
Walking on Data Words⋆

Amaldev Manuel1, Anca Muscholl2, Gabriele Puppis3

1 LIAFA, University of Paris Diderot, France
2 LaBRI, University of Bordeaux, France

3 CNRS / LaBRI, University of Bordeaux, France

Abstract. Data words are words with additional edges that connect
pairs of positions carrying the same data value. We consider a natu-
ral model of automaton walking on data words, called Data Walking
Automaton, and study its closure properties, expressiveness, and the
complexity of some basic decision problems. Specifically, we show that
the class of deterministic Data Walking Automata is closed under all
Boolean operations, and that the class of non-deterministic Data Walk-
ing Automata has decidable emptiness, universality, and containment
problems. We also prove that deterministic Data Walking Automata are
strictly less expressive than non-deterministic Data Walking Automata,
which in turn are captured by Class Memory Automata.

1 Introduction

Data words generalize strings over finite alphabets, where the term ‘data’ de-
notes the presence of elements from an infinite domain. Formally, data words
are modeled as finite sequences of elements chosen from a set of the form Σ ×D,
where Σ is a finite alphabet and D is an infinite alphabet. Elements of Σ are
called letters, while elements of D are called data values. Sets of data words are
called data languages.

It comes natural to investigate reasonable mechanisms (e.g., automata, logics,
algebras) for specifying languages of data words. Some desirable features of such
mechanisms are the decidability of the paradigmatic problems (i.e., emptiness,
universality, containment) and effective closures of the recognized languages un-
der Boolean operations and projection. A natural idea is to enhance a finite state
machine with data structures to provide some ability to handle data values. Ex-
amples of these structures include registers to store data values [8, 10], pebbles
to mark positions in the data word [13], hash tables to store partitions of the
data domain [1]. In [4] Data Automata are introduced and shown to capture the
class of data languages definable in two-variable first-order logic over data words.
Class Memory Automata [1] provide an alternative view of Data Automata. For
all models, except Pebble Automata and Two-way Register Automata, the non-
emptiness problem is decidable; universality and, by extension, equivalence and
inclusion are undecidable for all non-deterministic models.
⋆ This research has received funding from the ANR project

2010 BLANC 0202 01 FREC and from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n. 259454.

In this work we consider data words as sequences of letters with additional
edges that connect pairs of positions carrying the same data value. This idea is
consistent with the fact that as far as a data word is concerned the actual data
value at a position is not relevant, but only the relative equality and inequal-
ity of positions with respect to data values. It is also worth noting that none
of the above automaton models makes any distinction between permutations of
the data values inside data words. Our model of automaton, called Data Walk-
ing Automaton, is naturally two-way: it can roughly be seen as a finite state
device whose head moves along successor and predecessor positions, as well as
along the edges that connect any position to the closest one having the same
data value, either to the right or to the left. Remarkably, emptiness, universal-
ity, and containment are decidable problems for Data Walking Automata. Our
automata capture, up to functional renaming of letters, all data languages recog-
nized by Data Automata. The deterministic subclass of Data Walking Automata
is shown to be closed under all Boolean operations (closure under complemen-
tation is not immediate since the machines may loop). We can also deduce from
previous results on Tree Walking Automata [2, 3] that deterministic Data Walk-
ing Automata are strictly less powerful than non-deterministic Data Walking
Automata, which in turn are subsumed by Data Automata.

Our contributions can be summarised as follows:
1. We adapt the model of walking automaton, originally introduced for trees,

to data words.
2. We study closure properties of the classes of data languages recognized by

deterministic and non-deterministic walking automata under the operations
of union, intersection, complementation, and projection.

3. We analyze the relative expressive power of the deterministic and non-
deterministic models of walking automata, comparing them with other classes
of automata from the literature, most notably, Data Automata. We also show
that deterministic walking automata recognize all data languages definable
in the two-variable fragment of first-order logic with access to the global and
class successor predicates.

4. We study the complexity of fundamental problems on data languages recog-
nized by non-deterministic walking automata; in particular, we prove that
the problems of word acceptance, emptiness, universality, and containment
are decidable.

5. We prove that extending the model of walking automaton with alternation
results in an undecidable emptiness problem.

Organization. In Section 2 we give some preliminary definitions concerning
the standard models of Data Automata and Tiling Automata. In Section 3 we
introduce the deterministic and non-deterministic models of walking automata
on data words and we prove some basic closure properties. In Section 4 we
analyze the expressive power of Data Walking Automata, in comparison with
Data Automata, and we prove a series of separation results analogous to those
for walking automata on trees. In Section 5 we identify a fragment of first-order
logic, precisely, the two-variable fragment with access to the global and class

successor predicates, that is captured by the class of deterministic Data Walking
Automata. In Section 6 we study the complexity of some fundamental problems
involving Data Walking Automata, most notably, word acceptance, emptiness,
universality, and containment. In Section 7 we consider the alternating model of
Data Walking Automaton and we show that the emptiness problems becomes
undecidable in this case. Section 8 provides an assessment of the results and
discusses future work.

2 Preliminaries

Throughout this paper we will tacitly assume that all data words are non-empty –
this assumption will simplify some definitions, such as that of Tiling Automaton.
Given a data word w = (a1, d1) ⋯ (an, dn), a class of w is a maximal set of
positions with identical data value. The set of classes of w forms a partition of
the set of positions and is naturally defined by the equivalence relation i ∼ j iff
di = dj .

The global successor and global predecessor of a position i in a data word w
are the positions i+1 and i−1 (if they exist). The class successor of a position i is
the leftmost position after i in its class (if it exists) and is denoted by i⊕ 1. The
class predecessor of a position i is the rightmost position before i in its class (if it
exists) and is denoted by i⊖ 1. The global and class successors of a position are
collectively called successors, and similarly for the predecessors. The successors
and predecessors of a position are called its neighbors.

Using the above definitions we can identify any data word w ∈ (Σ × D)∗
with a directed graph whose vertices are the positions of w, each one labelled
by a letter from Σ, and whose edges are given by the successor and predecessor
functions +1, −1, ⊕1, ⊖1. This graph can be represented in space Θ(∣w∣), where
∣w∣ denotes the length of w. For 1 ≤ i ≤ ∣w∣ we denote by w(i) ∈ Σ ×D the label
of the ith position of w.

For example, the following is the graph representation of a data word w over
the alphabet {a, b} ×N:

w = (b
19) (b8) (a8) (b

37) (a
19) (a4) (b

19) (a
21) (a4) (a6) .

2.1 Local types

Given a data word w and a position i in it, we introduce the local type
ÐÐ→
typew(i)

(resp.,
←ÐÐ
typew(i)) to specify whether the global and class successors (resp., prede-

cessors) of i exist and whether they coincide or not. Formally, when considering
the successors of a position i, four scenarios are possible:
1. the position i is the rightmost one in w and hence no successors exist; we

denote this by
ÐÐ→
typew(i) = max;

2. the position i is not the rightmost position of w, but it is the rightmost in its
class, in which case the global successor exists but not the class successor;
we denote this by

ÐÐ→
typew(i) = cmax;

3. both global and class successors of i are defined in w and they coincide, i.e.
i + 1 = i⊕ 1; we denote this by

ÐÐ→
typew(i) = 1succ;

4. both successors of i are defined in w and they are different, i.e. i + 1 ≠ i⊕ 1;
we denote this by

ÐÐ→
typew(i) = 2succ.

We define
ÐÐÐ→
Types = {max, cmax,1succ,2succ} to be the set of possible right types

of positions of data words. The symmetric cases for the predecessors of i are

signified by the left type
←ÐÐ
typew(i) ∈

←ÐÐÐ
Types = {min, cmin,1pred,2pred}. Finally, we

define typew(i) = (←ÐÐtypew(i),
ÐÐ→
typew(i)) ∈ Types = ←ÐÐÐTypes ×ÐÐÐ→Types.

2.2 Class Memory Automata

We will rely on results on Data Automata [4] for our decidability results. How-
ever, for convenience we will use an equivalent model called Class Memory Au-
tomata [1]. We use [n] to denote the subset {1, ..., n} of the natural numbers. In-
tuitively, a Class Memory Automaton is a finite state automaton enhanced with
hash functions that assigns a memory value from a finite set [k] to each data
value in D. On encountering a pair (a, d), a transition is non-deterministically
chosen from a set that depends on the current state of the automaton, the mem-
ory value f(d), and the input letter a. When a transition on (a, d) is executed,
the current state and the memory value of d are updated. Below we give a formal
definition of a Class Memory Automaton. Later we will show that this model is
also similar to that of Tiling Automata [17].

Definition 1. A Class Memory Automaton (CMA for short) is a tuple C =
(Q,Σ,k,∆, I,F,K), where:
– Q is the finite set of states,
– Σ is the finite alphabet,
– [k] is the set of memory values,
– ∆ ⊆ Q ×Σ × [k] ×Q × [k] is the transition relation,
– I ⊆ Q is the set of initial states,
– F ⊆ Q is the set of final states,
– K ⊆ [k] is the set of final memory values.
Configurations are pairs (q, f), with q ∈ Q and f ∈ [k]D – i.e. pairs consisting of
a control state and a function from D to [k]. Transitions are of the form

(q, f) (a,d)ÐÐ→ (q′, f ′)
with (q, a, f(d), q′, h′) ∈ ∆, f ′(d) = h′, and f ′(e) = f(e) for all e ∈ D ∖ {d}.
Sequences of transitions with matching configurations are called runs. The initial
configurations are the pairs (q0, f0), with q0 ∈ I and f0(d) = 1 for all d ∈ D; the
final configurations are the pairs (q, f), with q ∈ F and f(d) ∈K for all d ∈ D. The
recognized language L (C) consists of the data words w = (a1, d1) ⋯ (an, dn) ∈
(Σ×D)∗ that admit runs of the form (q0, f0) (a1,d1)ÐÐ→ ⋯ (an,dn)ÐÐ→ (qn, fn), starting
in an initial configuration and ending in a final configuration.

