
Combinatorial Expressions and Lower Bounds
Thomas Colcombet and Amaldev Manuel

LIAFA, Université Paris-Diderot
{thomas.colcombet, amal}@liafa.univ-paris-diderot.fr

Abstract
A new paradigm, called combinatorial expressions, for computing functions expressing properties
over infinite domains is introduced. The main result is a generic technique, for showing indefin-
ability of certain functions by the expressions, which uses a result, namely Hales-Jewett theorem,
from Ramsey theory. An application of the technique for proving inexpressibility results for logics
on metafinite structures is given. Some extensions and normal forms are also presented.

1998 ACM Subject Classification F.1.1 Models of Computation, G.2.1 Combinatorics

Keywords and phrases expressions, lower bound, indefinability

1 Introduction

In this paper, we study the computational power of parallel devices that have an unlimited
access to Boolean computations, as well as access to an infinite domain of ‘data’ (for instance
integers or positive integers in what follows) under the restriction of a limited ‘bandwidth’.
This limitation formally states that only a bounded number of data can be manipulated
simultaneously. This is in contrast to the operations over Boolean values that have unlimited
input size.

A typical model of this form consists of finite circuits–we call them combinatorial expres-
sions throughout the paper–, of bounded depth, in which gates are of two kinds: gates with
unbounded domain using arbitrary operations of fan-in at most two (for instance the binary
gcd, the binary sum, product, or even non-computable functions), and gates using inputs
ranging over a finite domain with unrestricted fan-in (for instance disjunctions, conjunctions
of unbounded fan-in, or majority gates).

We use these devices for studying problems that have sequences of data as input. Typical
such problems are:

does a sequence of positive integers (data) have a gcd of one?
does a sequence of integers sum to zero?
are all the integers in a sequence distinct?

The motivation of the authors in studying such devices arose from proofs of lower bounds
for logics over data-words. The essence of these lower bounds can be easily captured by
reduction to lower bounds over combinatorial expressions. Independently of this motivation,
we believe that the objects presented here deserve a study on their own. We chose to include
here a simpler application to indefinability results in metafinite model theory.

Contributions Our contributions concerning such models go in several directions.
We introduce the model of combinatorial expressions, show some normal forms for them.
We prove indefinability results for these expressions: Indefinability of functions (i.e., maps
from tuples of data to data) using the pigeonhole principle, and indefinability of problems
(i.e., maps of tuples of data to {0,1}) using reductions to problems of ‘window definability’
(see immediately below).

© Thomas Colcombet and Amaldev Manuel;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Combinatorial Expressions and Lower Bounds

We introduce the questions of ‘window definability’. Window definable properties are
properties that can be described as Boolean combinations of properties over subsets of the
inputs (namely windows). Using combinatorial arguments from Ramsey theory, namely
Hales-Jewett theorem, we show that some problems are window indefinable.
We study the added expressive power when expressions are furthermore allowed to use
selection gates.
Finally, we apply these techniques for proving some indefinability results over metafinite
structures (these are finite structures, in which tuples can take values in some fixed
infinite domain).

Related works This work is of course is related to circuit complexity (see for instance
[6]), and more precisely to families of circuits of bounded depth, since the object we are
manipulating can be seen as circuits. However, the expressive power of the models that we
study is very different. Indeed, not only, our combinatorial expressions can deal with data
ranging over an infinite domain, but furthermore, even Boolean gates are not restricted to a
simple families like Boolean connectives.

It was brought to our attention that our lower bound result is related to a result of Pascal
Tesson stating that testing whether k subsets of [n] form a partition requires a non-constant
communication complexity in the k-party ‘input on the forehead” model [7, 8]. The two
results also make an analogous use of the Hales-Jewett theorem.

There are other families of machines that have been extended to infinite domains, this is in
particular the subject of study of algebraic complexity (in particular [1, 5], or [9] for circuits).
However, the principle of these branches of work is to see how allowing machines to have
primitive capabilities to perform computations in a (infinite) field changes their expressive
power. The fact that the infinite domain is equipped of an algebraic (field) structure, changes
radically the expressive power, and in particular relates this branch of research to the study
of polynomials.

Organisation of the paper In Section 2, we present combinatorial expressions and some
motivating examples, which is then followed by a normal form theorem for the expressions
and a simple indefinability result. Section 3 contains the main contribution of this paper,
namely the indefinability results using the Hales-Jewett theorem. In Section 4, an extended
class of expressions is presented and a normal form theorem is given for this class. Section
5 presents an application of the indefinability result to metafinite logics. In Section 6 we
discuss some interesting directions for future work and conclude.

Acknowledgments The Hales-Jewett theorem was brought to our attention by Srikanth
Srinivasan, and the link to multiparty communication complexity by Frederic Magniez.

