
µ-calculus on data words

Thomas Colcombet and Amaldev Manuel ∗

LIAFA, Université Paris-Diderot

{thomas.colcombet, amal}@liafa.univ-paris-diderot.fr

April 18, 2014

Abstract

We study the decidability and expressiveness issues of µ-calculus on data words
and data ω-words. It is shown that the full logic as well as the fragment which uses
only the least fixpoints are undecidable, while the fragment containing only great-
est fixpoints is decidable. Two subclasses, namely BMA and BR, obtained by
limiting the compositions of formulas and their automata characterizations are ex-
hibited. Furthermore, Data-LTL and two-variable first-order logic are expressed as
unary alternation-free fragment of BMA. Finally basic inclusions of the fragments
are discussed.

1 Introduction
Data words are words over the alphabet Σ × D where Σ is a finite set of letters and
D is an infinite domain of data values. Data languages are sets of such words that are
invariant under permutations of data values. This invariance reflects the fact that only
properties involving the equality of data values can be expressed in this formalism.
Typical data languages are:

• The first and the last data values are the same,

• the first data value appears a second time,

• some data value appears twice, or its complement, all data values are different,

• every data value at an odd position is the same as the following data value, etc. . .

This model of languages arises naturally in several contexts, such as databases or veri-
fication.

It is very desirable to extend language theory to this richer setting. In particular,
a very motivating goal is to be able to describe what should be the natural notion of
∗The research leading to these results has received funding from the European Union’s Seventh Frame-

work Programme (FP7/2007-2013) under grant agreement n 259454.

1

“regular data languages”. Indeed, regular languages of classical words form the most
robust notion of language, and are basic blocks used in the construction of many ad-
vanced results.

However, what should be a “regular data language”? It is not so clear since the sit-
uation is much more complex than for word languages. Many different formalisms can
be used for describing data languages, that can all be considered as natural extensions
of regularity. Most of them have distinct expressiveness, have different closure prop-
erties, and different decidability status. For this reason, it is absolutely unclear which
model should be granted the name “regular”. Furthermore, there is no hope to find a
larger class of data languages that would encompass all these particular classes while
retaining good effectiveness and decidability properties.

Let us cite some of the most important formalisms:
Deterministic automata The first and most used one is deterministic finite mem-

ory automata [1]. These are deterministic finite state automata that have several reg-
isters that can be used to store data values, and can be compared with the data value
currently read. An even more “deterministic model” is the one of data monoid, which
is the “monoid variant” of these automata [2]. These models are naturally closed un-
der union, intersection, and thanks to their deterministic nature, also under comple-
ment. Furthermore emptiness and universality are decidable properties. In exchange,
these models are not very expressive, and deterministic finite memory automata are not
closed under mirroring. Data languages recognized by data monoids have the same
properties, and are further closed under mirroring, but these are even less expressive.

Non-deterministic automata These are the non-determini-stic counterpart of the
above deterministic model [1, 3]. These are significantly more expressive, and closed
under mirroring. In exchange the closure under complement and the decidability of
universality are lost.

Logical formalisms The natural way to define a data language by means of a log-
ical formula is to allow the use of a binary relation “x ∼ y” which signifies “the data
value at position x and the data value at position y are the same”. The problem is that
allowing this relation in first-order logic (FO) immediately entails the undecidability of
satisfiability. The situation is better for FO2 (the restriction of FO to two variables, that
can be reused). This class is closed under intersection, union, complement, mirroring,
and its satisfiability is decidable [4]. The expressiveness of this model is incompara-
ble to any of the above formalisms. The decidability is achieved by reduction to data
automata (see below). By restricting the use of the new predicate “∼” it is possible to
regain decidability for logics richer than FO2. Typically suitable guards controlling the
use of “∼” makes monadic second-order logic equi-expressive with data-monoids [5].

Alternating one-way automata with one register (of the same expressiveness as
“µ-calculus with freeze”) corresponds to the natural one-register alternating variant of
the above finite memory automata [6, 7]. These are closed under union, intersection,
complement, and emptiness and universality are decidable (but undecidable on data
ω-words). This formalism is incomparable with all the others described in this paper.

Walking models A data word can be seen as a data structure consisting of po-
sitions, and navigational edges defined as follows. Each position is connected to its
immediate successor, immediate predecessor, as well as its class successor and class
predecessor (the class of a position is the set of positions that share the same data value;

2

thus the class successor is the leftmost position to the right of the current position that
carries the same data value, if it exists; the class predecessor is similar). This gives rise
to models of acceptors that walk in this model, using basic commands such as “advance
to successor” or “advance to the class successor”. Data LTL is a member of this class
[8]. It is a variant of linear time logic (LTL) where operations until, next, previous and
since exist in two variants, over the word and over the class. An automaton mechanism,
called data walking automaton (DWA), which walks on the data word is proposed in
[9]. It turns out that for this model the emptiness and inclusion problems are decidable
but they are strictly less expressive than data automata. They are not closed under pro-
jection and their closure under complementation is an open problem. The deterministic
subclass, however, is closed under all Boolean operations.

Data automata Data automata were introduced for deciding FO2 [4]. These are
non-deterministic forms of automata, the emptiness of which is by reduction to reach-
ability in petri-nets (we will encounter more precisely this model in the paper). These
are closed under union and intersection, but not under complementation.

Contributions
Our contribution falls in the category of “walking models”. In fact, we consider the
most natural notion of walking model: µ-calculus. The modalities in the logic allow a
formula to refer to the predecessor, the successor, as well as the class predecessor and
the class successor. The µ-calculus is well known to subsume many other formalisms,
and in particular LTL. We study the properties of this logic.

We show first that the satisfiability of the µ-calculus is undecidable (Theorem 3.6).
For this reason, we restrict it to the ν-fragment, which is the fragment of the logic in
which it is not allowed to use the least fix points. We show that every data language de-
finable in the ν-fragment is effectively recognized by a data automaton (Theorem 3.8).
Furthermore, the class of languages definable in the ν-fragment is naturally closed un-
der union, intersection, and mirroring. However it lacks closure under complement.
The previous statements carry over to the case of data ω-words as well.

The second part of our analysis concerns the description of two subclasses of this
logic that furthermore enjoy the closure under complementation while retaining decid-
ability and closure under union and intersection. The first such subclass is called the
“bounded reversal fragment” (BR). In this fragment, a fixpoint formula is allowed to
switch between future modalities (“successor” and “class successor”) and past modal-
ities (“predecessor” and “class predecessor”) only a bounded number of times. This
class is naturally closed under complement, and we show that it is strictly less expres-
sive than the ν-fragment (Theorem 4.8). The decidability of BR is inherited from its
inclusion in the ν-fragment. The second fragment we consider is the “bounded mode
alternation fragment” (BMA). In this fragment, a fixpoint formula is allowed to switch
between global modalities (“successor” and “predecessor”) and class modalities (“class
successor” and “class predecessor”) only a bounded number of times. We show that
BMA is contained in BR (Theorems 4.5). We also show that BMA contains Data LTL,
which itself contains FO2 (Theorem 6.4). In fact we show that Data LTL with only
unary modalities and FO2 are equivalent.

For the data ω-word case we show that BMA is contained in data automata whereas

3

FO2=uDLTL

DLTL
BMA
BR

ν
DA

Figure 1: Decidable fragments of µ-calculus on data words

FO2=uDLTL

DLTL
BMA ν

DA

Figure 2: Decidable fragments of µ-calculus on data ω-words

it is not contained in the ν-fragment. We do not treat the BR fragment for data ω-
words in this paper. Figures 1 and 2 summarize our results. Since all our fragments
subsume FO2 their satisfiability problems are equivalent (under elementary reductions)
to reachability in vector addition systems.