It is known that data languages recognized by CMA are effectively closed
under union and intersection, but not under complementation. Their emptiness
problem is decidable and reduces to reachability in vector addition systems,
which is decidable but not known to be of elementary complexity. Inclusion and
universality problems for CMA are undecidable.

The following result, paired with closure under intersection, allows us to
assume that the information about local types of positions of a data word is
available to CMA:

Proposition 1 (Björklund and Schwentick [1]). Let L be the set of all data
words w ∈ (Σ ×Types ×D)∗ such that, for all positions i, w(i) = (a, τ, d) implies
τ = typew(i). The language L is recognized by a CMA.

2.3 Tiling automata

Here we briefly recall the definitions of another class of automata, called Tiling
Automata or Graph Automata [17]. Such automata receive acyclic directed
graphs of bounded degree as input and they capture the expressiveness of the
existential fragment of monadic second-order logic. In order to accept an input
graph, a Tiling Automaton associates, in a non-deterministic way, a color (or
state) to each node and then checks that the resulting colored spheres satisfy
some specific constraints. Here, by colored sphere centered at a node v we mean
precisely the subgraph induced by the set of nodes at distance at most r from v,
for a fixed number r which is a parameter of the automaton (note that this set
has bounded size because the input graph has bounded degree). Accordingly, the
constraints of a Tiling Automaton are encoded by a finite set of graphs, here-
after called tiles, that describe the admitted spheres in an input graph marked
with colors. Below, we give a definition of Tiling Automaton that is tailored for
graphs representing data words – we refer to [17] for a more general definition
and an account of the basic properties. In particular, we fix the the radius of
the spheres to be 1, as it is usually done with graphs that represent finite words,
trees, or pictures over a finite alphabet. However, we remark that considering
only spheres of radius 1 limits the expressiveness of Tiling Automata as acceptors
of data words, since the restriction will capture only data languages definable
in a strict fragment of existential monadic second-order logic over the relations
+1 and ⊕1. Subsequently, we will show that CMA and Tiling Automata are
equally expressive when operating on the subclass of graphs representing data
words.

We fix a finite set Γ of colors that are used to color the positions in the input
data word. We also reuse the notion of type that we gave in Subsection 2.1. We
define a tile as a tuple of the form

t = (a, τ, γ0, γ−1, γ⊖1, γ+1, γ⊕1)

that specifies the possible label a and the possible type τ of a position i, as
well as the possible colors γ0, γ−1, γ⊖1, γ+1, γ⊕1 that can be associated with i

and its neighboring positions i − 1, i ⊖ 1, i + 1, i ⊕ 1. For the sake of brevity,
an element α among 0,−1,⊖1,+1,⊕1 is called an axis and correspondingly the
color γα is denoted by t[α]. Clearly, we assume that t[α] is undefined (denoted
t[α] = �) for all and only those axes (i.e., successors or predecessors) that are
missing, as indicated by the type τ . Similarly, we assume that t[−1] = t[⊖1]
(resp., t[+1] = t[⊕1]) whenever τ ∈ {1pred} ×ÐÐÐ→Types (resp., τ ∈ ←ÐÐÐTypes × {1succ}).

For example, if τ = (cmin,1succ), then the tuple t = (a, τ, γ0, γ−1, γ⊖1, γ+1, γ⊕1)
is a tile only if γ0, γ−1 ≠ �, γ⊖1 = �, and γ+1 = γ⊕1 ≠ �.

Definition 2. A Tiling Automaton is a triple T = (Σ,Γ,T) consisting of a
finite alphabet Σ, a finite set Γ of colors, and a finite set T of tiles over Σ and
Γ . A tiling by T of a data word w = (a1, d1) . . . (an, dn) is a function w̃ ∶ [n] → Γ
such that, for all positions i in w, the tile

(ai, typew(i), w̃(i), w̃(i − 1), w̃(i⊖ 1), w̃(i + 1), w̃(i⊕ 1))

belongs to T . The language recognized by the Tiling Automaton T consists of all
data words that admit a valid tiling by T .

The result below follows from simple translations of automata and depends
on the fact that CMA can compute the types of the positions in a data word.

Proposition 2. CMA and Tiling Automata on data words are equivalent. More-
over, there exist polynomial-time translations between the two models.

Proof. Let C = (Q,k,Σ,∆, I,F,K) be a CMA. Intuitively, the runs of C can be
seen as labellings satisfying the constraints of a suitable Tiling Automaton. More
precisely, we introduce the set of colors Γ = Q × [k], where each color is meant
to describe the state and the memory value of the data value that appear in a
possible run of C immediately after a given position. To construct an equivalent
Tiling Automaton T = (Σ,Γ,T), it suffices to describe the set T of admitted
tiles. Formally, this set consists of those tuples

t = (a, τ, γ0, γ−1, γ⊖1, γ+1, γ⊕1)

that satisfy the following conditions:

– if τ ∈ {min} ×ÐÐÐ→Types, then γ0 = (q′, h′) for some transition (q0, a,1, q′, h′) ∈∆
and some initial state q0 ∈ I;

– if τ ∈ {cmin} × ÐÐÐ→Types, then γ−1 = (q, h) for some memory value h ∈ [k] and
γ0 = (q′, h′) for some transition (q, a,1, q′, h′) ∈∆;

– if τ ∈ {1pred} × ÐÐÐ→Types, then γ−1 = (q, h) and γ0 = (q′, h′) for some transition
(q, a, h, q′, h′) ∈∆;

– if τ ∈ {2pred} × ÐÐÐ→Types, then γ−1 = (q, h) for some memory value h ∈ [k],
γ⊖1 = (q′′, h′′) for some state q′′ ∈ Q and some memory value h′′ ∈ [k], and
γ0 = (q′, h′) for some transition (q, a, h′′, q′, h′) ∈∆;

– if τ ∈ ←ÐÐÐTypes × {cmax}, then γ0 = (q, h) for some state q ∈ Q and some final
memory value h ∈K;

– if τ ∈ ←ÐÐÐTypes×{max}, then γ0 = (q, h) for some final state q ∈ F and some final
memory value h ∈K

(note that we do not need to specify additional conditions on t by considering

the case where τ ∈ ←ÐÐÐTypes × {1succ,2succ}, as the required constraints will be
enforced when considering the possible tiles associated with the class successor,

which have type τ ′ ∈ {1pred,2pred} ×ÐÐÐ→Types).
Given a data word w = (a1, d1) (a2, d2) . . . (an, dn) and a run of the CMA

C on w of the form

ρ = (q0, f0) (a1,d1)ÐÐ→ (q1, f1) (a2,d2)ÐÐ→ . . . (an,dn)ÐÐ→ (qn, fn)

we let hi = fi(di) for all i = 1, ..., n and we observe that the following is a valid
tiling of w by T (we succinctly represent it by a string over Q × [k]):

w̃ = (q1, h1) (q2, h2) . . . (qn, hn).

Conversely, any tiling w̃ like the above one can be completed into a valid run of
C by defining the hash functions fi inductively for all i = 0, ..., n, as follows:

fi(d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if i = 0,

hi if d = di,

fi⋆(d) if i > 0, d ≠ di, and i⋆ = max{0} ∪ {j ∣ 1 ≤ j < i, d = dj}.

It follows that the Tiling Automaton T defines the same data language recog-
nized by the CMA C.

For the converse translation, suppose that we are given a Tiling Automaton
T = (Σ,Γ,T) recognizing a data language L ⊆ (Σ×D)∗. In view of Proposition 1,
it is sufficient to construct a CMA C = (Q,k,Σ ×Types,∆, I,F,K) that accepts
the data words w ∈ L augmented with the information about the local types. The
states of C are the tiles in T , plus a distinguished initial state q0, i.e. Q = T ⊎{q0}.
Moreover, we let k = ∣Q∣ and we identify the memory values in [k] with the states
in Q; in particular, we identify the memory value 1 with the initial state q0. We
now turn towards defining the transition relation ∆ of C. Recall that we identified
memory values in [k] with states in Q. In particular, this means that a generic
transition rule of C is a tuple of the form (t, t′, (a, τ), t′′, t′′) that, on the basis of
the input symbol (a, τ) and the states t and t′ associated, respectively, with the
global predecessor and the class predecessor, specifies a possible state t′′ that
could be associated with the current position, as succinctly described by the
diagram

●
t′

⋯ ●
t

a
t′′

(as usual, assume t′ = q0 when there is no class predecessor and t = q0 when there
is no global predecessor). Hence it suffices to define ∆ as the set of tuples of the
form (t, t′, (a, τ), t′′, t′′), with (a, τ) ∈ Σ ×Types and t, t′, t′′ ∈ Q, such that

1. if τ ∈ {min} ×ÐÐÐ→Types, then t = t′ = q0;

2. if τ ∈ {cmin} ×ÐÐÐ→Types, then t′ = q0, t[+1] = t′′[0], and t′′[−1] = t[0];
3. if τ ∈ {1pred} ×ÐÐÐ→Types, then t = t′, t[+1] = t[⊕1] = t′′[0], and t′′[−1] = t[0];
4. if τ ∈ {2pred}×ÐÐÐ→Types, then t′[⊕1] = t[+1] = t′′[0], t′′[−1] = t[0], and t′′[⊖1] =

t′[0].
Finally, the sets F and K of final states and final memory values contain those

tiles t = (a, τ, γ0, . . . , γ⊕1) whose type τ belong to
←ÐÐÐ
Types × {max, cmax}.