2 Combinatorial expressions and normal form

The aim of this section is to introduce the objects of our study, namely combinatorial
expressions. As usual, Z (resp. N) is the set of (resp. non-negative) integers, and [n] denotes
the set {1, . . . , n}.

2.1 Combinatorial expressions
Combinatorial expressions are built by composing partial maps over a data domain D which
is an infinite set. Typical instances of data domains are integers (Z), natural numbers (N),

T. Colcombet and A. Manuel 3

words over a finite alphabet (A∗ where A is a finite alphabet) etc. A variable X has range
E ⊆ D, abbreviated as X : E, if the set of values over which it ranges is E. We assume
an infinite supply of variables for each range E. A map f : E1 × · · · × Ek → F , where
E1, . . . , Ek, F ⊆ D, has arity k, domain E1 × · · · ×Ek and range F . The image of the map
f is the set of values in F that f maps to, i.e. the set {f(a1, . . . , ak) | a1 ∈ E1, . . . , ak ∈ Ek}.
The expressions are built using two specific classes of functions, namely:

binary functions — when k = 2, and,
finitary functions — when each of E1, . . . , Ek is finite.

A binary function has a bounded arity but may have an unbounded input domain, for
example the usual addition on naturals + : N × N → N is binary. On the other hand a
finitary function has a finite input domain, but no restriction on the arity. An example of a
finitary function is the Boolean conjunction over k inputs

∧
k : {0, 1}k → {0, 1}. Now we

formally define combinatorial expressions.

I Definition 1. Combinatorial expressions are defined inductively;
a variable X : E is a combinatorial expression with range E, and,
if f : E1 × · · · ×Ek → F is a binary or finitary function, and t1, . . . , tk are combinatorial
expressions with ranges E1, . . . , Ek respectively, then f(t1, . . . , tk) is a combinatorial
expression with range F .

Let t be a combinatorial expression that contains (possibly vacuously) the variables X̄ =
X1 : E1, . . . , Xn : En. We indicate the variables of t by the notation t(X̄). For the valuation
ā = a1, . . . , an, ai ∈ Ei of the variables X̄, the value of the expression t, denoted as t(ā), is
defined in the obvious way; if t is a variable Xi then t(ā) = ai, and if t = f(t1, . . . , tk) then
t(ā) = f(t1(ā), . . . , tk(ā)). Assume F ⊆ N is the range of the expression t. Naturally t defines
a map t : ā→ t(ā) from the set E1 × · · · ×En to the set F . Like in the case of functions, the
image of the term t is the set of output values of t, i.e. the set {t(ā) | ā ∈ E1 × · · · × En}.
Given a map m : Dn → D we say the map is realised by an expression t if t defines the map
m.

Next we introduce the notion of depth of an expression. For a variable X the depth is 0.
For an expression f(t1, . . . , tk) the depth is 1 more than the maximum of depths of t1, . . . , tk.

I Definition 2 (Family of combinatorial expressions). Fix a sequence X1 : D, X2 : D, . . .
of variables. A family of combinatorial expressions is a sequence of expressions (tn)n∈N =
t1, t2, . . . where tn is an expression over the variables X1, . . . , Xn.

A family of combinatorial expressions defines a map (tn)n∈N : a1, . . . , an → tn(a1, . . . , an)
from D∗ (all finite sequences over D) to D. The family (tn)n∈N is of constant depth if there
is a k ∈ N such that each expression tn is of depth at most k.

Given a map m : D∗ → D, we say m is realisable (by a constant depth family) if there
is a family of combinatorial expressions (of constant depth) (tn)n∈N that defines m. A
particular case is when the range of the map m is restricted to a set of size two, without
loss of generality we assume it is {0, 1} ; in this case we say (tn)n∈N realises the property (or
problem) {a1, . . . , an : m(a1, . . . , an) = 1}.

I Example 3. Some examples of combinatorial expressions and families are given below.
We take the domain D to be the set of natural numbers N.

1. Fix a number k ∈ N. Letm : N∗ → {0, . . . , k} be the mapm : a1, . . . , an → (
∑

i ai) mod k.
The map m is realised by the family (fn(g(X1), . . . , g(Xn)))n∈N, where fn : {0, . . . , k}n →
{0, . . . , k} is the finitary function fn : a1, . . . , an → (

∑
i ai) mod k, and g : N→ {0, . . . k}

is the binary function (by abuse of notation) g : i→ i mod k. This family has depth 2.

4 Combinatorial Expressions and Lower Bounds

2. Let P1 be the set of all finite sequences of non-zero naturals. This property is realised
by the family (

∧
n(zero(X1), . . . , zero(Xn)))n∈N, where zero : N → {0, 1} is the binary

function that maps precisely all the non-zero naturals to 1, and
∧

n is the finitary function
that defines the Boolean conjunction on n inputs. This family has depth 2.