2 Preliminaries
N = {1, 2, . . .} is the set of natural numbers and +1 = {(1, 2), (2, 3), . . .} denotes the
successor relation on N. Let N0 = N ∪ {0}. Denote by [n] the set {1, . . . , n}. Let A
be an alphabet. A word over A is a finite sequence of letters from A. An ω-word over
A is a sequence of length ω of letters from A.

2.1 Data words, data ω-words and data languages
Fix a finite alphabet Σ of letters and an infinite set D (usually N) of data values. Data
words are finite words over the alphabet Σ × D. Data ω-words are ω-words over the
alphabet Σ×D.

Given a data wordw = (a1, d1) . . . (an, dn) (resp. data ω-wordw = (a1, d1)(a2, d2) . . .)
the string projection of w, denoted by sp (w), is the word a1 . . . an (resp. the ω-word
a1a2 . . .). Similarly the data projection of w, denoted by dp (w), is the word d1 . . . dn
(resp. the ω-word d1d2 . . .).

The data values impose a natural equivalence relation ∼ on the positions of the
data word (resp. data ω-word), namely i ∼ j if di = dj . For a position i in w, the
class of i is the set of all positions sharing the same data value as i. A subset S of
positions of w is a class if it is a maximal set of positions sharing the same data value.
Given a finite class S = {i1, . . . , in} (resp. infinite class S = {i1, i2, . . .}) the class
projection corresponding to S, denoted as sp (w|S), is the finite word ai1ai2 . . . ain
(resp. the ω-word ai1ai2 . . .). The class projections corresponding to each class of

4

w are collectively called the class projections of w. The set of all classes in w, as
mentioned already, forms a partition of all the positions in the word. For a position i,
the position i+ 1 is the successor of i and the position i−1 is the predecessor of i. We
say the position j is the class successor of i or i is the class predecessor of j, denoted
as i +c 1 = j or j −c 1 = i, if j is the least position after position i having the same
data value.

We denote byM the finite alphabet {P,¬P}×{S,¬S} called the marking alpha-
bet. Given a position i the 1-type (or simply type) tp (i) ∈M of i is defined as follows;
tp (i) = (p, s) where s = S if i is not the last position (if it exists) and i+ 1 = i+c 1,
and ¬S otherwise. Similarly p = P if i is not the first position and i − 1 = i −c 1,
and ¬P otherwise. The marked string projection of w, denoted as msp(w), is the
word (a1, tp (1)) . . . (an, tp (n)) (resp. the ω-word (a1, tp (1))(a2, tp (2)) . . .) over
the alphabet Σ×M.

Given a finite class S = {i1, . . . , in} (resp. infinite class S = {i1, i2, . . .}) the
marked class projection corresponding to S, denoted as msp(w|S), is the finite word
(ai1 , tp (i1))(ai2 , tp (i2)), . . . (ain , tp (in)) (resp. the ω-word (ai1 , tp (i1))(ai2 , tp (i2)) . . .).
The marked class projections corresponding to each class of w are collectively called
the marked class projections of w.

Let π : D → D be a permutation of D. The permutation of w under π is defined to
be the data word (a1, π(d1)) . . . (an, π(dn)) (resp. the data ω-word (a1, π(d1))(a2, π(d2)) . . .).
A language of data words L ⊆ (Σ×D)

∗ is a set of data words such that for every data
word w and every permutation π of D, w ∈ L if and only if π(w) ∈ L. Similarly a
language of data ω-words L ⊆ (Σ×D)

ω is a set of data ω-words such that for every
data ω-word w and every permutation π of D, w ∈ L if and only if π(w) ∈ L. A con-
sequence of such an invariance is that as far as a model of computation on data words
which defines a data language is concerned individual data values are not important but
only the relationship they induce on the positions (namely the class relations). This is
formalized as follows. To each w we associate the graph Gw = (D, `,+1,+c1) where
D is the set of all positions in w (i.e. [n] if w is finite and ω otherwise), ` : Σ → 2D

is the labelling function defined as `(a) = {i | ai = a}, +1 is the successor relation
on N restricted to D, and +c1 is the class successor relation of w. Henceforth we will
identify a data word with its graph.

Given a subset S of D we define

S − 1 = {i− 1 ∈ D | i ∈ S} S −c 1 = {i−c 1 ∈ D | i ∈ S}
S + 1 = {i+ 1 ∈ D | i ∈ S} S +c 1 = {i+c 1 ∈ D | i ∈ S}

Example 2.1. The example shows a finite data word and its corresponding graph. Dot-
ted and thick arrows denote the successor and class successor functions respectively.

a
1

b
2

a
2

a
1

b
3

a
1

b
2

The first position has type (¬P,¬S), while the second position has type (¬P,S).

5

Two-variable first order logic (in short FO2) over data words (resp. data ω-words)
is the first order logic with two variables x and y with predicates a(x) (the position is
labelled by a), x = y, x < y, x + 1 = y, x +c 1 = y, and x <c y (where <c is the
transitive closure of +c1). Note that x ∼ y is definable in FO2 in terms of x <c y.
Existential MSO with two-variable kernel (in short EMSO2) is the set of all formulas
of the form ∃X1 . . . ∃Xk ϕ where ϕ is a FO2 formula over data words.

2.2 Data automata and Data ω-automata
A data automaton A = (B,Σ′, C) is a composite automaton consisting of a non-
deterministic letter-to-letter finite state transducer B with input alphabet Σ ×M and
output alphabet Σ′, and a finite state automaton C with input alphabet Σ′. On a data
word w the automaton A work as follows. The transducer B runs over the word
msp(w) and outputs a string v′ ∈ Σ′∗ if the run succeeds. Let w′ be the unique data
word such that sp (w′) = v′ and dp (w′) = dp (w). (Note that the fact that the trans-
ducer is length preserving is crucial here). For each class S in w′, the automaton C
runs over the word sp (w′|S). The automatonA accepts w if all the runs are successful.

A data ω-automaton (abbreviated as DA) A = (B,Σ′, C, Cω) is a composite au-
tomaton consisting of a non-deterministic letter-to-letter finite state Büchi transducer
B with input alphabet Σ×M and output alphabet Σ′, a finite state automaton C with
input alphabet Σ′ and a finite state Büchi automatonCω over the alphabet Σ′. On a data
ω-word w the automaton A work as follows. The transducer B runs over the ω-word
msp(w) and outputs a string v′ ∈ Σ′ω if the run succeeds. Let w′ be the unique data
ω-word such that sp (w′) = v′ and dp (w′) = dp (w). For each finite class S in w′,
the automaton C runs over the word sp (w′|S) and for each infinite class S in w′, the
automaton Cω runs over the ω-word sp (w′|S). The automaton A accepts w if all the
runs are successful.

The most remarkable thing about data automata is that,

Theorem 2.2 ([4]). Emptiness problem for data automata and data ω-automata is
elementarily equivalent to the reachability problem for vector addition systems and
hence is decidable.

It is a consequence of Hanf’s theorem (for two-variable logic) that data automata
and data ω-automata are equivalent to EMSO2 with predicates a(x), x = y, x+1 = y,
and x+c 1 = y. However with a more intricate analysis it can be shown that,

Theorem 2.3 ([4]). Data automata and data ω-automata are equivalent to EMSO2

over data words.

3 µ-Calculus on Data Words
In this section, we introduce µ-calculus over data words and data ω-words and establish
the basic decidability results.

