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Introduction

Unbouded computation is when the primitive operations are
defined for arbitrary input domains, for instance N,Z.

Summary
A notion of circuits computing functions with integer domain (Zn)
is introduced and a lowerbound is shown.
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What is a circuit?
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Our gates are all partial functions of the form
f : E1×E2 · · ·×Ek→ F, where E1, . . . ,Ek,F ⊆ Z.

The gate f has type E1×E2 · · ·×Ek→ F and composition of
gates respect types.
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Depth vs Width

Given any f : Zn→ Z there is a circuit computing f with constant
height and unbounded fan-in.
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Depth vs Width

Given any f : Nn→ N there is a circuit computing f with logarithmic
depth and fixed fan-in.
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Any function on Zn is computed by log-depth, i.e. O(logn), and
fixed fan-in circuits.

Any function on Zn is computed by constant-depth and
unbounded fan-in circuits.

Hence,

We need to fix the height,

but have to see the whole input,

while not adding too much power.

Thomas Colcombet, Amaldev Manuel Circuits for Unbounded Computation



Combinatorial circuits

Observe our gates f : E1×E2 · · ·×Ek→ F, where E1, . . . ,Ek,F ⊆ Z
are

finitary when E1×E2 · · ·×Ek is finite, examples are ∧,¬,∨,

binary when E1×E2 · · ·×Ek is not finite, examples are
+,×, log, iszero.

Combinatorial circuits — Circuits of constant depth where

finitary gates, i.e. gates with finite domain, has unbounded
fan-in,

binary gates, i.e. gates with infinite domain, has fixed fan-in,
without loss of generality 2.
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Combinatorial circuits

Definition (Combinatorial circuits)

A combinatorial circuit C with input x1, . . . ,xn is a directed acyclic
graph with labelled vertices such that,

input vertices labelled by x1, . . . ,xn,

finitary gates labelled by f : E1×E2 · · ·×Ek→ F where
E1×E2 · · ·×Ek is finite, has fan-in exactly k,

binary gates labelled by f : E1×E2→ F, has fan-in 2,

output vertex labelled by out.
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Combinatorial circuits – contd.

Example (All x1, . . . ,xn are non-zero)∧
(zero(x1), . . . ,zero(xn))

Example (Parity: x1 . . . ,xn→ ∑xi mod 2)

+2(mod2(x1), . . . ,mod2(xn))

Can we compute x1 + x2 . . .+ xn ?
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Normal form for circuits

Proposition

Every circuit C(x̄) of depth k is equivalent to a circuit of the form ,
b

G f

H1 . . . Hl

or f

H1 . . . Hl

where b is a binary gate , f is a finitary gate and G,H1, . . . ,Hl are
binary circuits of depth k.

Proof.
Inductively transform the circuit.

b

b1

G1 f1

H1

b2

G2 f2

H2

⇒ 〈x1,y1〉,〈x2,y2〉 → (b(b1(x1,x2),b2(y1,y2))

x,y→ 〈x,y〉

G1 G2

x̄, ȳ→ 〈f1(x̄), f2(ȳ)〉

H1 H2
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Summing x1, . . . ,xn

Assume there is a circuit of depth k computing the sum of x1, . . . ,x2k+1.
b

G f

H1 . . . Hl

G has depth k so sees at most 2k variables, choose the variable x
not seen by G, w.l.o.g. the right most one.

Remember each of H1 to Hk maps to a finite domain w.l.o.g. E.

Fix all other inputs x̄ and consider 〈x̄,0〉, 〈x̄,1〉, . . .
The infinite set {〈x̄,0〉,〈x̄,1〉, . . .} is colored with finitely many
colors El.

Hence by pigeonhole there should exist distinct 〈x̄,a〉 and 〈x̄,b〉
on which the finitary gate f outputs the same. Hence the circuit
outputs the same value. Contradiction.
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Null Sum

Let us define the function NS as

NS : x1, . . . ,x2k+1→
{

1 if ∑
2k+1
i=1 xi = 0

0 otherwise

Let us try to prove that NS is not computable in depth k. Our circuit
has finite co-domain hence it is of the form,

f

H1 . . . Hl

The previous argument breaks!.

We need two tuples ū and v̄ on which f outputs the same value but
∑ ū = 0 and ∑ v̄ 6= 0. Pigeonhole does not help.

We need stronger arguments.
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Reformulation

f

H1 . . . Hl

The finitary gate f sees the input through a 2k sized window via
the binary circuits Hi by mapping it to a color in El.

Let us call the coloring χ : Z2k → El.

Two inputs ū and v̄ appear the same to f if for any window
i1, . . . , i2k ∈ {1, . . . ,n}2k

,

χ(ui1 , . . . ,uik) = χ(vi1 , . . . ,vik).

We say ū and v̄ are χ-indiscernible in which case.

If we can prove that for every χ there are two χ-indiscernible
tuples ū and v̄ such that ∑ ū = 0 and ∑ v̄ 6= 0, then we are done.
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Reformulation contd.

We saw for any window i1, . . . , i2k ∈ {1, . . . ,n}2k
, the coloring

function χ defines you a coloring.

Let us define in one shot all the colorings of all the windows, i.e,
big coloring Ψ defines all the colors given by χ for all the windows
, that is Ψ(ū) : {1, . . . ,n}2k → El, where

Ψ(ū) : a window w→ coloring χ(w) of the window

Now ū and v̄ are χ-indiscernible iff Ψ(ū) = Ψ(v̄).

Restating our aim,
If we can prove that for every χ there are two χ-indiscernible
tuples ū and v̄ such that ∑ ū = 0 and ∑ v̄ 6= 0, then we are done.
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Gallai-Witt

Theorem (Gallai-Witt)

Fix a finite set of colors C,

Choose a finite set of points F ⊆ Nk,
Gallai-Witt will give you an n such that,

for any coloring of [n]k with C colors, you can find a
monochromatic scaled translated copy of F inside.

Scaled translated copy of F is ā+λF for some ā ∈ Nk and a
positive integer λ .
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Applying Gallai-Witt

For every χ : Zk→ C there are two χ-indiscernible tuples ū and v̄
of length k+1 such that ∑ ū = 0 and ∑ v̄ 6= 0.

Choose the set of colors to be windows→ C.

Take F ⊆ Nk as
{(0, . . . ,0),(1,0, . . . ,0),(0,1, . . . ,0), . . . ,(0,0, . . . ,1)}.
Gallai-Witt gives an n.

Apply the following coloring to [n]k as

color(x1, . . . ,xk) = Ψ(x1, . . . ,xk,−∑xi)

and obtain ā ∈ Nk and a positive integer λ .

Choose

ū = (a1, . . . ,ak,−∑ai) v̄ = (a1, . . . ,ak,−∑ai +λ )

They are χ-indiscernible.
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Lowerbound

Let us define the function NSM as

NSM : x1, . . . ,xn,xn+1→
{

1 if ∑
n
i=1 xi = 0 mod xn+1

0 otherwise

Theorem

NSM is not recognizable. (More precisely NSM2k+2 is not recognized
by depth k-circuits).

Theorem (Definability)

A language L is recognizable if and only if ∀n ∈ N there is a finite set
of colors C and a coloring χ : N2k → C such that

∀ū, v̄ ∈ Nn, if ū∼χ v̄ then ū ∈ L⇔ v̄ ∈ L
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Thanks to Holger and Thomas for helping me to prepare.

Thank you for your attention.
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