3. Let P2 be the property {a1, . . . , an ∈ N∗ : ai 6= aj}. Let neq : N × N → {0, 1} be the
binary function that has value 1 precisely when the inputs differ. Then, the property P2
is realised by the family (of depth 2) (

∧
n·(n−1)/2(t12, . . . , t1n, t23 . . . , t2n, . . . , tn−1n))n∈N

where the expression tij = neq(Xi, Xj).
4. We claim that for any map m : N∗ → N there is a family (tn)n∈N of logarithmic depth (i.e.

the expression tn has depth at most logn) realising it. Let p1, p2, . . . be an enumeration
of the prime numbers. For each prime pi, let pi-exp : x→ px

i be the exponential function
with base pi. Define the binary function un : N→ N as

un(x) = m(a1, . . . , an) where ai is the exponent of pi in x

Finally let πn(X1, . . . , Xn) be the expression (of logn-depth) that computes the product
of the variables X1, . . . , Xn. Then, the family of expressions

(un(πn(p1-exp(X1), . . . , pn-exp(Xn)))n∈N

realises the map m.

Example 3.4 implies that the class of maps realised by families of expressions of logarithmic
depth is degenerate, i.e. every map is realisable. Hence for interesting results one has to
consider the class of families of sub-logarithmic depth. In the following we study the class of
families of expressions of constant depth and prove that it is non-degenerate, i.e. there are
maps and properties that are not realisable.

2.2 Normal form and definability
In the rest of the section we exhibit a normal form for the expressions. First we introduce
the important notion of semantic equivalence of expressions.

I Definition 4 (Equivalence of expressions). Two expressions t1(X̄) and t2(X̄) over the
variables X̄ = X1 : E1, . . . , Xn : En are equivalent if t1(ā) = t2(ā) for all ā = a1, . . . , an,
ai ∈ Ei.

We introduce some notation. For an expression t, we denote the range and image of t by
range(t) and image(t) respectively. Assume t̄ = t1, . . . , tn is a finite sequence of expressions.
We define len(t̄) = n and range(t̄) = range(t1)× · · · × range(tn). If s̄ = s1, . . . , sm and t̄ =
t1, . . . , tn are two sequences of expressions, then s̄, t̄ denotes the sequence s1, . . . , sm, t1, . . . , tn.
An expression t is a binary expression if it consists only of binary functions.

The normal form theorem is obtained by transforming the expressions and for that we
use the idea of pairing, i.e. encoding pairs of elements from D as an element in D. We use
the following fact from set theory.

I Fact 1 (See [4], Chapter 3). If A is an infinite set, there exists an injective map from
A×A to A.

Fix an injective map π from D × D to D. For elements a1, a2 ∈ D we let 〈a1, a2〉 denote
the element π(a1, a2) ∈ D. Similarly for subsets E1, E2 ∈ D we let 〈E1, E2〉 denote the set
{〈a1, a2〉 | a1 ∈ E1, a2 ∈ E2}.

T. Colcombet and A. Manuel 5

I Theorem 5 (Normal form). For every expression t(X̄) of depth ` ∈ N there exists an
equivalent expression of the form

b(r(X̄), f(s̄(X̄))) (1)

where b is a binary function, f is a finitary function, r(X̄) is a binary expression of depth at
most `, and s̄(X̄) is a sequence of binary expressions of depth at most `. Moreover, if the
image of t(X̄) is finite then there exists an equivalent expression of the form

f(s̄(X̄)) (2)

where f is a finitary function and s̄(X̄) is a sequence of binary expressions of depth at most
`.

The normal form theorem allows us to formulate arguments about the expressive power
of our model. We next give such an application.

I Proposition 1. Let m : D2k+1 → D be a map that satisfies the following property: (†) For
any index i ∈ [2k + 1] and any n ∈ N there exist values a1, . . . ai−1, ai+1, . . . , a2k+1 ∈ D such
that the set {m (a1, . . . , ai−1, b, ai+1, . . . , a2k+1) | b ∈ D} is of size at least n. Then the map
m is not realisable by an expression of depth at most k.

Proof. The proof is an application of the pigeonhole principle along with the normal form
theorem. Let m be a map that satisfies the Property (†).

Let X̄ = X1, . . . , X2k+1 be the input variables with range D. Assume there is an
expression t(X̄) of depth k realising the map m. Using the normal form theorem we obtain
an equivalent expression t′(X̄) of the form

b(r(X̄), f(s̄(X̄)))

where b is a binary, f is finitary, r(X̄) is a binary expression of depth at most k and s̄(X̄) is
a sequence of binary expressions of depth at most k. Let the image of the function f be of
size n. Since the binary expression r(X̄) has depth at most k, there is a variable Xi that is
not used by the expression r(X̄). Consider the following set of input tuples;

a1, . . . , ai−1, b1, ai+1, . . . a2k+1
a1, . . . , ai−1, b2, ai+1, . . . a2k+1
...