Let us now consider a data word w = (a1, d1) (a2, d2) . . . (an, dn) and define
w′ = (a1, τ1, d1) (a2, τ2, d2) . . . (an, τn, dn), where τi = typew(i) for all positions
i ∈ [n]. Any tiling of w by T can be turned into a valid run of C on w′ by simply
prepending the initial configuration (q0, f0) to the sequence of tiles. Conversely,
any run of C on w′ devoid of the initial configuration can be seen as a tiling of
w by T .

3 Automata walking on data words

An automaton walking on data words is a finite state acceptor that processes a
data word by moving its head along the successors and predecessors of positions.
We let Axis = {0, +1, ⊕1, −1, ⊖1} be the set of the five possible directions of
navigation in a data word (0 stands for ‘stay in the current position’).

Definition 3. A Data Walking Automaton (DWA for short) is defined as a
tuple A = (Q,Σ,∆, I,F), where Q is the finite set of states, Σ is the finite
alphabet, ∆ ⊆ Q ×Σ × Types ×Q × Axis is the transition relation, I ⊆ Q is the
set of initial states, F ⊆ Q is the set of final states.

Let w = (a1, d1) ⋯ (an, dn) ∈ (Σ × D)∗ be a data word. Given i ∈ [n] and
α ∈ Axis, we denote by α(i) the position that is reached from i by following
the axis α (for instance, if α = 0 then α(i) = i, if α = ⊕1 then α(i) = i ⊕ 1,
provided that i is not the last element in its class). A configuration of A is a
pair consisting of a state q ∈ Q and a position i ∈ [n]. A transition is a tuple

of the form (p, i) wÐÐ→ (q, j) such that (p, ai, τ, q, α) ∈ ∆, with τ = typew(i)
and j = α(i). The initial configurations are the pairs (q0, i0), with q0 ∈ I and
i0 = 1. The halting configurations are those pairs (q, i) on which no transition is
enabled; such configurations are said to be final if q ∈ F . The language L (A)
recognized by A is the set of all data words w ∈ (Σ ×D)∗ that admit a run of A
that starts in an initial configuration and halts in a final configuration.

We will also consider deterministic versions of DWA, in which the set I of
initial states is a singleton and the transition relation ∆ is a partial function
from Q ×Σ ×Types to Q ×Axis.

Example 1. Let L1 be the set of all data words that contain at most one oc-
currence of each data value (this language is equally defined by the formula
∀x∀y x ∼ y → x = y). A deterministic DWA can recognize L1 by reading the

input data word from left to right (along axis +1) and by checking that all po-
sitions except the last one have type (cmin, cmax). When a position with type
(cmin,max) or (min,max) is reached, the machine halts in an accepting state.

Example 2. Let L2 be the set of all data words in which every occurrence of a is
followed by an occurrence of b in the same class (this is expressed by the formula
∀x a(x) → ∃y b(y) ∧ x < y ∧ x ∼ y). A deterministic DWA can recognize L2 by
scanning the input data word along the axis +1. On each position i with left type
cmin, the machine starts a subcomputation that scans the entire class of i along
the axis ⊕1, and verifies that every a is followed by a b. The subcomputation
terminates when a position with right type cmax is reached, after which the
machines traverses back the class, up to the position i with left type cmin, and
then resumes the main computation from the successor i + 1. Intuitively, the
automaton traverses the data word from left to right in a ‘class-first’ manner.

Example 3. Our last example deals with the set L3 of all data words in which
every occurrence of a is followed by an occurrence of b that is not in the same
class (this is expressed by the formula ∀x. a(x) → ∃y. b(y) ∧ x < y ∧ x ≁ y).
This language is recognized by a deterministic DWA, although not in an obvious
way. Fix a data word w. It is easy to see that w ∈ L3 iff one following cases holds:

1. there is no occurrence of a in w,
2. w contains a rightmost occurrence of b, say in position `b, and all occurrences

of a are before `b; in addition, we require that either the class of `b does not
contain an a, or the class of `b contains a rightmost occurrence of a, say in
position `a, and another b appears after `a but outside the class of `b.

We show how to verify the second case by a deterministic DWA. For this, the
automaton reaches the rightmost position of w and searches backward, follow-
ing the axis −1, the first occurrence of b: this puts the head of the automaton in
position `b. From position `b the automaton searches along the axis ⊖1 an oc-
currence of a. If no occurrence of a is found before seeing the left type cmin, then
the automaton halts and accepts. Otherwise, as soon as an a is seen (necessarily
at position `a), a second phase starts that tries to find another occurrence of b
after `a and outside the class of `b (we call such an occurrence a b-witness). To
do this, the automaton moves along the axis +1 until it sees a b, say at position
i. After that, it scans the class of i along the axis ⊕1. If the right type cmax is
seen before seeing a b, this means that i was the position of the last b in the
class of i: in this case, the automaton goes back to position i (which is now
the first position along axis ⊖1 that contains a b) and accepts iff another b is
seen along the axis +1 (thanks to the previous test, that occurrence of b must be
outside the class of `b and hence a b-witness). Otherwise, if a b is seen in position
j > i the automaton backtracks to position i and resumes the search for another
occurrence of b along the axis +1 (note that if i is a b-witness, then j is also a
b-witness, which will be processed by the automaton eventually).

3.1 Closure properties

We show here some basic closure properties for the class of non-deterministic
DWA and the class of deterministic DWA under the set theoretic operations
of union, intersection, and complementation. We defer to Section 6 a study of
(non)closure properties of DWA under projection; there we will be able to build
up on a number of results involving the classes of deterministic DWA, non-
deterministic DWA, and CMA.

Proposition 3. The class of non-deterministic DWA is effectively closed under
union and intersection.

Proof. Closure under union for the class of non-deterministic DWA is easily
shown by taking a disjoint union of the state space of the two automata. Closure
under intersection is shown by assuming without loss of generality that one of the
two automata accepts only by halting in the leftmost position and by coupling
its final states with the initial states of the other automaton.

Analogous closure properties hold for the class of deterministic DWA, but
now rely on the fact that one can remove loops from deterministic computations.

Proposition 4. Given a deterministic DWA A, one can construct in linear
time a deterministic DWA A′ equivalent to A that always halts.

Proof. This proof is an adaptation of Sipser’s construction for eliminating loops
from deterministic space-bounded Turing machines [16]. We fix for the rest of
the proof a deterministic DWA A = (Q,Σ,∆, q0, F) and an input data word
w = (a1, d1) ⋯ (an, dn) ∈ (Σ × D)∗ of length n. We define the configuration
graph of A on w as the directed graph G(A,w) with vertices Q × [n] and edges

of the form (p, i) wÐÐ→ (q, j). The reverse configuration graph Grev(A,w) is
the graph obtained from G(A,w) by reversing the edges. The basic argument
behind the construction is that the reverse configuration graph Grev(A,w) of
a deterministic DWA is a forest. If not, there would be two distinct paths from
a vertex (p, i) to a vertex (q, j) in Grev(A,w) contradicting the fact that A is
deterministic.

As in the case of Turing machines, without loss of generality we can assume
that A has a unique final state qf and in the case of a successful run the automa-
ton A finishes at the last position in state qf . The data word w is in L (A) if
there is a path in Grev(A,w) from the configuration (qf , n) to the configuration
(q0,1). We construct a deterministic DWA A′ that searches for such a path by
performing a depth-first traversal of the tree rooted at (qf , n). The idea is im-
plemented in the following way. We fix an arbitrary order on the transitions in
∆. In particular, this allows us to identify the first, second, ... edge leaving a cer-
tain node (q, i) in the graph Grev(A,w). The states of the automaton A′ are the
transitions of A and A′ starts at the last position in state corresponding to the
first transition with target qf . Traversing the edge from a vertex (q, j) to a child
(p, i) in the graph Grev(A,w) is simulated by applying the transition contained

in the state of A′ backwards. When a node has no children or all its children
have been traversed, the automaton goes to the parent by taking the unique
possible transition at that node and computes the next transition for the parent
node. At any point during the simulation, if the node (q0,1) is visited, then the
automaton halts and accepts. Otherwise the simulation terminates eventually at
the root (qf , n) and the input is rejected.

Proposition 5. The class of deterministic DWA is effectively closed under union,
intersection, and complementation.

Proof. Thanks to Proposition 4 we can assume, without loss of generality, that
deterministic DWA never loop, and always halt in the first position of the input
word. Under this assumption, closure under complementation simply amounts at
swapping the final and the non-final states. Similarly, unions and intersections of
deterministic DWA are computed by chaining the automata, that is, by coupling
the halting states of one automaton to the initial states of the other.

4 Deterministic vs non-deterministic DWA

This section is devoted to prove the following separation results:

Theorem 1. There exist data languages recognized by non-deterministic DWA
that cannot be recognized by deterministic DWA. There also exist data languages
recognized by CMA that cannot be recognized by non-deterministic DWA.

Intuitively, the proof of the theorem exploits the fact that one can encode
binary trees by suitable data words and think of deterministic DWA (resp. non-
deterministic DWA, CMA) as deterministic Tree Walking Automata (resp. non-
deterministic Tree Walking Automata, classical bottom-up tree automata). One
can then use the results from [2, 3] that show that (i) Tree Walking Automata
cannot be determinised and (ii) Tree Walking Automata, even non-deterministic
ones, cannot recognize all regular tree languages. We develop these ideas in the
following subsections.

4.1 Encodings of trees

Hereafter we use the term ‘tree’ (resp. ‘forest’) to denote a generic finite tree
(resp. forest) where each node is labelled with a symbol from a finite alpha-
bet Σ and has either 0 or 2 children. To encode trees/forests by data words,
we will represent the node-to-left-child and the node-to-right-child relationships
by means of the successor functions +1 and ⊕1, respectively. In particular, a
leaf will correspond to a position of the data word with no class successor, an
internal node will correspond to a position where both class and global succes-
sors are defined (and are distinct), and a root will be represented either by the
leftmost position in the word or by a position with no class predecessor that is
immediately preceded by a position with no class successor.

