Combinatorial Circuits and Indiscernibility

Thomas Colcombet, Amaldev Manuel

LIAFA, Université Paris-Diderot

Motivation

- To prove hierarchy theorems for μ-calculus on data words,
- and a general technique to prove indefinability results.

Summary

A notion of circuits computing functions with integer domain $\left(\mathbb{Z}^{n}\right)$ is introduced and a lowerbound is shown.

Combinatorial Circuits

Gates - partial functions on $\mathbb{Z}, \mathbb{Z}^{2}, \mathbb{Z}^{3}, \ldots$ of two kinds,

- binary Those with unbounded domain and fixed arity, e.g. sum, product, isprime(), iszero(), etc.
- Sum : $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, iszero() : $\mathbb{Z} \rightarrow\{0,1\}, \log : \mathbb{N} \rightarrow \mathbb{N}$.
- finitary Those with bounded domain and any arity,
- $\bigvee_{n}:\{0,1\}^{n} \rightarrow\{0,1\}, \pi_{n}: M^{n} \rightarrow M$ defining the product on the monoid M.

Combinatorial Circuits

Gates - partial functions on $\mathbb{Z}, \mathbb{Z}^{2}, \mathbb{Z}^{3}, \ldots$ of two kinds,

- binary Those with unbounded domain and fixed arity, e.g. sum, product, isprime(), iszero(), etc.
- Sum : $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, iszero() : $\mathbb{Z} \rightarrow\{0,1\}, \log : \mathbb{N} \rightarrow \mathbb{N}$.
- finitary Those with bounded domain and any arity,
- $\bigvee_{n}:\{0,1\}^{n} \rightarrow\{0,1\}, \pi_{n}: M^{n} \rightarrow M$ defining the product on the monoid M.

Circuits - Composition of gates of fixed height (for input of any length).

An example

All values are different (hist 2)

A non-example
computing the Sum

Another example

All values are parirwik cosine

What about ged ?

Normal form for disth-k circints

gcd is not computable

Bi - binary crent of

- Assume there is a circuit of depth k computing gcd of $2^{k}+1$ values $x_{1}, x_{2}, \ldots, x_{2^{k}+1}$
- B_{1} does not see a value, WLOG $x_{2^{k}+1}$.
- B_{2}, \ldots, B_{m} induces a finite coloring of $x_{1}, x_{2}, \ldots, x_{2^{k}+1}$ (say with colors $[r]$).
- Consider the set $\left(2^{r+1}, 2^{r+1}, \ldots, 2\right),\left(2^{r+1}, 2^{r+1}, \ldots, 2^{2}\right), \ldots,\left(2^{r+1}, 2^{r+1}, \ldots, 2^{r+1}\right)$.
- Using pigeonhole conclude that there are two tuples on which the circuit gives the same value.

What about gcd=1?

Formally, Show that there is no constant-depth circuit

$$
C\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1 \quad \text { if } \operatorname{gcd}\left(x_{1}, \ldots, x_{n}\right)=1 \\
0
\end{array}\right.
$$

Previous proof does not work.

Indiscernibility

Fix an r-coloring χ of \mathbb{N}^{k},

$$
\chi: \mathbb{N}^{k} \rightarrow[r]
$$

Two tuples $\left(u_{1}, u_{2}, \ldots, u_{m}\right),\left(v_{1}, v_{2}, \ldots, v_{m}\right) \in \mathbb{N}^{m}$ are χ-indiscernible if for every window $W=i_{1} i_{2} \ldots i_{k} \in[m]^{k}$ the χ-colorings of $\left(u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{k}}\right)$ and $\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right)$ are the same.

Indiscernibility

Fix an r-coloring χ of \mathbb{N}^{k},

$$
\chi: \mathbb{N}^{k} \rightarrow[r]
$$

Two tuples $\left(u_{1}, u_{2}, \ldots, u_{m}\right),\left(v_{1}, v_{2}, \ldots, v_{m}\right) \in \mathbb{N}^{m}$ are χ-indiscernible if for every window $W=i_{1} i_{2} \ldots i_{k} \in[m]^{k}$ the χ-colorings of $\left(u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{k}}\right)$ and $\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right)$ are the same.

Definability Theorem

Circuits cannot distinguish between indiscernible tuples.

Indefinability

A property $\mathbf{P} \subseteq \mathbb{N}^{*}$ is not definable by circuits

iff
for any r-coloring χ there are two χ-indiscernible tuples, one in P, other not in P.

Hales-Jewett Theorem

Fix a finite alphabet A.
A Combinatorial line is a word w in $(A \cup\{x\})^{*} \backslash A^{*}$ identified with the set $\{w[x / a] \mid a \in A\}$.

Let $A=\{a, b, c\}$ then $w=a x c$ corresponds to $\{a a c, a b c, a c c\}$.

Hales-Jewett Theorem

Fix a finite alphabet A.
A Combinatorial line is a word w in $(A \cup\{x\})^{*} \backslash A^{*}$ identified with the set $\{w[x / a] \mid a \in A\}$.

Let $A=\{a, b, c\}$ then $w=a x c$ corresponds to $\{a a c, a b c, a c c\}$.

Hales-Jewett Theorem

For every alphabet A and colors $[r]$ there is a length $n=\mathrm{HJ}(|A|, r)$ such that any r-coloring of A^{n} has a monochromatic combinatorial line.

A game-theoretic example

Generalized tic-tac-toe has three parameters, number of players r, size of the board m and dimension n.
Usual tic-tac-toe is when $r=2, m=3$ and $d=2$.
Rows, columns, diagonals are combinatorial lines.

HJ says that for any number of players and size of the board, there is a large enough dimension such that the game wont end in a draw!

Example

Van der Warden Theorem For any k and colors $[r]$ there is a number $n=\mathbf{V W}(k, r)$ such that any r-coloring of $[n]$ has a monochromatic arithmetic progression of length k.

Example

Van der Warden Theorem For any k and colors $[r]$ there is a number $n=\mathbf{V W}(k, r)$ such that any r-coloring of $[n]$ has a monochromatic arithmetic progression of length k.

- Take $A=\{1, \ldots, k\}$ and colors $[r]$ and get $m=\mathbf{H J}(k, r)$.
- Identify each word $a_{1} a_{2} \ldots a_{m}$ in A^{m} with the word $a_{1}+a_{2} \ldots+a_{m}$. (A combinatorial line corresponds to some $a+\lambda x$ where a is a sum of elements of A and $\lambda \in[m]$ is an integer.)
- Apply the r-coloring to the numbers A^{m}.
- $a+\lambda \times 1, a+\lambda \times 2, \ldots, a+\lambda$ is an AP of length k.

Example

Applying the same proof,

Gallai-Witt Theorem

For any finite $F \subseteq \mathbb{N}^{k}$ and colors $[r]$ there is a number $n=\mathbf{G W}(k, r, F)$ such that any r-coloring of $[n]^{k}$ has a monochromatic homothetic copy (i.e. $a+\lambda \times F$) of F.

Enough to prove indefinability of modular sum.

Conclusion

- Notion of circuits are useful for data words.
- Lowerbounds depend on deep theorems from combinatorics.
- Reductions, hardness, completeness etc.