Let Prop = {p, q, . . .} and Var = {x, y, . . .} be countable sets of propositional
variables and fixpoint variables respectively. The µ-calculus on data words is the set of

6

all formulas ϕ given by the following syntax.

M := Xg | Xc | Yg | Yc

A := p ∈ Prop | S | P | firstc | firstg | lastc | lastg

ϕ := x | A | ¬A | Mϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | µx.ϕ | νx.ϕ

Next we disclose the semantics; as usual, on a given structure each formula denotes
the set of positions where it is true. The modality S is true at a position i if the successor
and class successor of i coincide. Similarly P is true at i if the predecessor and class
predecessor of i coincide. The modalities Xgϕ, Xcϕ, Ygϕ, Ycϕ hold if ϕ holds on the
successor, class successor, predecessor and class predecessor positions respectively.

[[x]]w = `(x)

[[firstg]]w = {1} [[lastg]]w = {n ∈ D | ∀i ∈ D n ≥ i}
[[firstc]]w = {i | @j = i−c 1} [[lastc]]w = {i | @j = i+c 1}

[[p]]w = `(p) [[¬p]]w = D \ `(p)
[[Xgϕ]]w = [[ϕ]]w − 1 [[Xcϕ]]w = [[ϕ]]w −c 1

[[ϕ1 ∧ ϕ2]]w = [[ϕ1]]w ∩ [[ϕ2]]w [[ϕ1 ∨ ϕ2]]w = [[ϕ1]]w ∪ [[ϕ2]]w

[[Ygϕ]]w = [[ϕ]]w + 1 [[Ycϕ]]w = [[ϕ]]w +c 1

[[P]]w = {i | i− 1 = i−c 1} [[S]]w = {i | i+ 1 = i+c 1}

[[µx.ϕ]]w =
⋂{

S ⊆ D | [[ϕ]]w[`(x):=S] ⊆ S
}

[[νx.ϕ]]w =
⋃{

S ⊆ D | S ⊆ [[ϕ]]w[`(x):=S]

}
Figure 3: Semantics of µ-calculus on a data word (ω-word) w = (D,+1,+c1, `).

Note that we allow negation only on atomic propositions. However it is possible
to negate a formula in our logic. For this we define the dual modalities X̃g , Ỹg , X̃c, Ỹc

of Xg, Yg, Xc, Yc respectively and the following relationship holds between them. Take
special note that below ¬ means set complement.

Xgϕ ≡ ¬X̃g¬ϕ Xcϕ ≡ ¬X̃c¬ϕ
Ygϕ ≡ ¬Ỹg¬ϕ Ycϕ ≡ ¬Ỹc¬ϕ

Since the class successor relation is functional (a relation R is functional if for
every x in the domain of R there is at most one y such that xRy), on all positions i
with a class successor, the formula X̃cϕ is true if and only if Xcϕ is true. On the other
hand on all positions i which do not have a class successor, X̃cϕ is true while Xcϕ is
false. Hence in X̃c is equivalent to

X̃cϕ ≡ lastc ∨ Xcϕ

Since all relations in our graph are functional, similar relationship holds between all
our modalities and their duals i.e.,

X̃gϕ ≡ lastg ∨ Xgϕ , Ỹgϕ ≡ firstg ∨ Ygϕ , Ỹcϕ ≡ firstc ∨ Ycϕ

7

Coming to the fixpoint formulas, each formula ϕ(x) defines a function from sets of
positions to sets of positions which is furthermore monotone (since we do not allow
negation of variables). Hence by Knaster-Tarski theorem (which says that fixpoints of
a monotone function on a complete lattice form a complete lattice) it has fixpoints.
In particular it has a least fixpoint which is intersection of all pre-fixpoints (a set of
positions S such that ϕ(S) ⊆ S) and a greatest fixpoint which is the union of all
post-fixpoints (a set of positions S such that S ⊆ ϕ(S)). We define the denotation of
µx.ϕ(x) and νx.ϕ(x) to be the least and greatest fixpoints of ϕ(x). Finally we note
that the following holds:

µx.ϕ(x) ≡ ¬νx.¬ϕ(¬x) .

The formal semantics [[ϕ]]w of a formula ϕ over a data word w is described in Figure 3.
To negate a formula ϕ we take the dual of ϕ; this means exchanging in the formula

∧ and ∨, µ and ν, p and ¬p, and all the modalities with their dual. This allows us to
talk of ¬ϕ even when ϕ is not atomic, so far as the particular fragment ϕ is in has all
the necessary fixpoint operators and modalities to take the dual.

Next we lay out some terminology and abbreviations which we will use in the
subsequent sections. Let λ denote either µ or ν. Every occurrence of a fixpoint variable
x in a subformula λx.ψ of a formula is called bound. All other occurrences of x are
called free. A formula is called a sentence if all the fixpoint variables in ϕ are bound.
If ϕ(x1, . . . , xn) is a formula with free variables x1, . . . , xn, then by ϕ(ψ1, . . . , ψn)
we mean the formula obtained by substituting ψi for each xi in ϕ. As usual the bound
variables of ϕ(x1, . . . , xn) may require a renaming to avoid the capture of the free
variables of ψi’s. For a sentence ϕ and a position i in the word w, we denote by
w, i |= ϕ if i ∈ [[ϕ]]w. The notation w |= ϕ abbreviates the case when i = 1. The data
language of a sentence ϕ is the set of data words w such that w |= ϕ, while the data
ω-language of a sentence ϕ is the set of data ω-words w such that w |= ϕ,

By µ-fragment we mean the subset of µ-calculus which uses only µ fixpoints. Sim-
ilarly ν-fragment stands for the subset which uses only ν-fixpoints.

Example 3.1 (Temporal modalities). An example of a formula would be ϕUg ψ which
holds if ψ holds in the future, and ϕ holds in between. This can be implemented as
µx.ψ ∨ (ϕ ∧ Xgx) The formula ϕ Uc ψ = µx.ψ ∨ (ϕ ∧ Xcx) is similar, but for the
fact that it refers only to the class of the current position. The formula Fgϕ abbreviates
> Ug ϕ, and its dual is Ggϕ = ¬Fg¬ϕ. The constructs Sg , Sc, Pg , Pc, Hg and Hc, are
defined analogously, using past modalities, and correspond respectively to Ug , Uc, Fg ,
Fc, Gg and Gc. For instance, FcPcϕ expresses that there is a position in the class that
satisfies ϕ and FcPc(ϕ ∧ X̃cGc¬ϕ ∧ ỸcHc¬ϕ) expresses that there exists exactly one
position which satisfies ϕ in the class.

Example 3.2. The formula GgFg(firstc ∧ νx.Xcx) is satisfied by all data ω-words that
have infinitely many infinite classes. Its negation FgGg(firstc → µx.X̃cx) says that
eventually all classes are of finite length (but still there could be infinite classes in the
word). The formula GgFg(firstc ∧ µx.X̃cx) says that there exist infinitely many finite
classes.

We say a variable x in λx.ϕ(x) is guarded if each occurrence of x in ϕ(x) is in the
scope of some modality. We say a formula ϕ is guarded if each bound variable in ϕ

8

is guarded. The following fact is classical, but for the sake of completion we repeat it
here,

Lemma 3.3. Every formula is equivalent to a formula which is furthermore guarded.

