Combinatorial Circuits and Indiscernibility

Thomas Colcombet, Amaldev Manuel

LIAFA, Université Paris-Diderot

- To prove hierarchy theorems for μ-calculus on data words,
- and a general technique to prove indefinability results.

Summary

A notion of circuits computing functions with integer domain (\mathbb{Z}^n) is introduced and a lowerbound is shown.

Gates – partial functions on $\mathbb{Z},\mathbb{Z}^2,\mathbb{Z}^3,\ldots$ of two kinds,

• **binary** Those with unbounded domain and fixed arity, e.g. sum, product, isprime(), iszero(), etc.

• Sum : $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, iszero() : $\mathbb{Z} \to \{0,1\}$, log : $\mathbb{N} \to \mathbb{N}$.

- finitary Those with bounded domain and any arity,
 - $\bigvee_n : \{0,1\}^n \to \{0,1\}, \pi_n : M^n \to M$ defining the product on the monoid M.

Gates – partial functions on $\mathbb{Z}, \mathbb{Z}^2, \mathbb{Z}^3, \dots$ of two kinds,

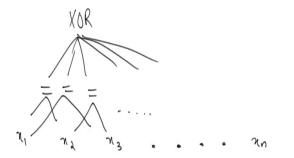
• **binary** Those with unbounded domain and fixed arity, e.g. sum, product, isprime(), iszero(), etc.

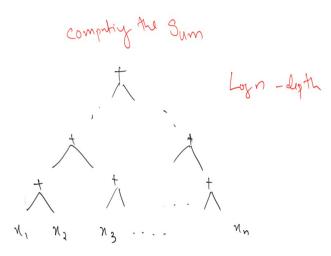
• Sum : $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, iszero() : $\mathbb{Z} \to \{0,1\}$, log : $\mathbb{N} \to \mathbb{N}$.

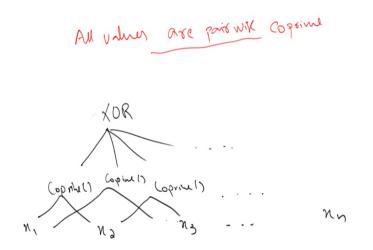
- finitary Those with bounded domain and any arity,
 - $\bigvee_n : \{0,1\}^n \to \{0,1\}, \pi_n : M^n \to M$ defining the product on the monoid M.

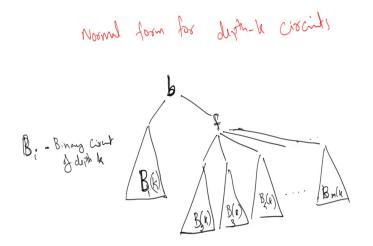
Circuits - Composition of gates of fixed height (for input of any length).

All values are different (height 2)









gcd is not computable

1

- Assume there is a circuit of depth k computing gcd of 2^k + 1 values x₁, x₂,..., x_{2^k+1}
- B₁ does not see a value, WLOG x_{2^k+1}.
- B_2, \ldots, B_m induces a finite coloring of $x_1, x_2, \ldots, x_{2^k+1}$ (say with colors [r]).
- Consider the set $(2^{r+1}, 2^{r+1}, \dots, 2), (2^{r+1}, 2^{r+1}, \dots, 2^2), \dots, (2^{r+1}, 2^{r+1}, \dots, 2^{r+1}).$
- Using **pigeonhole** conclude that there are two tuples on which the circuit gives the same value.

Formally, Show that there is no constant-depth circuit

$$C(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } \gcd(x_1,\ldots,x_n) = 1\\ 0 \end{cases}$$

Previous proof does not work.

Fix an *r*-coloring χ of \mathbb{N}^k ,

$$\chi:\mathbb{N}^k\to[r]$$

Two tuples $(u_1, u_2, \ldots, u_m), (v_1, v_2, \ldots, v_m) \in \mathbb{N}^m$ are χ -indiscernible if for every window $W = i_1 i_2 \ldots i_k \in [m]^k$ the χ -colorings of $(u_{i_1}, u_{i_2}, \ldots, u_{i_k})$ and $(v_{i_1}, v_{i_2}, \ldots, v_{i_k})$ are the same.

Fix an *r*-coloring χ of \mathbb{N}^k ,

$$\chi:\mathbb{N}^k\to[r]$$

Two tuples $(u_1, u_2, \ldots, u_m), (v_1, v_2, \ldots, v_m) \in \mathbb{N}^m$ are χ -indiscernible if for every window $W = i_1 i_2 \ldots i_k \in [m]^k$ the χ -colorings of $(u_{i_1}, u_{i_2}, \ldots, u_{i_k})$ and $(v_{i_1}, v_{i_2}, \ldots, v_{i_k})$ are the same.

Definability Theorem

Circuits cannot distinguish between indiscernible tuples.

A property $P\subseteq \mathbb{N}^*$ is not definable by circuits

iff

for any *r*-coloring χ there are two χ -indiscernible tuples, one in *P*, other not in *P*.

Fix a finite alphabet *A*. A **Combinatorial line** is a word *w* in $(A \cup \{x\})^* \setminus A^*$ identified with the set $\{w[x/a] \mid a \in A\}$.

Let $A = \{a, b, c\}$ then w = axc corresponds to $\{aac, abc, acc\}$.

Fix a finite alphabet *A*. A **Combinatorial line** is a word *w* in $(A \cup \{x\})^* \setminus A^*$ identified with the set $\{w[x/a] \mid a \in A\}$.

Let $A = \{a, b, c\}$ then w = axc corresponds to $\{aac, abc, acc\}$.

Hales-Jewett Theorem

For every alphabet A and colors [r] there is a length n = HJ(|A|, r) such that any *r*-coloring of A^n has a monochromatic combinatorial line.

Generalized tic-tac-toe has three parameters, number of players r, size of the board m and dimension n. Usual tic-tac-toe is when r = 2, m = 3 and d = 2. Rows, columns, diagonals are combinatorial lines.

HJ says that for any number of players and size of the board, there is a large enough dimension such that the game wont end in a draw!

Van der Warden Theorem For any *k* and colors [r] there is a number $n = \mathbf{VW}(k, r)$ such that any *r*-coloring of [n] has a monochromatic arithmetic progression of length *k*.

Van der Warden Theorem For any *k* and colors [r] there is a number $n = \mathbf{VW}(k, r)$ such that any *r*-coloring of [n] has a monochromatic arithmetic progression of length *k*.

- Take $A = \{1, \dots, k\}$ and colors [r] and get $m = \mathbf{HJ}(k, r)$.
- Identify each word a₁a₂...a_m in A^m with the word a₁+a₂...+a_m.
 (A combinatorial line corresponds to some a + λx where a is a sum of elements of A and λ ∈ [m] is an integer.)
- Apply the *r*-coloring to the numbers A^m .
- $a + \lambda \times 1, a + \lambda \times 2, \dots, a + \lambda$ is an AP of length k.

Applying the same proof,

Gallai-Witt Theorem

For any finite $F \subseteq \mathbb{N}^k$ and colors [r] there is a number $n = \mathbf{GW}(k, r, F)$ such that any *r*-coloring of $[n]^k$ has a monochromatic homothetic copy (i.e. $a + \lambda \times F$) of *F*.

Enough to prove indefinability of modular sum.

- Notion of circuits are useful for data words.
- Lowerbounds depend on deep theorems from combinatorics.
- Reductions, hardness, completeness etc.