...
...

...
...

...
...

a1, . . . , ai−1, bm, ai+1, . . . a2k+1

where a1, . . . , ai−1, ai+1, . . . , a2k+1 ∈ D and b1, b2, · · · ∈ bm ∈ D, m > n are such that

|{m (a1, . . . , ai−1, bi, ai+1, . . . , a2k+1) | i ∈ [m]}| > n

and for each j 6= l it is the case that

m (a1, . . . , ai−1, bj , ai+1, . . . , a2k+1) 6= m (a1, . . . , ai−1, bl, ai+1, . . . , a2k+1) .

Existence of a1, . . . , ai−1, ai+1, . . . , a2k+1 ∈ D and b1, b2, . . . , bm ∈ D are guaranteed by the
Property (†). The tuples differ only on the input variable Xi. Hence on all these inputs the
binary expression r(X̄) has the same output. Moreover, since f has a finite image of size n
and the number of input tuples is more than n, by pigeonhole principle there exist two input
tuples on which f has the same output. Let them be

a1, . . . , ai−1, bj1 , ai+1, . . . a2k+1 ,

a1, . . . , ai−1, bj2 , ai+1, . . . a2k+1 .

6 Combinatorial Expressions and Lower Bounds

It follows that on these two inputs the expressions r(X̄) and f(s̄(X̄)) have the same output
and hence the function b also has the same output. But clearly the map m differs on these
inputs which is a contradiction. Hence the claim is established. J

I Corollary 6. The following maps are not realised by expressions of depth at most k.
1. gcd : (N \ {0})2k+1 → N \ {0} defined as gcd : a1, a2, . . . , a2k+1 → gcd(a1, a2, . . . , a2k+1),
2. sum : Z2k+1 → Z defined as sum : a1, a2, . . . , a2k+1 → a1 + · · ·+ a2k+1.

Proof. By virtue of the previous proposition, it is enough to establish the Property (†) for
each of the maps m.
1. For each i ∈ 2k + 1 and n ∈ N, we define the following tuples ;

2n+1, . . . , 2n+1, 2, 2n+1, . . . , 2n+1

2n+1, . . . , 2n+1, 22, 2n+1, . . . , 2n+1

...
...

...
...

...
...

...
2n+1, . . . , 2n+1, 2n+1 2n+1, . . . , 2n+1

︸ ︷︷ ︸ ︸ ︷︷ ︸
i− 1 times 2k + 1− i times

It is straightforward to check that the image of the map gcd on these tuples is of size n+ 1.

2. As before, for each i ∈ 2k + 1 and n ∈ N, we define the following tuples ;

0, . . . , 0, 1, 0, . . . , 0
0, . . . , 0, 2, 0, . . . , 0
...

...
...

...
...

...
...

0, . . . , 0, n+ 1 0, . . . , 0︸ ︷︷ ︸ ︸ ︷︷ ︸
i− 1 times 2k + 1− i times

It is easily verified that the image of the map sum on these tuples is of size n+ 1. J

Before concluding this section let us note that the arguments we used in Proposition 1
does not work for proving indefinability of maps with a finite image, for instance the map
Pgcd=1 : (N \ {0})∗ → {0, 1} defined as Pgcd=1(a1, a2, . . . , am) = 1 iff gcd(a1, . . . , am) = 1.
In the next section we develop advanced techniques for handling such maps.

3 Window-definability and indefinability

In this section, we provide the necessary material for showing that some problems are
not expressible by combinatorial expressions of bounded depth. This is different from the
indefinability result that we have seen before, Proposition 1, which was dealing with the
indefinability of functions that have an infinite/unbounded image while the maps we consider
in this section have an image of size 2. For this, we slightly depart from the above framework,
and introduce the notion of window-definability.

In the following we use the notation AB to denote the set of all vectors/sequences over A
indexed by the set B. Let us fix a finite set of variables, V = {X1, . . . , Xk} ranging over D.
A window (over V) is a subset of V . Given a valuation of the variables ā ∈ DV , its restriction
to a window W is denoted ā|W . Two valuations v, v′ are W -equivalent if v|W = v′|W , i.e.,
indistinguishable ‘through the windowW ’. From now,W designates a fixed set of windows. A

T. Colcombet and A. Manuel 7

problem P ⊆ Dk is W-definable if it can be described as a Boolean combination of languages
of the form

{ā ∈ DV | ā|W ∈ S} for some S ⊆ DW .

Such a Boolean combination is called aW-definition. In other words, the membership to P is
entirely determined given finitely many properties of the input ‘seen through the windows’. Of
course, if V ∈ W , then all problems are W-definable. We are interested in understanding the
notion of W-definability when this is not the case (i.e. V 6∈ W). The size of a W-definition
is the number of sets of the above form it uses. A problem is W, k-definable if there is a
W-definition for it of size at most k. Two problems P,R are W, k-separable if there is a
W, k-definable set D such that P ∩D = ∅ and R ⊆ D.