Proof. Proof is by induction on the structure of the formula. The atomic, boolean
and modal cases are straightforward. The non-trivial case is when the formula is of
the form λx.ϕ(x). Assume λx.ϕ(x) is unguarded and ϕ(x) is guarded. We can fur-
thermore assume that all unguarded occurrences of x is outside of any subformula
θy.ψ(x, y) of ϕ(x), otherwise in ϕ(x) we substitute for θy.ψ(x, y) the equivalent for-
mula ψ(x, θy.ψ(x, y)) which yields the desired form. Next we write ϕ(x) is conjunc-
tive normal form to obtain a formula of the form

λx.(x ∨ α(x)) ∧ β(x),

where α(x) and β(x) are guarded. It is left to the reader to check that

µx.(x ∨ α(x)) ∧ β(x) ≡ µx.α(x) ∧ β(x) ,

and
νx.(x ∨ α(x)) ∧ β(x) ≡ νx.β(x) .

We will be using the modalities defined above liberally. The zeroary modalities
S and P are used to capture FO2. They are definable in µ-calculus only using unary
modalities and the ν operator.

Proposition 3.4. The modalities S and P are definable in ν-fragment in terms of the
unary modalities.

Proof. We claim that S ≡ νx.XgYcx and P ≡ YgS.
Regarding the proof of the claim we want to remark that the proof exploits the same

idea used in [10] to prove that there is a data automaton which guesses and verifies the
marked string projection of a data word.

Fix a data wordw. It is clear that if i ∼ i+1 thenw, i |= νx.XgYcx. It only remains
to show that If i 6∼ i + 1 then w, i 6|= νx.XgYcx. Consider the sequence of positions
i0 = i, i1, . . . such that for every j ∈ N it is the case that ij + 1 = ij+1+c1 (or in other
words ij+1 is the class predecessor of the successor of ij). We claim that this sequence
is finite. From this claim, it follows that w, i 6|= νx.XgYcx since there is no infinite path
from i. It is enough to show that for every j ∈ it is the case that ij+1 < ij since the
data word is of finite length. We prove this claim using induction. The base case of
i1 < i follows from the assumption that i 6∼ i + 1 (since, either i + 1 does not have a
class predecessor or it is strictly below i). For the inductive step assume that the claim
is proved for i0, . . . , ij−1, ij . Consider ij and ij+1. Since ij + 1 = ij+1+c1 it is clear
that ij+1 ≤ ij . It remains to show that ij+1 6= ij . Assume on the contrary ij+1 = ij .
This means that ij+1 = ij+1+c1 = ij+

c1. It follows that ij+1 = ij+
c1 = ij−1 +1,

since successor function +1 is an injection, we deduce that ij = ij−1. But by induction
hypothesis, ij < ij−1 which is a contradiction. Therefore the inductive step ij+1 < ij

9

is proved. From our claim it follows that the sequence strictly decreases. Since the set
of positions is well-founded, the sequence is finite. Therefore the formula νx.XgYcx is
not true at i. This proves our claim that S ≡ νx.XgYcx.

Let us observe that S is in the ν-fragment and so is P (hence ¬S, ¬P are in the µ-
fragment). By definition the formula νx.XgYcx is not in BR, however we do not know
if there is a formula which is equivalent to S which is in BR (See Section 4). Readers
who are familiar with register automata or data monoids will immediately recognize
that the formula S and its negation both are recognizable by a data monoid (in fact
this is one of the examples provided in [2]) and hence by a deterministic one register
automata. We conjecture that ¬S is not in ν-fragment, which will separate our largest
decidable fragment and data monoids.

The idea used in the proof of the above proposition can be extended easily to de-
fine similar zeroary modalities which indicates how a position and its k-th successor
compares with respect to ∼. For instance consider the modality S2 which says that
that the successor of the successor of a position i is the class successor of i. Formally
w, i |= S2 if i+c1 = (i + 1) + 1. Let Even denote the µ-calculus formula which is
true at all even positions. Then using ideas similar to that of the above proof it can be
shown that S2 is also definable in µ-calculus in the following way,

S2
def
= (νx.Even ∧ XgXgYc(Even ∧ x))

∨ (νx.¬Even ∧ XgXgYc(¬Even ∧ x)) .

We note that similarly the modality Sn can be defined which says that the n-th succes-
sor of a position is its class successor.

Consider the modality Sk,n which is true at a position i if the n-th successor of
i is the k-th class successor of i. Such a formula can be written as disjunction of
formulas using unary modalities and S1, . . . ,Sn. This shows that the modality Sk,n is
also expressible in µ-calculus.

Finally let us remark that all these formulas are recognizable by register automata
and also by data automata, since register automata are subsumed by data automata [10].
Therefore adding these formulas to our language does not affect the decidability of the
ν-fragment.

But we do not know if ¬S and ¬P (obviously definable using µ operator) are
definable using ν operator only (we conjecture negatively). However since these for-
mulas are definable using a data automaton (which is our tool for showing decidability)
adding them to our language does not affect any of the decidability results.

3.1 The µ-fragment
We consider in this section the µ-fragment of µ-calculus, which is the restriction to
the use of least-fixpoints µ only. The main result is to show the undecidability of its
satisfiability.

10

Consider a data word that uses, say, letters a, b, c, and such that the relation ∼
between positions is a bijection between a-labeled positions and b-labeled positions. It
is easy to write a µ-calculus formula that checks this property. However, this is not yet
sufficient for our purpose. We need the following lemma.

Lemma 3.5. The exists a formula in the µ-fragment that checks over finite data words
the property that∼ is an increasing bijection between a-labeled positions and b-labeled
positions.

Proof. For the sake of explanations, let us consider a data word u, and let A (resp.
B) be the set of a-labeled (resp. b-labeled) positions in u. Let R be ∼ restricted to
A×B. We have to provide a formula that holds if R is a monotonic bijection between
A and B. It is easy to write a formula of the µ-fragment that holds if and only if R is a
bijection between A and B. We assume this is the case from now.

Consider now the binary relation S ⊆ A2 such that xS z if xRx′ < y′R−1 y < z.
An element x ∈ A such that x S x is called a small witness. Note first that the the
existence of a small witness means that there exists x > y and x′ < y′ such that xRx′

and y R y′. Hence, there exists a small witness if and only if R is not increasing.
Unfortunately, we are not able to directly detect the existence of a small witness using
a µ-formula. Instead, we will search for ‘big witnesses’. A big witness is a sequence
x1, x2, . . . of elements of A such that

x1 S x2 S . . .

We claim (?) that there exists a small witness if and only if there exists a big
witness. Of course, if there is a small witness, there is a big one. Assume now that
there exists a big witness x1, . . . Since the xi’s range over a finite domain, there exists
i such that xi+1 ≤ xi. Thus, xi S xi+1 ≤ xi and hence xi S xi. we have found a small
witness.

One easily verifies now that the µ-formula

Fgνx.a ∧ FcPc(b ∧ XgFg(b ∧ FcPc(a ∧ XgFgx))))

expresses the existence of a big witness. Thus the non-existence of a big witness, hence
of a small witness, hence the non increasing nature of R is definable by a µ-formula. A
priori, this formula is a formula that uses both µ- and ν-fixpoints since the modalities
Fc and Fg are in fact syntactic sugar for formulas of the µ-fragment. However, it is easy
to check that, over finite data words, Fg(ϕ) is equivalent to νx.ϕ ∧ Xgx (the difference
between least and greatest fixpoint does not exist when the fixpoints are reached within
a finite number of steps). Thus, the above formula can be expressed in the ν-fragment,
and hence its complement in the µ-fragment.

Using this lemma we reduce the Post’s correspondence problem to the satisfiability
problem of the logic giving us,

Theorem 3.6. Satisfiability of the µ-fragment over data words is undecidable.