As an example, given pairwise different data values d, e, f, g, the complete
binary tree of height 2 can be encoded by the following data word:

w = d f g f d e d

(to ease the understanding, we only drew the instances of the successor functions
⊕1 and +1 that represent left and right edges in the encoded tree).

A formal definition of encoding of a tree or forest follows.

Definition 4. We say that a data word w ∈ (Σ×D)+ is a forest encoding if there

is no position i such that
ÐÐ→
typew(i) = 1succ and no pair of consecutive positions i

and i + 1 such that
ÐÐ→
typew(i) = 2succ and

←ÐÐ
typew(i + 1) = 2pred.

Given a forest encoding w, we denote by forest(w) the directed graph that has
for nodes the positions of w, labelled over Σ, and for edges the pairs

(i, i + 1) and (i, i⊕ 1)

whenever
ÐÐ→
typew(i) = 2succ.

The fact that forest(w) is indeed a forest, for every data word w satisfying the
above definition, follows from two basic observations: (i) the edges of forest(w)
follow the ordering on the positions of w, and hence forest(w) is a directed acyclic

graph, and (ii) for all pairs of distinct positions i, j in w, if
ÐÐ→
type(i) = ÐÐ→type(j) =

2succ, then i + 1 ≠ j ⊕ 1 (otherwise, we would have j < i, ÐÐ→type(i) = 2succ, and
←ÐÐ
type(i+1) = 2pred, contradicting Definition 4), and hence nodes in forest(w) have
in-degree at most 1.

In particular, we can identify left and right children, leaves, and roots in
forest(w), based on the following case distinction:

– if
ÐÐ→
typew(i) = 2succ, then i+1 and i⊕1 are the targets of two edges departing

from i; we say that i + 1 and i ⊕ 1 are the left and right children of i,
respectively;

– if
ÐÐ→
typew(i) ∈ {max, cmax}, then i has no edge departing from it, in which

case i is a leaf ;
– if

←ÐÐ
typew(i) = min or

←ÐÐ
typew(i) = cmin and

ÐÐ→
typew(i − 1) = cmax, then i has no

edge entering it, and hence we call it a root.
Moreover, if forest(w) contains a single root, then it is a tree and we accordingly
define tree(w) = forest(w); otherwise, we simply let tree(w) be undefined. Note
that every tree of the form tree(w) is a full binary tree, namely, the internal
nodes have always two children.

We remark that there exist several encodings of the same tree/forest that are
not isomorphic, even up to permutations of the data values. For instance, the
two data words below encode the same complete binary tree of height 2:

w = d f g f d e d w′ = d f g d e f d

Among all possible encodings of a tree/forest, we identify special ones, called
canonical encodings, in which the nodes are listed following the pre-order visit.
For example, the above data word w corresponds to a canonical encoding, while
w′ does not. Clearly, each tree t has a unique canonical encoding, up to permu-
tations of the data values, which we denote by enc(t).

Remark 1. We conclude this part by observing that the data language consisting
of all forest encodings is recognized by a deterministic DWA: for this it suffices
to scan the input data word once from left to right and check that the local
types satisfy Definition 4. If in addition the DWA checks that there are no
occurrences of the local type (cmin, cmax), then the recognized language consists
of the valid encodings of full binary trees, namely, those data words w such that
tree(w) is defined. On the other hand, the language of the canonical encodings
of forests/trees is not recognizable by any DWA (even non-deterministic ones).

4.2 Separations of tree automata

We will work in this section with full binary trees, hereafter called simply trees.
We briefly recall the definition of a tree walking automaton and the separation
results from [2, 3]. In a way similar to DWA, we first introduce local types
of nodes inside trees. These can be seen as pairs of labels from the finite sets
Types↓ = {leaf, internal} and Types↑ = {root, leftchild, rightchild}, and they allow
us to distinguish between a leaf and an internal node as well as between a root, a
left child, and a right child. We use a set TAxis = {0, ↑,↙,↘} of four navigational
directions inside a tree: 0 is for staying in the current node, ↑ is for moving to
the parent, ↙ is for moving to the left child, and ↘ is for moving to the right
child.

Definition 5. A non-deterministic Tree Walking Automaton (TWA) is a tuple
A = (Q,Σ,∆, I,F), where:

– Σ is the finite alphabet,
– Q is the finite set of states,
– ∆ ⊆ Q ×Σ ×Types↓ ×Types↑ ×Q ×TAxis is the transition relation,
– I ⊆ Q is the set of initial states,
– F ⊆ Q is the sets of final states.

Runs of TWA are defined in a way similar to the runs of DWA and begin with the
initial state marking the root. The subclass of deterministic TWA is obtained by
replacing the transition relation ∆ with a partial function from Q×Σ ×Types↓ ×
Types↑ to Q ×TAxis and by letting I consist of a single initial state q0.

Theorem 2 (Bojańczyk and Colcombet [2, 3]). There exist languages rec-
ognized by non-deterministic TWA that cannot be recognized by deterministic
TWA. There also exist regular languages of trees that cannot be recognized by
non-deterministic TWA.

4.3 Translations between TWA and DWA

Given a tree language L, we denote by Lenc the language of all data words that
encode (possibly in a non-canonical way) the trees in L:

Lenc = {w ∣ tree(w) ∈ L}.

To derive from Theorem 2 analogous separation results for data languages, we
need to provide suitable translations between TWA and DWA, as well as from
tree automata to CMA:

Lemma 1. Given a deterministic (resp. non-deterministic) TWA A recognizing
L, one can construct a deterministic (resp. non-deterministic) DWA Aenc rec-
ognizing Lenc. Conversely, given a deterministic (resp. non-deterministic) DWA
A, one can construct a deterministic (resp. non-deterministic) TWA Atree such
that, for any tree t, Atree accepts t iff A accepts the canonical encoding enc(t).

Proof. We prove the first claim for a deterministic TWA A (the case of a non-
deterministic TWA is similar). We recall from Remark 1 that the language
consisting of all (possibly non-canonical) encodings of full binary trees is recog-
nized by a deterministic DWA, which we denote by U enc. We then construct a
deterministic DWA A′ such that, given any tree t and any encoding w of t, we
have t ∈ L (A) iff w ∈ L (A′) (note that we do not specify the behaviour of A′
on the inputs that are not valid encodings of trees). Formally, given the TWA
A = (Q,Σ,∆, q0, F), we define A′ = (Q,Σ,∆′, q0, F), where

∆′(p, a, (�Ðτ ,Ð�τ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q,0) if ∆(p, a, (τ ↓, τ ↑)) = (q,0),

(q,+1) if Ð�τ = 2succ and ∆(p, a, (internal, τ ↑)) = (q,↙),

(q,⊕1) if Ð�τ = 2succ and ∆(p, a, (internal, τ ↑)) = (q,↘),

(q,−1) if �Ðτ = cmin and ∆(p, a, (τ ↓, leftchild)) = (q, ↑),

(q,⊖1) if �Ðτ = 2pred and ∆(p, a, (τ ↓, rightchild)) = (q, ↑)

and where τ ↓ and τ ↑ are obtained from Ð�τ and �Ðτ as follows: either τ ↓ = internal
or τ ↓ = leaf, depending on whether Ð�τ = 2succ or Ð�τ ∈ {max, cmax}, and either
τ ↑ = root, or τ ↑ = leftchild, or τ ↑ = rightchild, depending on whether �Ðτ = min, or
�Ðτ = cmin, or �Ðτ = 2pred.

We let the reader check that, for all trees t and all data word encodings w of
t, A accepts t iff A′ accepts w. We conclude the proof by exploiting the closure
properties of DWA and by defining Aenc as the intersection of U enc and A′.

We turn now to the second claim. We fix a deterministic DWA A (again,
the case of a non-deterministic DWA is similar) and we show how to construct a
deterministic TWAAtree whose behaviour is the same as the behaviour ofA when
restricted to canonical encodings of trees. For the latter property to make sense,
we need to make sure that the behaviour ofA is invariant on the possible different
canonical encodings of trees: this is however easy to see, since canonical encodings

are unique up to permutation of the data values, and, similarly, computations
of DWA are invariant under permutation of the data values.

We recall that the standard definition of a TWA envisages three possible
directions of navigation in a tree: ↑, ↙, and ↘. For the sake of presentation, we
introduce two new axis, denoted ← and →, that allow the automaton to move
from a certain node i respectively to the predecessor ←(i) and to the successor
→(i) of i, according to the total ordering induced by the pre-order visit of the
tree. We will use these new directions of navigation to mimic the moves of A
between consecutive positions of a canonical encoding. For instance, a move of A
from position i to position i− 1 in a canonical encoding w of t will be simulated
by a corresponding move of Atree from node i to the node that immediately
precedes i in the pre-order visit of t, even in the case when i is not a left child
(so ←(i) ≠ ↑ (i)). We also observe that allowing moves along the axis ← and
→ does not increase the expressive power of TWA. Indeed, when a transition is
executed that takes the automaton from node i to node j = ←(i), then two cases
can happen depending on the local type of node i in t: either i is a left child, in
which case j is simply the parent of i, or i is a right child, in which case j is the
rightmost leaf in the left subtree of the parent of i, i.e. j = ↘n(↙(↑(i))) f from
what followsor n sufficiently large, and thus the transition can be simulated by
a finite sequence of moves along the axis ↑, ↙, ↘, ..., ↘. Analogous arguments
hold for the transitions that take the automaton from node i to node j = →(i).