These notions are related to the above sections thanks to the following lemma:

I Lemma 7. The problems definable by combinatorial expressions of depth k are W-definable,
where W is the set of all windows of size at most 2k.

Proof. By the normal form theorem, any expression of depth k deciding a property (since it
has a finite image) is equivalent to an expression of the form f(s̄(X̄))) where f is a finitary
function, and s̄(X̄) is a sequence of binary expressions of depth at most k. First of all we
observe that we can assume that every binary expression in s̄(X̄) outputs a Boolean value,
in other words f computes a Boolean function. Notice that there is no loss of generality here
since any finitary function can be converted to a Boolean function by increasing the number
of inputs. Now the claim follows by observing that each binary expression si(X̄) in s̄(X̄)
corresponds to a set of the form {ā ∈ DV | ā|W ∈ S} where the window W is of size at most
2k (namely the valuables used by the expression si(X̄)). J

We shall now head toward indefinability results. For this, we use an exact characterization
of the definability for some special forms of problems: rectangle problems. In such problems,
data are column vectors. Hence, tuples of data as input can be seen as rectangles. We are
interested in relating the W-definability of the set of rectangles such that every line belongs
to some given set of valid rows L, to some simpler properties of L.

Belongs to PL,n,

Inputs are columns from D.

if all lines belong to L.

Formally, fix an alphabet A, and a line property L ⊆ AV . Then, given a positive integer n,
consider the domain Dn = An (understood as ‘columns’), and define the problem PL,n ⊆ DVn
consisting of these rectangles such that every line belongs to L:

PL,n = {ā ∈ DVn | πi(ā) ∈ L for all i ∈ [n]} ,
where πi(a1 . . . an) = ai is extended component-wise to tuples indexed by V.

Our Theorem 8, just below, relates the W-definability of these problems to the property of L
being W-closed, that we define now.

8 Combinatorial Expressions and Lower Bounds

An element ā ∈ AV belongs to the W-closure of L ⊆ AV , denoted LW , if for all W ∈ W
there is some b̄ ∈ L such that ā and b̄ are W -equivalent. The set L is W-closed if it is equal
to its W-closure.

The interesting examples are more the negative ones: consider for instance A = {0, 1},
L ⊆ AV the set of tuples that contain at least one occurrence of 1, and W to be 2V \ V , then
L is not W-closed since ā = 0V does not belong to L, but for all windows W ∈ W we can
define b̄ to be 0 over W and 1 elsewhere. This b̄ is W -equivalent to ā, and since it contains
at least one occurrence of 1, it belongs to L.

I Theorem 8. For all L ⊆ AV ,
if L is W-closed then there is some k such that all PL,n has a W, k-definition for all
positive integers n, and
if L is not W-closed, then for all k, there exists n such that PL,n has no W, k-definition.

Proof of the first item. Assume that L is W-closed, this means that:

L = {ā ∈ AV | ā|W ∈ L|W for all W ∈ W} , where L|W = {ā|W | ā ∈ L} .

Consider now the set RL,n ⊆ (Dn)V that contains u ∈ (Dn)V if u|W ∈ (L|W)n for all W ∈ W .
By definition, RL,n is W, |W|-definable. Let us show that RL,n = PL,n.

Consider some ā ∈ (Dn)V . Then ā ∈ PL,n if and only if for all i ∈ [n] and all W ∈ W,
πi(a|W) ∈ L|W , if and only if for all W ∈ W and all i ∈ [n], πi(a|W) ∈ L|W , if and only if
ā ∈ RL,n. Hence PL,n = RL,n is W, |W|-definable. J

Before being able to prove the second item, we need to introduce the deep combinatorial
theorem of Hales-Jewett. In this theorem, a combinatorial line of Bn (for some finite set B
and some positive integer n) is a set of the form ` = {u[b] | b ∈ B} for some u ∈ (B∗x)+B∗,
where u[b] denotes u in which b has been substituted to all occurrences of x.

I Theorem 9 (Hales-Jewett [3]). Given some finite sets B and C, there is a positive integer n
such that for all maps χ from Bn to C there exists a χ−monochromatic combinatorial line `,
i.e., there is c ∈ C such that χ(v) = c for all v ∈ `.

We now use a this theorem for establishing the second item of Theorem 8. We establish in
fact the following stronger lemma.

I Lemma 10. If ā ∈ L
W \ L, then for all k, there exists n such that PL,n and the set

PL∪{ā},n \ PL,n cannot be W, k-separated.