11

Proof. The proof is by reduction from the Post’s Correspondence Problem (PCP). An
instance I of PCP is a finite set of tuples I = {(u1, v1), . . . , (uk, vk) | uj , vj ∈ Σ+}.
A solution to I is a sequence i0 . . . in ∈ [k]+ such that ui0 . . . uin = vi0 . . . vin . It is
well known that the problem of determining if an instance of the PCP has a solution is
undecidable.

Given an instance I of the PCP, we construct a formula in the µ-fragment that is
satisfiable if and only if I has a solution. For this, we encode the solution of I as
a data word u over the alphabet Σ] {a, b} (where a, b are assumed not present in
Σ). Intuitively, u is ui0 . . . uin in which are inserted letters a and b letters in order to
describe the decomposition in ui0 , . . . , uin (using a’s) and in vi0 , . . . , vin (using b’s).
The data values are required to induce an increasing bijection between a-labeled and b-
labeled positions in order to be able to check the correctness of the solution. Formally,
a data word u encodes the solution i0 . . . in to I if:

• the word has length at least 4, starts with letters ab and ends with ab, and

• ∼ induces an increasing bijection between a-labeled positions and b-labeled po-
sitions. Let x0 < · · · < xn be the a-labeled positions and y0 < · · · < yn be the
b-labeled positions.

• Then for all ` = 1 . . . n, the word obtained as the string projection of u restricted
to the positions in (x`, x`+1) (resp. (y`, y`+1))to which b-letters (resp. a-letters)
are removed is ui` (resp. vi`).

It is easy, from a solution to construct a data word that encodes it.
Hence, in order to guess a solution to I , it is sufficient to guess a data word over

the alphabet Σ ∪ {a, b} such that (†):

• the word has length at least 4, starts with letters ab and ends with ab, and

• ∼ induces an increasing bijection between a-labeled positions and b-labeled po-
sitions, and there is at least one occurrence of a;

• for all occurrences x of an a-letter, but the last one, there exists i ∈ [k] such that:

– the string projection of u starting at position x belongs toKi = {w : wb ∈
auia(Σ ∪ a)∗} where wb is the word w with letter b removed, and

– the string projection of u starting at positionR(x) belongs toLi = {w : wa ∈
bvib(Σ ∪ b)∗} where wa is the word w with letter a removed.

Quite naturally, if a data word encodes a solution to I then it satisfies (†). Conversely,
if a data word satisfies (†), then there exists a solution to I that it encodes.

Thus, it is sufficient for us to write a formula of the µ-fragment for (†), which is
easy using Lemma 3.5 for the second item, and the fact that the languages Ki and Li
are regular, thus definable by a formula of the µ-fragment.

The above theorem extends to ω-words.

Corollary 3.7. Satisfiability of the µ-fragment over data ω-words is undecidable.

12

Proof. Consider a formula ϕ of the µ-fragment, our goal is to construct a formula ϕ]

such that ϕ is satisfiable over data words if and only if ϕ] is satisfiable over ω-data
words. In combination with Theorem 3.6, this proves the statement.

The formula ϕ] (for] a new fresh symbol) defines the data ω-words w such that:

• w contains at least one occurrence of the letter],

• the data ω-wordw restricted to the positions that are to the left of all]-occurrences
satisfy ϕ.

Of course, if we can write such a formula, then it is satisfiable over data ω-words
if and only if ϕ is satisfiable over data words. It is also clear that the first item is
definable in the µ-fragment. Thus, we just have to turn ϕ into a formula that is sensitive
only to the part of the word left of all]’s. This is exactly the classical technique of
relativization. Remark first that the property ‘being at the left of all]’ is definable in
the µ-fragment. Let ψ be such a formula. In our case, relativizing ϕ to ψ consists
in replacing syntactically every subformula of the form M(γ) for some modality M ∈
{Xc, Xg, Yc, Yg} by M(γ ∧ ψ), lastg by Xg] and lastc by lastc ∨ Xc Sg]. The result is
a formulas that holds over a word if and only if ϕ holds on the input restricted to its
longest]-free prefix.

3.2 The ν-fragment
Fortunately, the ν-fragment is decidable. We show that for every formula in the ν-
fragment there is an equivalent data automaton, which immediately yields the decid-
ability of the fragment as well.

Theorem 3.8. For every formula ϕ in the ν-fragment there is an effectively constructed
Data ω-automaton Aϕ = (B,Σ′, C, Cω) such that ϕ and Aϕ define the same data
ω-language. Moreover the data automaton (B,Σ′, C) and ϕ define the same data
language.

Proof. It is a general fact that the ν-fragment of µ-calculus over a set of modalities that
are definable in FO2 can be defined in EMSO2 using the standard translation. This
fact along with the theorem 2.3 implies that ν-fragment is subsumed by data automata.
In the following we give the standard construction for the ν-fragment which will be
used elsewhere in the paper.

We need the following definitions. Let Prop(ϕ) be the set of all propositional
variables used in ϕ, and let Sub(ϕ) be the set of all subformulas of ϕ.

Definition 3.9. The closure CL (ϕ) of ϕ is the smallest set such that,

1. Prop(ϕ)∪{ϕ,S,P, firstc, firstg, lastc, lastg} and their negations belong to CL(ϕ),

2. If ψ ∈ CL(ϕ) then ¬ψ (negation is pushed to the literals) belongs to CL(ϕ),

3. If ϕ1 ∧ ϕ2 ∈ CL(ϕ) or ϕ1 ∨ ϕ2 ∈ CL(ϕ) then ϕ1 ∈ CL(ϕ) and ϕ2 ∈ CL(ϕ),

4. If one of Xcϕ1, X
gϕ1, Y

cϕ1, Y
gϕ1 is in CL(ϕ), then ϕ1 ∈ CL(ϕ),

13

5. If νx.ϕ1(x) ∈ CL(ϕ) then ϕ1(νx.ϕ1(x)) ∈ CL(ϕ).

6. If µx.ϕ1(x) ∈ CL(ϕ) then ϕ1(µx.ϕ1(x)) ∈ CL(ϕ).

Definition 3.10. An atomA is a subset of CL(ϕ) that satisfies the following properties:

1. For all ψ ∈ CL(ϕ), ψ ∈ A iff ¬ψ 6∈ A,

2. For all ϕ1 ∨ ϕ2 ∈ CL(ϕ), ϕ1 ∨ ϕ2 ∈ A iff ϕ1 ∈ A or ϕ2 ∈ A,

3. For all νx.ϕ1(x) ∈ CL(ϕ), νx.ϕ1(x) ∈ A iff ϕ1(νx.ϕ1(x)) ∈ A.

Now we describe how the data ω-automaton Aϕ = (B,Σ′, C, Cω) works on a
given data ω-word w. The internal alphabet Σ′ is precisely the set of all atoms in
CL(ϕ). The automaton B while reading the marked string projection of w labels each
position with an atom Ai and outputs it. It also verifies that

(i) firstg ∈ Ai iff i is the first position and lastg ∈ Ai iff i is the last position,

(ii) p ∈ Ai iff the label at position i is p,

(iii) let tp (i) = (p, s) then S ∈ Ai iff the marking s = S, similarly, P ∈ Ai iff the
marking p is P ,

(iv) Xgϕ1 ∈ Ai iff ϕ1 ∈ Ai+1.

(v) Ygϕ1 ∈ Ai iff ϕ1 ∈ Ai−1,

(vi) A1 contains ϕ.

The class automata C and Cω running over a class verifies that,

(a) firstc ∈ Ai iff i is the first position of a class and lastc ∈ Ai iff i is the last position
of a class,

(b) Xcϕ1 ∈ Ai iff ϕ1 ∈ Ai+c1,

(c) Ycϕ1 ∈ Ai iff ϕ1 ∈ Ai−c1.