We also modify our TWA model in order to be able to check simple node
properties at each transition – again, this modification does not affect the ex-
pressive power. Specifically, we assume that the guards of the transitions of a
TWA can distinguish, using refined local types, the last (rightmost) leaf in the
pre-order visit of the entire tree from all the other leaves (this feature can be
easily implemented via deterministic subcomputations that start in a leaf and
look for the deepest ancestor that is not a right child). We thus refine the local
type leaf ∈ Types↓ into two new local types rightmostleaf and otherleaf.

Thanks to the above arguments, we can easily transform the deterministic
DWA A = (Q,Σ,∆, q0, F) into a deterministic TWA Atree = (Q,Σ,∆′, q0, F),
where

∆′(p, a, (τ ↑, τ ↓)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q,0) if ∆(p, a, (�Ðτ ,Ð�τ)) = (q,0),

(q,↘) if ∆(p, a, (�Ðτ ,2succ)) = (q,⊕1),

(q,→) if τ ↓ ≠ rightmostleaf and ∆(p, a, (�Ðτ ,Ð�τ)) = (q,+1),

(q, ↑) if ∆(p, a, (2pred,Ð�τ)) = (q,⊖1),

(q,←) if τ ↑ ≠ root and ∆(p, a, (�Ðτ ,Ð�τ)) = (q,−1)

and where �Ðτ andÐ�τ are obtained from τ ↑ and τ ↓ as follows: �Ðτ = min / cmin / 2pred
depending on τ ↑ = root / leftchild / rightchild, and Ð�τ = max / cmax / 2succ
depending on τ ↓ = rightmostleaf / otherleaf / internal.

By a slight abuse of notation, we can identify the nodes in a tree t with the
corresponding positions in the canonical encoding enc(t). Under this assumption,

it becomes easy to verify that every transition (p, i) tÐÐ→ (q, j) of the TWA

Atree on a tree t can be seen as a transition (p, i) enc(t)ÐÐ→ (q, j) of the DWA A
on the canonical encoding enc(t) and, symmetrically, every transition of A on
the canonical encoding enc(t) can be seen as a transition of Atree on the tree t.
Analogous properties for the runs of A and Atree follow by a simple inductive
argument. This shows that Atree accepts precisely those trees whose canonical
encodings are accepted by A starting from the rightmost position.

Lemma 2. Given a tree automaton A recognizing a regular language L, one can
construct a CMA Aenc recognizing Lenc.

Proof. The tree automaton A can be seen as a Tiling Automaton on trees or,
equivalently, as a Tiling Automaton on encodings of trees (recall that, by Defini-
tion 4, nodes that are neighbors inside a tree t correspond, in any data word that
encodes t, to positions that are also neighbors). The data language of all valid
encodings of trees is also recognized by a Tiling Automaton. The claim follows
from Proposition 2 and the fact that CMA are closed under intersection.

We are now ready to transfer the separation results to data languages:

Proof of Theorem 1. Let L1 be a language recognized by a non-deterministic
TWA A1 that cannot be recognized by deterministic TWA (recall that such a
language exists thanks to the first claim of Theorem 2). Using the first claim of
Lemma 1, we construct a non-deterministic DWAAenc

1 such that L (Aenc
1) = Lenc

1 .
Suppose by way of contradiction that there is a deterministic DWA B1 that
also recognizes Lenc

1 . We apply the second claim of Lemma 1 and we obtain a
deterministic TWA Btree1 that accepts all and only the trees whose canonical
encodings are accepted by B1. Since Lenc

1 = {w ∣ tree(w) ∈ L1} is invariant
under equivalent encodings of trees (that is, w ∈ Lenc

1 iff w′ ∈ Lenc
1 whenever

tree(w) = tree(w′)), we have that t ∈ L1 iff enc(t) ∈ Lenc
1 , iff t ∈ L (Btree1). We

have just shown that the deterministic TWA Btree1 recognizes the language L1,
which contradicts the assumption on L1.

By applying similar arguments to a regular tree language L2 that is not
recognizable by non-deterministic TWA (cf. second claim of Theorem 2), one
can separate CMA from non-deterministic DWA.

We conclude this section with a couple of remarks. We know from the previous
results that if non-deterministic TWA were not closed under complementation,
as one reasonably expects, then by Lemma 1 non-deterministic DWA would not
be closed under complementation either. Unfortunately, we are not able to show
that the class of non-deterministic DWA is not closed under complementation.
We conjecture however that the following language cannot be complemented
within the class of non-deterministic DWA:

Lbridges = {w1 d w2 d w3 e w4 e w5 f w6 f w7 ∣ d, e, f ∈ D, w1, ...,w7 ∈ D∗ }.

Finally, we observe that the language Lbridges is definable in the two-variable
fragment of first-order logic with access to the linear order < on positions and
either the class successor predicate ⊕1 or the data equality predicate ∼. It is also
definable in Basic Data LTL, a linear temporal logic with 2-sorted operators,
working over the string projection and the data classes, see [9].

5 A fragment of first-order logic captured by DWA

Two-variable fragments of first-order logics have been extensively studied in the
literature, especially in connection with data languages. For example, in [4] the
logic FO2[Σ,+1,≤,∼], which uses the global successor, the total ordering relation,
and a third predicate ∼ for comparing data values, has been considered and
proved decidable by reduction to emptiness of Data Automata. Other examples
of logical formalisms that use at most two variables and some binary predicates
were studied in [5, 11, 15].

In this section we consider the two-variable fragment of first-order logic with
global successor and class successor predicates, and we prove that sentences in
this logic can be translated to equivalent deterministic DWA. More precisely, the
logic under consideration is denoted FO2[Σ,+1,⊕1] and consists of first-order
formulas that use at most two variable names, unary predicates corresponding
to the letters in the finite alphabet Σ, and the global and class successors predi-
cates +1 and ⊕1. Data words can be naturally seen as models of FO2[Σ,+1,⊕1]
sentences.

Intuitively, the fact that deterministic DWA recognize all data languages
definable in FO2[Σ,+1,⊕1] follows from two basic observations:
1. every FO2[Σ,+1,⊕1] sentence can be rewritten into a Boolean combination

of locally threshold testable conditions of the form “local property α(x) is
satisfied on k distinct positions”, where “local property” roughly means a
formula that can be evaluated over a small neighborhood of the position;

2. deterministic DWA can easily count, up to some given bound, the number of
positions x in a data word where a certain local property α(x) holds; since
they are closed under unions and intersections, deterministic DWA can thus
evaluate Boolean combinations of locally threshold testable conditions.

The first observation can be seen as a variant of Gaifman locality theorem [12]
in the specific setting of data words and two-variable first-order formulas. Even
though the proof of Gaifman locality theorem for first-order logic is usually
given in terms of Ehrenfeucht-Fräıssé games and graph-theoretic notions such as
that of neighborhood-type, here we prefer to give a more direct translation from
FO2[Σ,+1,⊕1] formulas to Boolean combinations of locally threshold testable
conditions. This choice is also motivated by the fact that two-variable formu-
las cannot describe precisely the isomorphism types of subgraphs induced by
neighboring positions, as it is the case for instance with full first-order formulas.

In the following, it is convenient to think of a data word w ∈ (Σ ×D)∗ as a
directed labeled graph Gw = (V, →⇢ , →̀ , ↛⇢), where:
– V = (Va)a∈Σ is the partition of the domain of w into sets Va = {i ∣ w(i) = a},

– i →⇢ j iff j = i + 1 = i⊕ 1 (i.e. j is both a successor and a class successor of i),
– i →̀ j iff j = i + 1 and either i⊕ 1 is undefined or j ≠ i⊕ 1,
– i ↛⇢ j iff j = i⊕ 1 and either i + 1 is undefined or j ≠ i + 1.
We denote by distw(i, j) the length of the shortest path between i and j in the
undirected graph obtained from Gw.

We will freely use shorthands of formulas such as x →⇢ y for y = x+1∧y = x⊕1,
x →̀ y for y = x + 1 ∧ y ≠ x ⊕ 1, x ↛⇢ y for y ≠ x + 1 ∧ y = x ⊕ 1, and dist(x, y) > 1
for y ≠ x + 1 ∧ y ≠ x⊕ 1 ∧ x ≠ y + 1 ∧ x ≠ y ⊕ 1. Moreover, we will assume that all
existential quantifications in FO2[Σ,+1,⊕1] are of the form

∃y (ϕ(y) ∧ τ(x, y)) (†)

where ϕ(y) does not contain any free occurrence of the variable x and τ(x, y) is
a formula among x →⇢ y, x ←⇠ y, x →̀ y, x ←b y, x ↛⇢ y, x ↚⇠ y, dist(x, y) > 1. We can
do so, without loss of generality, because every atomic relation between x and
y (e.g. y = x ⊕ 1) can be seen as disjunction of formulas τ(x, y) of the previous
form and because existential quantification commutes with disjunction.

We are interested in special forms of FO2[Σ,+1,⊕1] formulas with one free
variable x, which can be evaluated over small neighborhoods of Gw. Formally,
we define `-local formulas by induction on ` ∈ N, as follows:
– a(x) is 0-local for all letters a ∈ Σ,
– α(x) ∧ β(x) is `-local if both α(x) and β(x) are `-local,
– ¬α(x) is `-local if α(x) is `-local,
– ∃y (α(y) ∧ τ(x, y)) is (` + 1)-local if α(y) is `-local and τ(x, y) entails

dist(x, y) = 1, namely, τ(x, y) ∈ {x →⇢ y, y ←⇠ x, x →̀ y, y ←b x, x ↛⇢ y, y ↚⇠ x}.
It is not surprising that deterministic DWA can evaluate `-local formulas on
data words via computations of bounded length that start and end in the same
position:

Lemma 3. Given an `-local formula α(x), one can construct a deterministic
DWA A such that, for all data words w and all positions i, if A starts in i, then
it halts again in i and it accepts or rejects depending on whether (w, i) ⊧ α(x).

