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Motivation

To prove hierarchy theorems for µ-calculus on data words,

and a general technique to prove indefinability results.

Summary
A notion of circuits computing functions with integer domain (Zn)
is introduced and a lowerbound is shown.

Thomas Colcombet, Amaldev Manuel Combinatorial Circuits and Indiscernibility



Combinatorial Circuits

Gates – partial functions on Z,Z2,Z3, . . . of two kinds,
binary Those with unbounded domain and fixed arity, e.g. sum,
product, isprime(), iszero(), etc.

Sum : Z×Z→ Z, iszero() : Z→{0,1}, log : N→ N.

finitary Those with bounded domain and any arity,∨
n : {0,1}n→{0,1}, πn : Mn→M defining the product on the

monoid M.

Circuits – Composition of gates of fixed height (for input of any length).

Thomas Colcombet, Amaldev Manuel Combinatorial Circuits and Indiscernibility



Combinatorial Circuits

Gates – partial functions on Z,Z2,Z3, . . . of two kinds,
binary Those with unbounded domain and fixed arity, e.g. sum,
product, isprime(), iszero(), etc.

Sum : Z×Z→ Z, iszero() : Z→{0,1}, log : N→ N.

finitary Those with bounded domain and any arity,∨
n : {0,1}n→{0,1}, πn : Mn→M defining the product on the

monoid M.

Circuits – Composition of gates of fixed height (for input of any length).

Thomas Colcombet, Amaldev Manuel Combinatorial Circuits and Indiscernibility



An example
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A non-example
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Another example
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What about gcd ?
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gcd is not computable

Assume there is a circuit of depth k computing gcd of 2k +1
values x1,x2, . . . ,x2k+1

B1 does not see a value, WLOG x2k+1.

B2, . . . ,Bm induces a finite coloring of x1,x2, . . . ,x2k+1 (say with
colors [r]).

Consider the set
(2r+1,2r+1, . . . ,2),(2r+1,2r+1, . . . ,22), . . . ,(2r+1,2r+1, . . . ,2r+1).

Using pigeonhole conclude that there are two tuples on which
the circuit gives the same value.
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What about gcd=1 ?

Formally, Show that there is no constant-depth circuit

C(x1, . . . ,xn) =

{
1 if gcd(x1, . . . ,xn) = 1
0

Previous proof does not work.
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Indiscernibility

Fix an r-coloring χ of Nk,

χ : Nk→ [r]

Two tuples (u1,u2, . . . ,um),(v1,v2, . . . ,vm) ∈Nm are χ-indiscernible if
for every window W = i1i2 . . . ik ∈ [m]k the χ-colorings of
(ui1 ,ui2 , . . . ,uik) and (vi1 ,vi2 , . . . ,vik)are the same.

Definability Theorem
Circuits cannot distinguish between indiscernible tuples.
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Indefinability

A property P⊆ N∗ is not definable by circuits

iff

for any r-coloring χ there are two χ-indiscernible tuples, one in P,
other not in P.
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Hales-Jewett Theorem

Fix a finite alphabet A.
A Combinatorial line is a word w in (A∪{x})∗ \A∗ identified with the
set {w[x/a] | a ∈ A}.

Let A = {a,b,c} then w = axc corresponds to {aac,abc,acc}.

Hales-Jewett Theorem
For every alphabet A and colors [r] there is a length n = HJ(|A|,r)
such that any r-coloring of An has a monochromatic combinatorial line.
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A game-theoretic example

Generalized tic-tac-toe has three parameters, number of players r,
size of the board m and dimension n.
Usual tic-tac-toe is when r = 2, m = 3 and d = 2.
Rows, columns, diagonals are combinatorial lines.

HJ says that for any number of players and size of the board, there is a
large enough dimension such that the game wont end in a draw!
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Example

Van der Warden Theorem For any k and colors [r] there is a number
n = VW(k,r) such that any r-coloring of [n] has a monochromatic
arithmetic progression of length k.

Take A = {1, . . . ,k} and colors [r] and get m = HJ(k,r).
Identify each word a1a2 . . .am in Am with the word a1+a2 . . .+am.
(A combinatorial line corresponds to some a+λx where a is a
sum of elements of A and λ ∈ [m] is an integer.)

Apply the r-coloring to the numbers Am.

a+λ ×1,a+λ ×2, . . . ,a+λ is an AP of length k.
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Example

Applying the same proof,
Gallai-Witt Theorem
For any finite F ⊆ Nk and colors [r] there is a number n = GW(k,r,F)
such that any r-coloring of [n]k has a monochromatic homothetic copy
(i.e. a+λ ×F) of F.

Enough to prove indefinability of modular sum.
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Conclusion

Notion of circuits are useful for data words.

Lowerbounds depend on deep theorems from combinatorics.

Reductions, hardness, completeness etc.
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