To show the correctness of the construction assume that w ∈ L(ϕ) and consider the
run of B in which the word w is labelled with the atoms Ai such that formulas in Ai
hold at position i. It follows from definitions that both B, C and Cω have successful
runs on this particular transduction and hence the word is accepted.

For the other direction we need to show that (?) if Aϕ has a successful run on
w then w ∈ L(ϕ). Observe that if Aϕ has a successful run on w then there is an
annotation A1, A2, . . . , of it which satisfy the conditions (i–vi) and (a–c). To prove (?)
we prove the stronger claim that For every formula ϕ in the ν-fragment and for every
data word w and for every sequence Ai of atoms in CL(ϕ) satisfying conditions (i–vi)
and (a–c) and for every ψ ∈ CL(ϕ) ∩ sub(ϕ), if ψ ∈ Ai then w, i |= ψ. Obviously
this claim in conjunction with condition (vi) implies (?). Proof is by induction on the
structure of the formula. For propositions, their negations, and zeroary modalities the
claim is guaranteed by the conditions (i–iii) and (a). For the case of boolean operators

14

and unary modalities, we use induction hypothesis and conditions (iv-v) and (b-c).
The only remaining case is when ψ is of the form νx.χ(x). Consider the data word
w[`(x) := {i | ψ ∈ Ai}]. Let A′1, A

′
2, . . . be the sequence of atoms in CL(χ(x))

(considering x as a propositional variable) uniquely defined as A′i = {φ[νx.χ(x)/x] |
φ ∈ Ai} ∩ CL(χ(x)). One can easily verify that A′1, A

′
2, . . . satisfy the conditions

(i–vi) and (a–c) on the data word w[`(x) := {i | ψ ∈ Ai}]. Hence by induction
hypothesis w[`(x) := {i | ψ ∈ Ai}], i |= χ(x). Therefore the set {i | ψ ∈ Ai} is
a post-fixpoint of the function χ(x) on w. Since the greatest fix point subsumes any
post-fixpoint we conclude that for any position i such that νx.χ(x) ∈ Ai it is the case
that w, i |= νx.χ(x).

We dont know if the containment of ν-fragment in DA is strict. The decidability
of the ν-fragment follows from the above theorem. We also note that the ν-fragment
is not closed effectively under complement since it is decidable while its complement
is not decidable. In fact, building on the formulas used for undecidability of the µ-
fragment, we can prove that it is not closed under complement, even non-effectively.
Let us finally note that the ν-fragment extended with the zeroary predicates discussed
in the previous section is also decidable by translation to data automata.

4 The bounded reversal and bounded mode alternation
fragments

In this section we introduce the main fragments discussed in the paper, namely Bounded
Reversal (BR) and Bounded Mode Alternation (BMA). We begin by presenting the
Comp hierarchy, which is the logical counterpart to cascade of automata, we then in-
troduce the BR and BMA fragments.

4.1 Composition and the BR and BMA logics
Before delving into the technical details let us outline the intuition behind each of the
fragments. Each modality in the µ-calculus goes either left (Yg, Yc) or right (Xg, Xc)
to evaluate the argument formula. A formula is in the BR fragment if the number of
times the formula switches between the “left” and “right” directions is bounded. Just
like every modality in our logic has a direction, it has a mode. Each modality in the
µ-calculus is either a class modality (Xc, Yc) or a global modality (Xg, Yg). A formula is
in the BMA fragment if the number of times the formula switches between the “class”
mode and “global” mode is bounded. The formal way to describe these fragments is
as composition of formulas that are purely “left” or purely “right” (in the BR case), or
purely “global” or purely “class” (in the BMA case). This is done using the Comp-
operator from µ-calculus.

Definition 4.1. Let Ψ be a set of µ-calculus formulas. Define the sets

• Comp0(Ψ) = ∅,

15

• Compi+1(Ψ) = {ψ(ϕ1, . . . , ϕn) |ψ(x1, . . . , xn) ∈ Ψ, ϕ1, . . . , ϕn ∈ Compi(Ψ)}
where the substitution follows the usual condition that none of the free variables
of ϕ1, . . . , ϕn get bound in ψ(ϕ1, . . . , ϕn).

The set of formulas Comp(Ψ) is defined as Comp(Ψ) =
⋃
i∈N Compi(Ψ). For a

formula ψ ∈ Comp(Ψ) we define the Comp-height of ψ in Comp(Ψ) as the least i
such that ψ ∈ Compi(Ψ).

Next we formally define BR and BMA. IfM is a set of modalities, then Formulas(M)
is defined as the subset of µ-calculus which uses only the modalitiesM (apart from the
zeroary modalities).

Definition 4.2 (BR and BMA). Let MX = {Xc, Xg}, MY = {Yc, Yg}, Mg = {Xg, Yg}
and Mc = {Xc, Yc}.

The BR fragment of µ-calculus is the set of formulas Comp (Formulas (MX) ∪ Formulas (MY))).
The BMA fragment of µ-calculus is the set of formulas Comp (Formulas (Mg) ∪ Formulas (Mc)).

Example 4.3. Define

ϕ1 = νx.(X̃cx ∨ Xgµy.(q ∧ Ỹcy)), ϕ2 = νx. (Xclast ∨ XcYgx) ,

ϕ3 = µx.((νy. q ∨ Xcy) ∨ Xgx ∨ Ygx), ϕ4 = µx.(XcXgx ∨ p).

The formula ϕ1 is in BR (comp-height 2) and in BMA (comp-height 3). The formula
ϕ2 is neither in BR nor in BMA. The formula ϕ3 is in BMA (comp-height 2) but not
in BR. The formula ϕ4 is in BR (comp-height 1) but not in BMA.

Example 4.4. Define the language Bridgek as the set of all data words such that, by
applying global successor, followed by class successor, . . . (k-times), one reaches a
position labeled with letter a. This language is described by the formula,

k-times︷ ︸︸ ︷
XgXc . . . XgXc a .

It is BR (of comp-height 1) and in BMA (of comp-height 2k). The language Bridge is
the union of all Bridgek, and can be described by the formula µx.(XgXcx∨ a). It is BR
(of comp-height 1) but not in BMA.

Theorem 4.5 (BMA ⊆ BR). For every formula ϕ in BMA of Comp-height k there is
an equivalent (over data words and data ω-words) formula ϕ′ in BR of Comp-height
k + 1.

Proof. We prove the following claim by induction, for every formula of ϕ in BMA of
Comp-height k there is an there is an equivalent (over data words and data ω-words)
formula ϕ′ which is a boolean combination of formulas in BR of Comp-height k. Note
that since a boolean combination of BR formulas of Comp-height k has Comp-height
k + 1 the theorem follows.