Proof. The construction of the automaton A follows the syntactic structure of
the local formula and exploits basic closure properties of the considered subclass
of deterministic DWA.

The base case consists of translating a predicate a(x) into a single-transition
automaton that moves from the initial state to a halting state that is either
accepting or rejecting depending on the label of the current position.

For the inductive step, the cases of Boolean combinations α(x) ∧ β(x) and
¬α(x) are dealt with by using the standard constructions of concatenation of
runs and complementation of automata. Finally, the translation of an (` + 1)-
local formula ∃y (α(y) ∧ τ(x, y)) is done by a simple case distinction based
on the form of τ(x, y). For instance, if τ(x, y) = (x →⇢ y), then the automaton
tests that the current position has type 1succ (if not it halts and rejects), then
moves to the successor of the current position, simulates the automaton for
the `-local formula α(y), moves back to the original position, and halts in an

accepting or rejecting state depending on the result of the subcomputation for
α(y). Analogous constructions can be given for the remaining cases.

Thanks to the above lemma and to the fact that, up to logical equivalence,
there exist only finitely many `-local formulas, we can treat `-local formulas in
the same way as we treat letters from the finite alphabet Σ.

In order to show that FO2[Σ,+1,⊕1] definable data languages are recog-
nized by deterministic DWA, we will first give a translation of FO2[Σ,+1,⊕1]
sentences towards Boolean combinations of constraints that count, up to a cer-
tain threshold, the number of positions satisfying some local formulas. For this
we introduce an intermediate logical language, denoted FO2

count[Σ,+1,⊕1], that
extends FO2[Σ,+1,⊕1] by adding sentences with counting quantifiers of the form
∃≥ky α(y), where k ∈ N and α(y) is an `-local formula for some ` ∈ N. These new
sentences are interpreted on data words in the following natural way:

w ⊧ ∃≥ky α(y) iff
w contains k distinct positions i1, ..., ik
such that, for all j = 1, ..., k, (w, ij) ⊧ α(y).

The general idea is to transform inductively, starting from the innermost sub-
formulas, any FO2

count[Σ,+1,⊕1] formula ϕ(x) into an equivalent Boolean com-
bination of `-local formulas α(x), for a suitable ` ∈ N, and global constraints of
the form ∃≥ky α(y). The following lemma provides the inductive translation in
the most interesting case (i.e. quantification over points that are far from the
instance of the free variable):

Lemma 4. Let ϕ(x) = ∃y (α(y) ∧ dist(x, y) > 1) be an FO2[Σ,+1,⊕1] formula,
where α(y) is `-local. Let E = { →⇢ , ←⇠ , →̀ , ←b , ↛⇢ , ↚⇠} be the set of all edge
relations witnessing distance 1. We have that ϕ(x) is logically equivalent to the
following Boolean combination of (` + 1)-local and global constraints:

⋁
I⊆E∪{0}

(⋀
e∈I

αe(x)) ∧
⎛
⎝ ⋀
e∈E∪{0}∖I

¬αe(x)
⎞
⎠
∧ ∃≥∣I ∣+1y α(y)

where α0(x) = α(x) and αe(x) = ∃y. (α(y) ∧ x e y) for all e ∈ E (note that
αe(x) is an (` + 1)-local formula).

Proof. The proof of this lemma is a case distinction based on which positions y
at distance at most 1 from x satisfy the local formula α(y). Precisely, we consider
some data word w and a position i in it. For each e ∈ E, we denote by je the
unique position in Gw such that i e je (note that dist(i, je) = 1). For convenience,
we also let j0 = i. We then define I to be the set of all indices e ∈ E ∪ {0} such
that (w, je) ⊧ α(y). By construction, w contains exactly ∣I ∣ positions at distance
at most 1 from i that satisfy α(y). We conclude that (w, i) ⊧ ϕ(x) iff there is a
position y at distance more than 1 from x that satisfies α(y), iff w contains at
least ∣I ∣ + 1 positions that satisfy α(y).

We can now show how to turn an FO2[Σ,+1,⊕1] sentence into a Boolean
combination of constraints of the form ∃≥ky α(y), with α(y) local:

Theorem 3. Every FO2[Σ,+1,⊕1] sentence is logically equivalent to a Boolean
combination of global constraints of the form ∃≥ky α(y), where k ∈ N and α(y)
is `-local for some ` ∈ N.

Proof. We prove the following stronger claim: every FO2
count[Σ,+1,⊕1] formula

(or sentence) Ψ can be transformed into a normal form that consists of a Boolean
combination of `-local formulas, for some ` ∈ N, and global constraints ∃≥ky α(y).
To prove this claim we use an induction on the number N of subformulas of
Ψ that have a single free variable and are not yet normalized. The base case
N = 0 is vacuously true. As for the inductive step, we consider an innermost
subformula φ(x) of Ψ that is not yet normalized and we show how to normalize it.
Since all proper subformulas of φ(x) are normalized, we know that φ(x) cannot
be local, nor can start with a Boolean connective (otherwise φ(x) would have
been already in normal form). Moreover, recall that every universally quantified
formula ∀y ϕ(y) can be seen as a shorthand for ¬∃y¬ϕ(y), and that existentially
quantified formulas are assumed to be in the form defined by Equation (†). Based
on these arguments, we know that φ(x) is of the form

φ(x) = ∃y (ϕ(y) ∧ dist(x, y) > 1)

where ϕ(y) is normalized and contains no free occurrence of the variable x.
We then consider the global constraints that occur as maximal subformulas of
ϕ(y): since these are sentences with no free variable, they commute with the
existential quantification on y. In particular, φ(x) is logically equivalent to a
Boolean combination of formulas of the form

φ′(x) = γ′i ∧ ∃y (α′i(y) ∧ dist(x, y) > 1)

where γ′i is a global constraint and α′i(y) is a local formula. Finally, we can apply
Lemma 4 to transform each subformula ∃y (α′i(y) ∧ dist(x, y) > 1) in φ′(x) to
an equivalent Boolean combination of local and global constraints. In this way
we obtain a normalized formula φ′′(x) equivalent to φ(x).

Corollary 1. Deterministic DWA recognize all data languages that are definable
in FO2[Σ,+1,⊕1] (or even in FO2

count[Σ,+1,⊕1]).

Proof. Thanks to Theorem 3 every FO2[Σ,+1,⊕1] sentence Ψ is equivalent to a
Boolean combination Ψ ′ of global constraints γ1, ..., γn, where γj = ∃≥kjy αj(y)
for all 1 ≤ j ≤ n, with k1, ..., kn ∈ N and α1(y), ..., αn(y) local formulas. We can
use Lemma 3 to turn each local formula αj(y) into an equivalent deterministic
DWA Aj . Moreover, we can introduce a new alphabet Γ = P({c1, ..., cn}) and
construct a deterministic finite state automaton B that scans any word ŵ ∈ Γ ∗,
storing in its control state the number hj of occurrences of each predicate cj , up
to threshold kj , and accepting iff the formula Ψ ′ is satisfied when we substitute
each constraint γj = ∃≥kjy αj(y) with the condition hj ≥ kj . Now, we let L
be the data language defined by Ψ . By construction, B recognizes the following
language over Γ :

L̂ = { ŵ ∣ ∃w ∈ L, ∀1 ≤ i ≤ ∣w∣ = ∣ŵ∣, ŵ(i) = {cj ∣ (w, i) ⊧ αj} }.

Using standard constructions in automata theory, one can show that the substi-
tution in B of each predicate cj with the subautomaton Aj results in a deter-
ministic DWA that recognizes the language L.

6 Decision problems on DWA

We analyze in detail the complexity of the decision problems on DWA. We
start by considering the simpler membership problem, which consists of deciding
whether w ∈ L (A) for a DWA A and a data word w, both given as input.
Subsequently, we move to the emptiness and universality problems, which consist
of deciding, respectively, whether a given DWA accepts at least one data word
and whether a given DWA accepts all data words. We will show that these
problems are decidable, as well as the more general problems of containment
and equivalence.

6.1 Membership

Compared to other classes of automata on data words (e.g. CMA, Register Au-
tomata), deterministic DWA have a membership problem of very low time/space
complexity. Moreover, the complexity of the membership problem does not get
much worse if we consider non-deterministic DWA. We assume the reader to
be familiar with circuit complexity and, in particular, with constant-depth (e.g.
AC0) reductions [18].

Proposition 6. The membership problem for a deterministic DWA A and a
data word w is decidable in time O(∣w∣ ⋅ ∣A∣) and is LogSpace-complete under
AC0 reductions. Similarly, the membership problem for non-deterministic DWA
is NLogSpace-complete.

Proof. To decide in deterministic linear time whether a given deterministic DWA
A accepts a given data word w, it is not just sufficient to simulate the run of A on
w, sinceAmay reject w by entering an infinite loop. We use instead Proposition 4
to compute a non-looping deterministic DWA A′ equivalent to A. Recall that A′
can be computed fromA in linear time and hence ∣A′∣ = O(∣A∣). Then we simulate
the run of A′ on w. Overall, this requires time O(∣A∣+ ∣A′∣ ⋅ ∣w∣) = O(∣A∣ ⋅ ∣w∣) and
space O(log ∣A∣ + log ∣w∣). For hardness, we note that the membership problem
is LogSpace-hard under AC0 reductions already for deterministic finite state
automata (see, for example, [7]).

As for non-deterministic DWA, it suffices to observe that a non-deterministic
logarithmic-space Turing machine can easily guess and simulate a run of a given
DWA A on a given data word w. This shows that the membership problem
for non-deterministic DWA is in NLogSpace. Moreover, the membership prob-
lem is known to be NLogSpace-hard already for non-deterministic finite state
automata.