Hence, one cannot separate ‘all lines are in L’ from ‘all lines are in L ∪ {ā} and there is
a line equal to ā’. It is easy to see that Lemma 10 implies the second item of Theorem 8.
Indeed, L being non W-closed means that there exists ā ∈ L

W \ L. Assuming for the
sake of contradiction that PL,n would be W, k-definable would thus imply that PL,n and
PL∪{ā},n \ PL,n would be W, k-separated by PL,n itself. A contradiction.

Proof. Assume that PL,n and Qā,n = PL∪{ā},n \ PL,n are W, k-separable.
Our first step consists in showing that the language that separates PL,n from Qā,n can

be derived from a coloring function χ of the inputs to some set C (the size of which does
not depend on n). Let us assume that the W, k-separability is witnessed by a Boolean
combination of the sets Ri = {c̄ ∈ (Dn)V | c̄|Wi

∈ Si} for i ∈ [k] where Wi ∈ W and

T. Colcombet and A. Manuel 9

Si ⊆ (Dn)W . Consider now the set C = [2][k] (note that it does not depend on n), and the
map χ from (Dn)V to C defined by

for all i ∈ [k] and c̄ ∈ (Dn)V , χ(c̄)i = δc̄|Wi
∈Si

=
{

1 if c̄|Wi
∈ Si ,

0 otherwise.

This map stores all the relevant information concerning the membership in each of the Ri’s.
The W, k-separability means that whenever c̄ ∈ PL,n and c̄′ ∈ Qā,n, χ(c̄) 6= χ(c̄′) (?).

We shall now lay ground for the use of Hales-Jewett. This theorem will be used on rows:
a rectangle of the problem will be seen as a sequence of rows, one on top of the previous one.
This is different from the input itself, since each variable accounts for one column. We will
allow to use these two points of view by implicitly identifying elements from (AV)n (sequence
of rows of length V) with elements from (An)V = (Dn)V (sequence of columns of depth n).
Under this identification, we can for instance write Ln = PL,n, since PL,n consists of these
inputs such that every line belongs to L.

We can now apply the Hales-Jewett theorem, using B = L and C as defined during
the first step, thus getting a number n. The first step provides us with a coloring χ from
Bn to C. Finally, the theorem of Hales-Jewett states the existence of a χ-monochromatic
combinatorial line ` = {u[b̄] | b̄ ∈ L} for u ∈ (L ∪ {x})n, of color c ∈ C.

The principle of the rest of the proof is shown is the following picture:

x

x

u All other lines in L. χ-monochromatic
when x ranges
over L.

belongs to PL,n

and

ā

ā

⇒

Also
accepted.

Let us prove that χ(u[ā]) = c (This is a contradiction to (?) since u[ā] ∈ Qb̄,n, thus
completing the proof).

For all i ∈ [k], we have:

χ(u[ā])i = δu[ā]|Wi
∈Si

(by definition of χ)

= δu[b̄]|Wi
∈Si

for some b̄ ∈ L (since ā ∈ LW)

= χ(u[b̄])i (by definition of χ)
= ci . (since u[b̄] ∈ ` hand hence is mapped to c by χ)

Hence χ(u[ā]) = c. J

We can now derive other indefinability results from Theorem 8.

I Lemma 11. Consider a set of windows W such that V 6∈ W.
For D being the positive integers, then the set Pgcd=1 of inputs of gcd one is not W-
definable.
For D being the integers, the set PΣ=0 of inputs of null sum is not W-definable.

Proof of first item. Let k be a positive integer. Let us show that Pgcd=1 is not W, k-
definable.

Let A = {0, 1} and L = AV \ {0}V . We have seen that this L was not W-closed.
Hence, according to Theorem 8, there is n such that the rectangle problem PL,n is not W, k-
definable. Let p1, . . . , pn be n distinct prime numbers. Define the map f from Dn = {0, 1}n

10 Combinatorial Expressions and Lower Bounds

to positive integers by f(a1 . . . an) = pa1
1 pa2

2 · · · pan
n . Clearly, given an input tuple ā ∈ (Dn)V ,

gcdv∈V f(a(v)) is 1 if and only if for all prime numbers p = p1, . . . , pn, f(a(v)) is not divisible
by p for some v ∈ V , or equivalently, if all lines in ā (seen as a rectangle) contains a 0. Hence
PL,n = {ā | gcdv∈V f(a(v))}.

Thus, assume that Pgcd=1 would be W, k-definable, then the problem PL,n would also be
W, k-definable. This is a contradiction. J

Proof of second item. The approach is similar. Let us assume without loss of generality
that |V| ≥ 2. Let k be a positive integer. Let us show that PΣ=0 is not W, k-definable.

Let A = {0, 1,−1} and L be the tuples b̄ ∈ AV that sum to 0. This set is not W-closed.
Indeed, consider a tuple ā that consists only of 0’s but for one occurrence of 1. For all
windows W ∈ W, either the occurrence of 1 does not occur in W , and ā is W -equivalent to
the null tuple which belongs to L, or there is some occurrence of 0 that occurs outsideW , and
by switching this 0 into a −1 yields once more a W -equivalent tuple in L. Hence, according
to Theorem 8, for n sufficiently large, PL,n is not W, k-definable.