For the base case let ϕ be in Formulas (Mg)∪ Formulas (Mc) (of Comp-height 1).
Consider the case when ϕ is in Formulas (Mg). Let w be a data word (resp.. data ω-
word) and i be a position in w, The idea is to translate ϕ into an equivalent finite state

16

(resp. Büchi) automaton and re-encode it as a boolean combination of Formulas (MX)∪
Formulas (MY). One can think of ϕ as a formula evaluated over a word (ω-word) w
over the alphabet P = 2Prop(ϕ)×M. Utilizing the correspondence between µ-calculus
and finite state (resp. Büchi) automata, there is a finite state (resp. Büchi) automaton
Aϕ = (Q,P,∆, q0, F) with the set of states Q, the set of transitions ∆ ⊆ Q× P ×Q,
the initial state q0 and the set of final states (resp. Büchi states) F , equivalent to ϕ
in the following sense. There is a state q ∈ Q such that if Aϕ has a successful run
ρ = q0q1 . . . qn(resp. ρ = q0q1 . . .) then for all positions i, it is the case that w, i |= ϕ
if and only if qi = q. Therefore to verify that w, i ∈ ϕ it is enough to check that (1) the
automaton Aϕ has a run starting in the state q0 ending in state q on the prefix w[1 : i]
(2) Aϕ has a successful run starting in the state q on the suffix w[i + 1 : n] (resp.
w[i+ 1 :∞]). We can encode condition (1) using a µ-calculus formula using only the
modality Yg and condition (2) using a formula using only the modality Xg . Thus ϕ is
equivalent to a boolean combination of formulas in Formulas (MX) ∪ Formulas (MY).
When ϕ is in Formulas (Mc) the construction is similar except that while encoding the
run of the automaton Aϕ we use the modalities Yc and Xc.

For the inductive step, let ϕ = ψ(ϕ1, . . . , ϕk) be a BMA formula of Comp-height
k + 1 where ψ(x1, . . . , xk) ∈ Formulas (Mg) ∪ Formulas (Mc) and ϕ1, . . . , ϕk are
BMA formulas of Comp-height k. Using induction hypothesis we obtain ϕ′1, . . . , ϕ

′
k

which are boolean combinations of BR formulas of Comp-height k and are equiv-
alent to ϕ1, . . . , ϕk respectively. Repeating the previous argument we also obtain
ψ′(x1, . . . , xk) ∈ Bool(Formulas (MX)∪Formulas (MY)) equivalent to ψ(x1, . . . , xk).
To conclude observe that ψ′(ϕ′1, . . . , ϕ

′
k) is a boolean combination of BR formulas of

Comp-height at most k + 1.

Next we show that BR is subsumed by the ν-fragment over data words. The result
extends to data ω-words partially.

Lemma 4.6. Let ϕ(x, ȳ) be a formula such that the only unary modalities it uses
are Yg, Yc and furthermore any free occurrence of x appears in the scope of at least
k nested modalities. Then for any data word (resp. data ω-word) w and valuation
S1, . . . , Sl of ȳ = y1, . . . , yl, and S of x, and for all i < k,

w[`(ȳ) := S̄, `(x) = S], i |= ϕ

⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= ϕ .

Proof. Without loss of generality assume that x is not a bound variable in ϕ(x, ȳ)
(otherwise rename the occurrences of x). We proceed by an induction on the pair (k, i)
ordered lexicographically (for all i ≥ k the claim holds trivially); For the base case
when k = 1, the claim is vacuously true. For the inductive step assume the claim is
true for pairs (k′, i′) where k′ < k or, k′ = k and i′ < i. Let ϕ(x, ȳ) be a formula in
which x appears with in the scope of k + 1 nested modalities. We do an induction on
the structure of the formula. Let ϕ(x, ȳ) is of the form Mψ(x, ȳ) where M ∈ {Yg, Yc}.
We do a case analysis on M. Assume M is Yg (the case when M is Yc being analogous)

17

then

w[`(ȳ) := S̄, `(x) = S], i |= Mψ(x, ȳ)

⇔ w[`(ȳ) := S̄, `(x) = S], i− 1 |= ψ(x, ȳ) (By defn. of Yg)
⇔ w[`(ȳ) := S̄, `(x) = ∅], i− 1 |= ψ(x, ȳ)

(i < k ⇒ i− 1 < k − 1, hence by IH)

⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= Mψ(x, ȳ)

The boolean cases are straightforward. Next assume ϕ(x, ȳ) is of the form θyi.ψ(x, ȳ)
(θ ∈ {µ, ν}). We have to show that

w[`(ȳ) := S̄, `(x) = S], i |= θyi.ψ(x, ȳ)

⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= θyi.ψ(x, ȳ) .

By induction hypothesis (on the structure of the formula)

w[`(ȳ) := S̄, `(x) = S], i |= ψ(x, ȳ)

⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= ψ(x, ȳ) .

Hence Si is a pre-fixpoint (resp. post-fixpoint) of ψ(x, ȳ) on w[`(ȳ) := S̄, `(x) =
S] if and only if it is a pre-fixpoint (resp. post-fixpoint) of ψ(x, ȳ) on w[`(ȳ) :=
S̄, `(x) = ∅]. Hence the claim is proved by Knaster-Tarski theorem. This concludes
the induction.

By symmetry the following lemma also holds,

Lemma 4.7. Let ϕ(x, ȳ) be a formula such that the only unary modalities it uses
are Xg, Xc and furthermore any occurrence of x appears in the scope of at least k
nested modalities. Then for any data word w of length n and valuation S1, . . . , Sl of
ȳ = y1, . . . , yl, and S of x, and for all i > n− k,

w[`(ȳ) := S̄, `(x) = S], i |= ϕ

⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= ϕ .

Theorem 4.8. Every BR-formula is equivalent to a formula of the ν-fragment over data
words.

Proof. This is done in two steps. The first step is to transform the formula in BR to
an equivalent one that is furthermore guarded. This is achieved by Lemma 3.3. In
the second step we turn every subformula of the form µx.ϕ(x, ȳ) into νx.ϕ(x, ȳ). We
claim that the resulting formula is equivalent to the original one. Thanks to Lemma 3.3,
we only have to prove the correction of the second step, which amounts to prove that

18

(Claim ?) given a guarded BR-formula, it is equivalent over all data words to the
formula in which each µ-fixpoint is turned into a ν-fixpoint.

Observe first that it is sufficient to prove (?) for formulas in Formulas (MX). Indeed,
from this result, by symmetry, it also holds for formulas in Formulas (MY). Note now
that given formulae φ(x), φ′(x), ψ such that φ(x) and φ′(x) are equivalent over all
data words, then the same holds for the substitutions φ(ψ) and φ′(ψ). Since formulas
in BR are obtained from formulas in Formulas (MX) and Formulas (MY) via inductive
substitution, this implies (?) for all formulas in BR.

Hence, what remains to be shown is that (?) holds for a formula inψ ∈ Formulas (MX).
Observe that by induction on the structure of the formula it is enough to verify that for
every guarded formula ψ = µx.ϕ(x, ȳ) ∈ Formulas (MX) and for every data word w
(of length n) and valuation S1, . . . , Sk (all of them subsets of [n]) of ȳ = y1, . . . , yk,

[[νx.ϕ(x, ȳ)]]w′ ⊆ [[µx.ϕ(x, ȳ)]]w′

where w′ = w[`(y1) := S1, . . . , `(yk) := Sk], since the other inclusion follows from
the fact that the least fixpoint is always included in the greatest fixpoint. This reduces
to showing that

w′, i |= νx.ϕ(x, ȳ)⇒ w′, i |= µx.ϕ(x, ȳ)

This is exhibited by the following calculation,

w′, i |= νx.ϕ(x, ȳ)⇔ w′, i |= ϕ(νx.ϕ(x, ȳ), ȳ) (By fixpoint iteration)

⇔ w′, i |= ϕn+1(νx.ϕ(x, ȳ), ȳ)

⇒ w′, i |= ϕn+1(⊥, ȳ) (By Lemma 4.7)
⇒ w′, i |= µx.ϕ(x, ȳ) (By Knaster-Tarski theorem)

From the proof it follows that,

Corollary 4.9. Every guarded BR-formula has a unique fixpoint on every data word.

Theorem 4.10. Over data ω-words, Formulas (MY) ⊆ ν-Fragment. It follows that,
over data words and data ω-words,

Comp (Formulas (MY) ∪ ν-Fragment) = ν-Fragment .