6.2 Emptiness

We start by reducing the emptiness of CMA to the emptiness of deterministic
DWA (or, equivalently, to universality of deterministic DWA). For this purpose,
it is convenient to first translate the input CMA A into an equivalent Tiling
Automaton T = (Σ,Γ,T), using Proposition 2. We denote by Tilings(T) the set
of data words over Σ × D expanded by valid tilings on them – we think of the
latter set as a data language over the alphabet Γ ×Σ × D. Now, given a data
word w̃ ∈ (Γ × Σ × D)∗, checking whether w̃ belongs to Tilings(T) reduces to
checking constraints on neighborhoods of positions. Since this can be done by a
deterministic DWA, we get the following result:

Proposition 7. Given a Tiling Automaton T , one can construct in polynomial
time a deterministic DWA T tiling that recognizes the data language Tilings(T).

Three important corollaries follow from the above proposition. The corollaries
concern the operation of functional projection, formally specified by a function
f ∶ Σ → Σ′ and mapping any data word w = (a1, d1) . . . (an, dn) over Σ ×D to
the data word f(w) = (f(a1), d1) . . . (f(an), dn) over Σ′ ×D.

Corollary 2. Data languages recognized by CMA are functional projections of
data languages recognized by deterministic DWA.

Corollary 3. The class of non-deterministic DWA and that of deterministic
DWA are not closed under functional projections.

Proof. If non-deterministic DWA would capture functional projections of de-
terministic DWA, then, by the previous result, they would also capture the
languages recognized by CMA, which would contradict Theorem 1.

Corollary 4. Emptiness and universality of deterministic DWA is at least as
hard as emptiness of CMA, which in turn is at least as hard as reachability in
Petri nets [4].

We now turn to showing that languages recognized by non-deterministic
DWA are also recognized by CMA, and hence emptiness of DWA is reducible to
emptiness of CMA. Let A = (Q,Σ,∆, I,F) be a non-deterministic DWA. With-
out loss of generality, we can assume that A has a single initial state q0 and a
single final state qf . We can also assume that whenever A accepts a data word
w, it does so by halting in the rightmost position of w. For the sake of brevity,
given a transition δ = (p, a, τ, q, α) ∈ ∆, we define source(δ) = p, target(δ) = q,
letter(δ) = a, type(δ) = τ , and reach(δ) = α. Below, we introduce the concept
of min-flow, which can be thought of as a special form of tiling that witnesses
acceptance of a data word w by A. Min-flows are similar to crossing sequences,
which were used by Rabin and Scott in [14] to transform two-way finite state
automata to equivalent one-way automata – a difference here is that we cannot
avoid, or easily detect, the presence of disconnected components in a min-flow.

Definition 6. Let w = (a1, d1) . . . (an, dn) be a data word of length n. A min-
flow on w is any map µ ∶ [n] → 2∆ that satisfies the following conditions:
1. There is a transition δ ∈ µ(1) such that source(δ) = q0;
2. There is a transition δ ∈ µ(n) such that target(δ) = qf ;
3. For all positions i ∈ [n], if δ ∈ µ(i), then letter(δ) = ai and type(δ) = typew(i);
4. For each i ∈ [n] and each q ∈ Q, there is at most one transition δ ∈ µ(i) such

that source(δ) = q;
5. For each i ∈ [n] and each q ∈ Q, there is at most one position j ∈ [n] for

which there is δ ∈ µ(j) such that target(δ) = q and i = reach(δ)(j);
6. For each i ∈ [n], let exiting(i) be the set of all states of the form source(δ)

for some δ ∈ µ(i); similarly, let entering(i) be the set of all states of the form
target(δ) for some δ ∈ µ(j) and some j ∈ [n] such that i = reach(δ)(j); our
last condition states that for all positions i ∈ [n],
(a) if i = 1, then entering(i) = exiting(i) ∖ {q0},
(b) if i = n, then exiting(i) = entering(i) ∖ {qf},
(c) otherwise, exiting(i) = entering(i).

Lemma 5. A accepts w iff there is a min-flow µ on w.

Proof. Let w = (a1, d1) ⋯ (an, dn) be a data word of length n and let ρ be

a successful run of A on w of the form (q0, i0) wÐÐ→ (q1, i1) wÐÐ→ . . . (qm, im)
obtained by the sequence of transitions δ1, . . . , δm. Without loss of generality, we
can assume that no position in ρ is visited twice with the same state (indeed,
if ik = ih and qk = qh for some k /= h, then ρ would contain a loop that can be
eliminated without affecting acceptance). We associate with each position i ∈ [n]
the set µ(i) = {δk ∣ 1 ≤ k ≤m, ik = i}. One can easily verify that µ is a min-flow
on w.

For the other direction, we assume that there is a min-flow µ on w. We
construct the edge-labeled graph Gµ with vertices in Q × [n] and edges of the
form ((p, i), (q, j)) labeled by a transition δ, where i ∈ [n], δ ∈ µ(i), p = source(δ),
q = target(δ), and j = reach(δ)(i). By construction, every vertex of Gµ has the
same in-degree as the out-degree (either 0 or 1), with the only exceptions being
the vertex (q0,1) of in-degree 0 and out-degree 1, and the vertex (qf , n) of
in-degree 1 and out-degree 0. One way to construct a successful run of A on
w is to repeatedly choose the only vertex x in Gµ with in-degree 0 and out-
degree 1, execute the transition δ that labels the only edge departing from x,
and remove that edge from Gµ. This procedure terminates when no edge of Gµ
can be removed and it produces a successful run on w.

Since min-flows are special forms of tilings, CMA can guess them and hence:

Theorem 4. Given a DWA, one can construct an equivalent CMA. In partic-
ular, emptiness of DWA is a decidable problem.

6.3 Universality

Here we show that the complement of the language recognized by a DWA is also
recognized by a CMA, and hence universality of DWA is reducible to emptiness

of CMA. As usual, we fix a DWA A = (Q,Σ,∆, I,F), with I = {q0} and F =
{qf}, and we assume that A halts only on rightmost positions. Below we define
max-flows, which, dually to min-flows, can be seen as a special forms of tilings
witnessing non-acceptance.

Definition 7. Let w = (a1, d1) . . . (an, dn) be a data word of length n. A max-
flow on w is any map ν ∶ [n] → 2Q that satisfies the following conditions:
1. q0 ∈ ν(1) and qf /∈ ν(n),
2. for all positions i ∈ [n] and all transitions δ ∈ ∆, if source(δ) ∈ ν(i),

letter(δ) = ai, and type(δ) = typew(i), then target(δ) ∈ ν(reach(δ)(i)).

Lemma 6. A rejects w iff there is a max-flow ν on w.

Proof. Let ρ = (q0, i0) wÐÐ→ (q1, i1) wÐÐ→ . . . (qm, im) be a partial run of A on
w starting in the initial state. It is easy to verify, e.g. by induction the length m
of ρ, that every max-flow ν on w contains ρ in the sense that qk ∈ ν(ik) for all
indices 0 ≤ k ≤m. This means that if A has a successful run on w, then there is
no max-flow on w.

Next assume that A has no successful run on w. Consider the smallest max-
flow ν containing all the runs of A on w. This witnesses the left-to-right direction
of the proposition.

We obtain that CMA capture complements of languages recognized by DWA:

Theorem 5. Given a non-deterministic DWA A recognizing L, one can con-
struct a CMA A′ that recognizes the complement of L. In particular, universality
of DWA is a decidable problem.

6.4 Containment and other problems

We conclude by mentioning a few interesting decidability results that follow di-
rectly from Theorems 4 and 5 and from the closure properties of CMA under
union and intersection. The first result concerns the decidability of contain-
ment/equivalence of DWA. The second result concerns the property of language
of being invariant under tree encodings, namely, of being of the form Lenc for
some language L of trees.

Corollary 5. Given two non-deterministic DWA A and B, one can decide whether
L (A) ⊆ L (B). More generally, one can decide emptiness of every Boolean com-
bination of languages recognized by non-deterministic DWA.

Proof. Let L be a Boolean combination of languages recognized by non-deterministic
DWA. Without loss of generality, we can assume that

L = ⋃
1≤i≤k

⋂
1≤j≤h

(Li,j ∩ L̄i,j)

where each Li,j (resp. L̄i,j) is a language recognized by a non-deterministic DWA
Ai,j (resp. the complement of a language recognized by a non-deterministic DWA

Āi,j). In view of Theorems 4 and 5, one can construct suitable CMA Ci,j and
C̄i,j recognizing Li,j and L̄i,j , respectively. Finally, closure of CMA under unions
and intersections imply that L is recognized by a CMA, for which emptiness can
be decided.

Corollary 6. Given a non-deterministic DWA A, one can decide whether L (A)
is invariant under tree encodings.

Proof. We briefly explain how to reduce the problem of deciding invariance un-
der tree encodings to a containment problem between DWA. We reuse some
of the notation that we introduced in Section 4. Let L = L (A) for some non-
deterministic DWA A. We have that L is invariant under tree encodings iff (i)
L ⊆ U enc, where U is the regular language of all trees, and (ii) for all data words
w,w′ such that tree(w) = tree(w′), w ∈ L iff w′ ∈ L. The first condition is a simple
containment between DWA. Checking the second condition reduces to transform-
ingA into a TWAAtree such that L (Atree) = {t ∣ enc(t) ∈ L}, then turningAtree

back to a DWA A′ such that L (A′) = L (Atree)enc = {w ∣ enc(tree(w)) ∈ L}
(⊇ L (A)), and finally deciding whether L (A′) ⊆ L (A).

