Hence the circuit outputs the same value. Contradiction.

Null Sum

Let us define the function NS as

$$\mathsf{NS}: x_1, \dots, x_{2^k+1} \to \begin{cases} 1 & \text{if } \sum_{i=1}^{2^k+1} x_i = 0\\ 0 & \text{otherwise} \end{cases}$$

Let us try to prove that NS is not computable in depth k. Our circuit has finite co-domain hence it is of the form,

Let us define the function NS as

$$\mathsf{NS}: x_1, \dots, x_{2^k+1} \to \begin{cases} 1 & \text{if } \sum_{i=1}^{2^k+1} x_i = 0\\ 0 & \text{otherwise} \end{cases}$$

Let us try to prove that NS is not computable in depth k. Our circuit has finite co-domain hence it is of the form,

The previous argument breaks!.

We need two tuples \bar{u} and \bar{v} on which f outputs the same value but $\sum \bar{u} = 0$ and $\sum \bar{v} \neq 0$. Pigeonhole does not help.

We need stronger arguments.

- The finitary gate *f* sees the input through a 2^k sized **window** via the binary circuits *H_i* by mapping it to a color in *E^l*.
- Let us call the coloring $\chi : \mathbb{Z}^{2^k} \to E^l$.
- Two inputs \bar{u} and \bar{v} appear the same to f if for any window $i_1, \ldots, i_{2^k} \in \{1, \ldots, n\}^{2^k}$,

$$\boldsymbol{\chi}(u_{i_1},\ldots,u_{i_k})=\boldsymbol{\chi}(v_{i_1},\ldots,v_{i_k}).$$

• We say \bar{u} and \bar{v} are χ -indiscernible in which case.

If we can prove that for every χ there are two χ -indiscernible tuples \bar{u} and \bar{v} such that $\sum \bar{u} = 0$ and $\sum \bar{v} \neq 0$, then we are done.

- We saw for any window $i_1, \ldots, i_{2^k} \in \{1, \ldots, n\}^{2^k}$, the coloring function χ defines you a coloring.
- Let us define in one shot all the colorings of all the windows, i.e, big coloring Ψ defines all the colors given by χ for all the windows , that is $\Psi(\bar{u}) : \{1, \ldots, n\}^{2^k} \to E^l$, where

 $\Psi(\bar{u})$: a window w
ightarrow coloring $\chi(w)$ of the window

Now \bar{u} and \bar{v} are χ -indiscernible iff $\Psi(\bar{u}) = \Psi(\bar{v})$.

Restating our aim,

If we can prove that for every χ there are two χ -indiscernible tuples \bar{u} and \bar{v} such that $\sum \bar{u} = 0$ and $\sum \bar{v} \neq 0$, then we are done.

Theorem (Gallai-Witt)

- Fix a finite set of colors C,
- Choose a finite set of points $F \subseteq \mathbb{N}^k$,
- Gallai-Witt will give you an n such that,
 - for any coloring of [n]^k with C colors, you can find a monochromatic scaled translated copy of F inside.

Scaled translated copy of *F* is $\bar{a} + \lambda F$ for some $\bar{a} \in \mathbb{N}^k$ and a positive integer λ .

Applying Gallai-Witt

For every $\chi : \mathbb{Z}^k \to C$ there are two χ -indiscernible tuples \bar{u} and \bar{v} of length k+1 such that $\sum \bar{u} = 0$ and $\sum \bar{v} \neq 0$.

- Choose the set of colors to be windows $\rightarrow C$.
- Take $F \subseteq \mathbb{N}^k$ as $\{(0, \ldots, 0), (1, 0, \ldots, 0), (0, 1, \ldots, 0), \ldots, (0, 0, \ldots, 1)\}.$
- Gallai-Witt gives an n.
- Apply the following coloring to $[n]^k$ as

$$color(x_1,\ldots,x_k) = \Psi(x_1,\ldots,x_k,-\sum x_i)$$

and obtain $\bar{a} \in \mathbb{N}^k$ and a positive integer λ .

Choose

$$\bar{u} = (a_1, \dots, a_k, -\sum a_i)$$
 $\bar{v} = (a_1, \dots, a_k, -\sum a_i + \lambda)$

They are χ -indiscernible.

Let us define the function NSM as

$$\mathsf{NSM}: x_1, \dots, x_n, x_{n+1} \to \begin{cases} 1 & \text{if } \sum_{i=1}^n x_i = 0 \mod x_{n+1} \\ 0 & \text{otherwise} \end{cases}$$

Theorem

NSM is not recognizable. (More precisely NSM_{2^k+2} is not recognized by depth *k*-circuits).

Theorem (Definability)

A language *L* is recognizable if and only if $\forall n \in \mathbb{N}$ there is a finite set of colors *C* and a coloring $\chi : \mathbb{N}^{2^k} \to C$ such that

 $\forall \bar{u}, \bar{v} \in \mathbb{N}^n$, if $\bar{u} \sim_{\chi} \bar{v}$ then $\bar{u} \in L \Leftrightarrow \bar{v} \in L$

Thanks to **Holger** and **Thomas** for helping me to prepare. Thank you for your attention.