Let us consider now some λ > |V|, and the map from Dn = An to integers defined
by f(a1 . . . an) =

∑
i∈[n] λ

iai. Thanks to the choice of a sufficiently large λ, for all inputs
ā ∈ (Dn)V ,

∑
v∈V f(a(v)) = 0 if and only if all rows in ā sum to 0, i.e., if and only if ā ∈ PL,n.

Thus, assume that PΣ=0 would be W, k-definable, then the problem PL,n would also be
W, k-definable. This is a contradiction. J

I Corollary 12. The problems of null sum and of gcd one over more that 2k inputs are not
recognizable by combinatorial expressions of depth at most k.

4 Selection functions

So far in our expressions we allowed only functions with bounded domain and unbounded
arity, or bounded arity and unbounded domain. It is natural to ask if the class of expressions
can be extended without being degenerate (i.e. not accepting all maps from D∗ to D). In
this section we present the class of selection functions that are similar to the multiplexer
gates in digital circuits. Intuitively a selection function takes m values a1, . . . , am ∈ D and a
number i in [m] as input and outputs the value ai, i.e. it selects the ith input. To keep the
discussion simple, let us assume that D contains the natural numbers N.

I Definition 13. Formally, a selection function selm of arity m ∈ N is a function of the form

selm :

 ∏
i∈[m]

Ei

× [m]→
⋃

i∈[m]

Ei

where each Ei ⊆ D such that selm(a1, . . . , am, j) = aj for a1 ∈ E1, . . . , am ∈ Em, j ∈ [m].

We define the extended class of combinatorial expressions inductively as follows: every
combinatorial expression belongs to the extended class. Further more, if selm :

(∏
i∈[m]Ei

)
×

[m]→
⋃

i∈[m]Ei is a selection function and t1, . . . , tm, t are expressions in the extended class
with ranges E1, . . . , Em, [m] respectively then selm(t1, . . . , tm, t) is an expression with range⋃

i∈[m]Ei that belongs to the extended class of terms.
In the following we prove that the extended class of expressions have the same expressive

power. First we prove a normal form theorem for the extended class.

T. Colcombet and A. Manuel 11

I Theorem 14 (Normal form theorem for extended class of expressions). For every expression
t(X̄) of depth ` ∈ N there exists an equivalent expression of the form

selm(r̄(X̄), f(s̄(X̄)))

where m ∈ N, r̄(X̄) is a sequence of binary expressions of depth at most `, f is a finitary
function, and s̄(X̄) is a sequence of binary expressions of depth at most `. Moreover if the
image of t(X̄) is finite then there exists an equivalent expression of the form

f(s̄(X̄))

where f is a finitary function and s̄ is a sequence of binary expressions of depth at most `.

An immediate consequence of the above result is that for defining functions from D∗ to D
with finite image, selection functions are useless. This situation is not different in general
also. From Example 4 it follows that,
I Remark. The function sel2k+1 : D2k+1 × [2k + 1] → D is definable by a combinatorial
expression (that does not use selection functions) of depth k + 1.

However selection functions add succinctness as the following propositions shows.

I Proposition 2. The function sel2k+1 : D2k+1 × [2k + 1] → D is not definable by a
combinatorial expression of depth k.

Proof. The proof is very close to the proof of Proposition 1. Assume there is a combinatorial
expression t(X1, . . . , X2k+1, y) that defines the function sel2k+1. By the normal form theorem
we transform t into an equivalent expression of the form

b(r(X1, . . . , X2k+1, y), f(s̄(X1, . . . , X2k+1, y)))

where b is binary, f is finitary, and r and s̄ are binary expressions of depth k. Since the
expression r has depth k, there is a variable Xi that is not present in r. Choose and element
a ∈ D and consider the inputs S = {(x1, . . . , x2k+1, i) ∈ D2k+2 | xi ∈ D,∀j 6= i, xj = a}.
Choose inputs ū, v̄ ∈ S such that ū 6= v̄ and f(s̄(ū)) = f(s̄(v̄)). Such inputs ū and v̄ exist
by pigeonhole principle (since S is infinite while the image of f is finite). Observe that
b(r(ū), f(s̄(ū))) = b(r(v̄), f(s̄(v̄))) contradicting the fact that sel2k+1(ū) 6= sel2k+1(v̄). Hence
the claim is proved. J