7 Undecidable extensions of DWA

In this section we consider some natural extensions of DWA, specifically alter-
nating DWA and DWA with pebbles, and we show that they quickly lead to
undecidable emptiness problems. Alternating DWA are defined, as expected, by
partitioning the set of states into existential and universal ones and by formu-
lating acceptance as a winning condition in a two-player game (infinite plays
are seen as rejecting runs). Pebble DWA are the analogue of tree walking pebble
automata [6] for data words: like DWA, they can move along global/class prede-
cessors/successors and, in addition, they can drop a pebble from a fixed finite set
at a currently visited position, they can lift a pebble from the current position,
and they can test whether the current position is marked with a pebble.

Proposition 8. Emptiness of alternating DWA is undecidable.

Proof. We reduce Post’s correspondence problem (PCP) to emptiness of alter-
nating DWA. For this we consider a PCP instance that consists of a series of
pairs (ui, vi) for i = 1, . . . , n, with n > 0 and ui, vi words over an alphabet Σ.
We introduce a new alphabet Γ = Σ ⊎{1, . . . , n}⊎{#} and we encode a solution
ui1 ⋅ . . . ⋅uim = vi1 ⋅ . . . ⋅ vim (m > 0) of the PCP instance by means of a data word
w ∈ (Γ ×D)∗, such that:
1. the projection of w onto Γ is the string i1 ⋅ui1 ⋅. . .⋅im ⋅uim ⋅#⋅i1 ⋅vi1 ⋅. . .⋅im ⋅vim ,
2. the data value associated with # occurs exactly once, while the other data

values, which are associated with symbols in Σ ⊎ {1, . . . , n}, occur exactly
twice, once to the left and once to the right of the separator #,

3. any two positions with equal data value carry the same symbol from Γ ,

4. the sequence of data values associated with symbols inΣ (resp., in {1, . . . , n})
occurring to the left of # coincides with the sequence of data values associ-
ated with symbols in Σ (resp. in {1, . . . , n}) occurring to the right of #.

Let L be the language of all data word encodings of solutions of the PCP instance.
Below, we show that L can be recognized by an alternating DWA, which implies
that the considered PCP problem reduces to non-emptiness of L.

The string projection of L onto Γ is a regular language of the form {i⋅ui ∣ 1 ≤
i ≤ n}+ # {i ⋅ vi ∣ 1 ≤ i ≤ n}+. This means that the first condition that defines
a data word encoding can be checked by a deterministic DWA. The second and
third conditions are also easily checked by deterministic DWA with access to
local types.

It remains to describe a DWA that checks the last condition by exploiting
alternation. For this is sufficient to consider only the subsequence of data values
associated with symbols in Σ to the left and to the right of #. More precisely,
starting from the leftmost Σ-labeled position of the input data word w, the
automaton repeatedly performs the following sequence of moves, until the right-
most Σ-labeled position is reached: from a position i, it first moves universally
to some Σ-labeled position j > i before the occurrence of #, then it moves to the
class successor j ⊕ 1, reaches universally some Σ-labeled position k > j ⊕ 1, and
moves to the class predecessor k⊖1. If the input word w is a valid encoding of a
solution of the PCP instance, and in particular if w satisfies condition 4. above,
then the automaton eventually halts in the rightmost position of w. Otherwise,
if w does not satisfies condition 4., then there exist a position j to the left of #
and a position k to the right of # such that j ⊕ 1 < k and k ⊖ 1 < j. This means
that the automaton admits an infinite run that cycles between positions j and
k, and thus rejects the input word w.

Proposition 9. Emptiness of pebble DWA is undecidable.

Proof. The proof is a variant of that of Proposition 8. Given an instance of
the PCP problem, we define the language L of all encodings of solutions of this
instance. The data language L can be equally recognized by a deterministic DWA
with a single pebble. As before, the first three conditions that define membership
of a data word w in L can be checked by deterministic DWA without pebbles,
while the last condition requires the use a pebble, since it concerns the order of
the data values associated with symbols in Σ ⊎ {#}. Specifically, if we denote
by w′ the subsequence of w obtained by selecting the positions labeled over
Σ⊎{#}, then checking the last condition amounts to verifying that, in w′, every

position i to the left of # satisfies (((i ⊕ 1) + 1) ⊖ 1) − 1 = i. This test can be

directly performed on the input data word w by a deterministic automaton that
executes the following steps: it places a pebble at each position i to the left of
#, it moves first along axis ⊕1 and then to the right reaching the next Σ-labeled
position (if there is no such position, it backtracks to position i and accepts iff
the next symbol is #); then it moves along the axis ⊖1 and again to the left to
the previous Σ-labeled position, where it checks the presence of the pebble (if
not, the automaton halts and rejects); finally, it lifts the pebble and continues

the computation with the next Σ-labeled position i+ 1, until the separator # is
reached.

8 Discussion

We showed that the model of walking automaton can be adapted to data words
in order to define robust families of data languages. We studied the complexity
of the fundamental problems of word acceptance, emptiness, universality, and
containment (quite remarkably, all these problems are shown to be decidable).
We also analyzed the relative expressive power of the deterministic and non-
deterministic models of Data Walking Automata, comparing them with other
classes of automata appeared in the literature (most notably, Data Automata
and Class Memory Automata). In this respect, we proved that deterministic
DWA, non-deterministic DWA, and CMA form a strictly increasing hierarchy
of data languages, where the top ones are functional projections of the bottom
ones.

It follows from our results that DWA satisfy properties analogous to those
satisfied by Tree Walking Automata – for instance non-deterministic DWA, like
non-deterministic TWA, are effectively closed under all Boolean operations, are
strictly less expressive than Tiling Automata, and are not closed under functional
projections.

We also know that DWA are incomparable with one-way non-deterministic
Register Automata [8]: on the one hand, DWA can check that all data values
are distinct, whereas Register Automata cannot; on the other hand, Register
Automata can recognize languages of data strings that do not encode valid runs
of Turing machines, while Data Walking Automata cannot, as otherwise uni-
versality would become undecidable. Variants of DWA can also be considered,
for instance, by adding registers, pebbles, alternation, or nesting. Unfortunately,
none of these extensions yields a decidable emptiness problem. As an example,
we have shown that the use of alternation or pebbles in DWA allows one to eas-
ily encode positive instances of Post’s correspondence problem, thus implying
undecidability of emptiness.

Finally, we leave open the following questions:
– Are non-deterministic DWA closed under complementation?
– Do DWA capture all languages definable in FO2[Σ,<,⊕1], i.e. the two-variable

fragment of first-order logic with access to the letters in Σ, the linear order
< on positions, and the class successor predicate ⊕1? Similarly, do DWA
capture all languages definable in Basic Data LTL?

We recall that a question similar to the first one and concerning Tree Walking
Automata was left open in [2, 3]. Any counterexample to closure under comple-
mentation of Tree Walking Automata would immediately give a negative answer
to our first question. More generally, negative answers to our questions may come
from considering the complement of the following language, which is definable
in FO2[Σ,<,⊕1] and conjectured to be not recognizable by DWA:

Lbridges = {w1 d w2 d w3 e w4 e w5 f w6 f w7 ∣ d, e, f ∈ D, w1, ...,w7 ∈ D∗ }.

Acknowledgments. The first author thanks Thomas Colcombet for detailed
discussions and acknowledges that some of the ideas were inspired during these.
The second author acknowledges Miko laj Bojańczyk and Thomas Schwentick for
detailed discussions about the relationship between DWA and Data Automata.
The authors are also grateful to the anonymous referees for the many helpful
remarks on the paper.

References

[1] H. Björklund and T. Schwentick. On notions of regularity for data languages.
Theoretical Computer Science, 411(4-5):702–715, 2010.

[2] M. Bojańczyk and T. Colcombet. Tree-walking automata cannot be determinized.
Theoretical Computer Science, 350(2-3):164–173, 2006.

[3] M. Bojańczyk and T. Colcombet. Tree-walking automata do not recognize all
regular languages. SIAM Journal, 38(2):658–701, 2008.

[4] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Transactions on Computational Logic,
12(4):27, 2011.

[5] M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic
on data trees and XML reasoning. Journal of the Association for Computing
Machinery, 56(3), 2009.

[6] J. Engelfriet and H.J. Hoogeboom. Tree-walking pebble automata. In Jewels are
forever, contributions to Theoretical Computer Science in honor of Arto Salomaa,
pages 72–83. Springer, 1999.

[7] M. Holzer and M. Kutrib. Descriptional and computational complexity of finite
automata: a survey. Information and Computation, 209(3):456–470, 2011.

[8] M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

[9] A. Kara, T. Schwentick, and T. Zeume. Temporal logics on words with multiple
data values. In Proceedings of the IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), pages 481–
492. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[10] L. Libkin and D. Vrgoc. Regular expressions for data words. In LPAR, volume
7180 of LNCS, pages 274–288. Springer, 2012.

[11] A. Manuel and T. Zeume. Two-variable logic on 2-dimensional structures. In
Proceedings of the 22th EACSL Annual Conference on Computer Science Logic
(CSL), volume 23 of LIPIcs, pages 484–499. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2013.

[12] R. McNaughton and S. Papert. Counter-free Automata. MIT, 1971.
[13] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over in-

finite alphabets. ACM Transactions on Computational Logic, 5(3):403–435, 2004.
[14] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM

Journal of Research and Development, 3(2):114–125, 1959.
[15] T. Schwentick and T. Zeume. Two-variable logic with two order relations. In

Proceedings of the 19th EACSL Annual Conference on Computer Science Logic
(CSL), volume 6247 of LNCS, pages 499–513. Springer, 2010.

[16] M. Sipser. Halting space-bounded computations. Theoretical Computer Science,
10:335–338, 1980.

[17] W. Thomas. Elements of an automata theory over partial orders. In Partial Order
Methods in Verification, pages 25–40. American Mathematical Society, 1997.

[18] H. Vollmer. Introduction to Circuit Complexity: a uniform approach. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 1999.

	Walking on Data Words