5 Application in metafinite logics

In this section we describe an application of our indefinability results, namely to prove
inexpressibility results for logics on metafinite structures. Metafinite model theory was
initiated by Grädel and Gurevich [2] in order ‘to extend the approach and methods of finite
model theory beyond finite structures’. A metafinite structure M is a triple 〈A,B, ρ〉 where
A is a finite first order structure, B is a first order structure (typically infinite) and ρ is
a weight function from the domain of A to the domain B (the original definition allows a
finite number of weight functions of different arity). For an example consider the structure
M = 〈A,B, ρ〉 where A = ([n],≤) is a finite linear order, B = (N,+,×) is the natural
numbers with arithmetic, and ρ is a map from [n] to N. In short, M represents a sequence
of natural numbers. Such kind of weighted structures arise naturally in several areas of
computer science. An important such case concerns databases, where some data naturally
range over infinite/unbounded domains. When considering logics (for instance first order

12 Combinatorial Expressions and Lower Bounds

logic) expressing properties over metafinite structures, quantifications are assumed to only
range over the finite structure A, but the formulas can access the structure B via the functions
ρ and the use of the relations in B. In [2] several theorems from finite model theory are
lifted to the case of metafinite models.

We now show that our indefinability results can be used to derive indefinability results in
this context. We consider structures of the following form; M = 〈A,B, ρ〉 where A = ([n],≤)
is a finite linear order, B is the natural numbers N with all possible relations and functions
of all arity (denoted as N∗), and ρ is a map from the positions in A to N . We consider the
monadic second order logic on these structures which has the following syntax and semantics:
we have first order variables x, y, . . . and set variables X,Y, . . . that range over positions and
sets of positions in the structure A respectively. When x is a variable then ρ(x) is a term
over the structure B, and if t1, . . . , tk are terms over the structure B and f is a function in
B of arity k then f(t1, . . . , tk) is a term over the structure B. If R is a relation of arity k
in B and t1, . . . , tk are terms over B, then R(t1, . . . , tk) is an atomic formula of the logic.
The only other atomic formulas are of the form x ≤ y. The rest of the formulas of the logic
are defined inductively: ϕ1 ∨ ϕ2, ¬ϕ1, ∃x. ϕ1, ∃X.ϕ1 are formulas when ϕ1, ϕ2 are formulas.
The semantics of terms and formulas are defined in the obvious way (see [2], Definition 3.1).

Using our inexpressibility result we prove the following theorem:

I Theorem 15. The set of all structures M = 〈([n],≤) ,N∗, ρ〉 that satisfy the property

gcd (ρ(1), . . . , ρ(n)) = 1 (3)

is not definable in monadic second order logic.

Before concluding, we note the following. The first remark is that by similar arguments
we can also prove indefinability of the property

∑
(ρ(1), . . . , ρ(n)) = 0 in monadic second

order logic. Secondly, since our construction of the expression depends only on the fact that
the quantification over the structure A is finite, the theorem also holds for any finite structure
A, i.e. any finite signature not necessarily the signature (≤), and any logical formalism where
the quantification over A is finite – in particular higher order logics.

6 Conclusion

In this work we introduced a formalism of expressions that take inputs from an infinite
domain. The expressions are shown to have equivalent expressions in a normal form which
allows to prove indefinability results using regularity lemmas from combinatorics. We point
out some interesting avenues for further exploration. Firstly in this paper we have placed no
restriction on the size of the circuits. But it seems that some of the results in Section 3 point
towards the possibility of finer indefinability results that take into account the size of the
expressions. Secondly we have defined our domain D to be infinite. It is also an interesting
to investigate expressive power of families of expressions when the data domain is unbounded
yet finite, and grows asymptotically with the input size.

T. Colcombet and A. Manuel 13

References
1 Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Com-

putation. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.
2 Erich Grädel and Yuri Gurevich. Metafinite model theory. Information and Computation,

140(1):26 – 81, 1998.
3 R.L. Graham, B.L. Rothschild, and J.H. Spencer. Ramsey Theory. A Wiley-Interscience

publication. Wiley, 1990.
4 T. Jech. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer

Monographs in Mathematics. Springer, 2003.
5 Pascal Koiran. A weak version of the blum, shub, and smale model. Journal of Computer

and System Sciences, 54(1):177 – 189, 1997.
6 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser

Verlag, Basel, Switzerland, Switzerland, 1994.
7 Pascal Tesson. Computational Complexity Questions Related to Finite Monoids and Semig-

roups. PhD thesis, School of Computer Science, McGill University, Montreal, 2003.
8 Pascal Tesson. An application of the hales-jewett theorem to multiparty communication

complexity. Extract from the PhD Thesis, 2004.
9 L. G. Valiant. Completeness classes in algebra. In Proceedings of the Eleventh Annual ACM

Symposium on Theory of Computing, STOC ’79, pages 249–261, New York, NY, USA, 1979.
ACM.

	Introduction
	Combinatorial expressions and normal form
	Combinatorial expressions
	Normal form and definability

	Window-definability and indefinability
	Selection functions
	Application in metafinite logics
	Conclusion