Proof. For data words the claim follows from Theorem 4.8. For data ω-words the
direction

Comp (Formulas (MY) ∪ ν-Fragment) ⊇ ν-Fragment

is clear. For the other direction, we redo the claim (?) from the proof of Theorem 4.8
for Formulas (MY) using Lemma 4.6.

Let us remark that since the class of languages definable by the ν-fragment is not
closed under complement while the class of languages of data words definable by BR
is closed under complement, it follows that BR is strictly less expressive than the ν-
fragment over data words.

19

5 Characterizing BMA and BR as cascades of automata
In this section we give the characterization of BR and BMA. It is classical that composi-
tion (Comp) corresponds to the natural operation of composing sequential transducers.
Given a µ-calculus formula ϕ, we can see it as a transducer that reads the input, and
labels it with one extra bit of information at each position, representing the truth value
of the formula at that point. Under this view, the composition of formulas corresponds
to applying the transducers in sequence: the first transducer reads the input, and adds
some extra labelling on it. Then a second transducer reads the resulting word, and pro-
cesses it in a similar way, etc... If we push this view further, we can establish exact
correspondences between the class BR and BMA, and suitable cascades of transduc-
ers. Furthermore, the comp-height of the formula matches the number of transducers
involved in the cascade.

5.1 Characterizing BMA
In this section we characterize BMA in terms of cascades of letter-to-letter functional
transducers.

We recall that a functional letter-to-letter transducer A : Σ∗ → Σ′∗ over words is
a nondeterministic finite state letter-to-letter transducer such that every input word has
at most one output word. Similarly a functional letter-to-letter transducer Aω : Σω →
Σ′ω over ω-words is a nondeterministic finite state letter-to-letter Büchi transducer such
that every input word has at most one output word.

Definition 5.1 (Global transducer). A global transducer G over data words with in-
put alphabet Σ ×M and output alphabet Σ′ is a functional letter-to-letter transducer
which reads the marked string projection msp(w) of the input data word w and outputs
G(msp(w)). This defines the unique output data word w′ such that dp (w′) = dp (w)
and sp (w′) = G(msp(w)). A global transducer Gω over data ω-words is defined
exactly in the same way except that Gω is a functional letter-to-letter Büchi transducer.

Definition 5.2 (Class transducer). A class transducer L over data words with input
alphabet Σ×M and output alphabet Σ′ is a functional letter-to-letter transducer which
works in the following way. A copy of the automaton L reads the marked class
projection msp(w|S) of the input data word w for each class S in w and outputs
L(msp(w|S)). The unique output data word is defined to be w′ such that dp (w′) =
dp (w) and sp (w′|S) = L(msp(w|S)) for each class S in w.

A class transducer over data ω-words is a pair (L,Lω) where L is as before and
Lω is a functional letter-to-letter Büchi transducer. The working of the automaton is
analogous with the addition that on each finite class the transduction is done by L and
on each infinite class the transduction is done by Lω .

Definition 5.3. A cascade of class and global transducers over data words C is a
sequence 〈Σ = Σ0,A1,Σ1, . . . ,Σn−1,An,Σn〉 such thatA1, . . . ,An is a sequence of
class and global transducers over data words and for each i, the transducerAi has input
alphabet Σi−1×M and output alphabet Σi. A cascade of class and global transducers
over data ω-words C is defined analogously where each Ai is either a global or a class

20

transducer over data ω-words. We call Σ0 the input alphabet of C and Σn the output
alphabet of C. Also, n is called the height of the cascade. Let C (resp. Cω) denote the
set of all cascades of class and global transducers on data words (resp. data ω-words).

Given a cascade of class and global transducers C, a successful run of C on a given
data word (resp. data ω-word) w is a sequence w0 = w, ρ1, w1, ρ2, . . . , wn, ρn such
that ρi is a successful run of Ai on wi−1 outputing the data word (resp. data ω-word)
wi. The language accepted by C is the set of all data words w on which C has a
successful run.

Observe that cascades are natural analogue of the Comp operator on sets of formu-
las. Two cascades C1 and C2 can be composed to form the cascade C1 ◦ C2 if the output
alphabet of C1 and input alphabet of C2 coincide.

Remark 5.4. C and Cω are closed under composition.

Remark 5.5. Global (resp. class) transducers are closed under product (C : Σ∗ →
Σ∗1×Σ∗2 is the product of A : Σ∗ → Σ∗1 and B : Σ∗ → Σ∗2 if C(w) = (A(w), B(w))).
By the previous remark cascades are closed under product.

Next we establish the equivalence between BMA and cascades. We recall the fol-
lowing classical results.

Fact 5.6. Given a µ-calculus formula ϕ over words (resp. ω-words) there is a non-
deterministic finite state (resp. Büchi) functional transducer Aϕ such that given any
word (resp. ω-word)w the automatonAϕ outputs 1 (resp. 0) exactly on those positions
where ϕ is true (resp. false). Moreover Aϕ is deterministic if ϕ uses only the past
modalities, and Aϕ is co-deterministic if ϕ uses only the future modalities. Using
closure under union of automata we can extend this statement to a finite set of formulas.

Fact 5.7. Given a nondeterministic finite state automaton (resp. Büchi) A and a tran-
sition δ of A there is µ-calculus formula ϕδ such that for any word (resp. ω-word) w
and a position i in w, w, i |= ϕδ if and only if there is a successful run ρ = δ1δ2 . . .
of A such that δi = δ. It follows that given a letter-to-letter transducer A : Σ∗ → Σ′∗

(resp. A : Σω → Σ′ω) and a letter a ∈ Σ′ there is a formula ϕa such that for any word
(resp. ω-word) w and a position i in w, w, i |= ϕa if and only if there is an output word
a1a2 . . . of A such that (resp. Aω) ai = a. In particular if the transducer is functional
ϕa holds if and only if in the unique output word a1a2 . . . it is the case that ai = a.

Proposition 5.8. For every BMA formula ϕ on data words (resp. data ω-words) there
is an equivalent cascade Cϕ in C (resp. in Cω) such that the Comp-height of ϕ is exactly
the same as the height of the cascade Cϕ.

Proof. Observe that it is sufficient to prove that (?) for every formulaϕ in Formulas
(
Mg
)

on data words (resp. data ω-words) there is a global transducer ϕC in C (resp. Cω)
outputting 1 (resp. 0) exactly at those positions where ϕ does (resp. not) hold. By
Remark 5.5 the claim holds for a finite set of formulas. By symmetry a similar claim
holds for ϕ in Formulas (Mc). Finally since C and Cω are closed under composition by
induction on the Comp-height the proposition follows. Note that (?) is guaranteed by
Remark 5.6.

21

Proposition 5.9. For every cascade C in C (resp. in Cω) there is an equivalent BMA-
formula ϕC on data words (resp. data ω-words) such that the height of the cascade C
is exactly the same as the Comp-height of ϕC .

Proof. Let A be a global transducer with output alphabet Σ′ . From Fact 5.7. we
obtain that for every letter a ∈ Σ′, there is a formula ϕa in Formulas(Mg) such that on
input w and position i, w, i |= ϕa iff for a1a2 . . . = A(w), ai = a. Analogously the
similar claim holds for class transducers. Since BMA is closed under composition by
induction on the height of the cascade the claim generalizes to cascades of arbitrary
height.

From 5.9 and 5.8 it follows that,

Theorem 5.10. BMA on data words (resp. data ω-words) and C (resp. Cω) are equiv-
alent.

Sequentializing C and Cω . Sequentializing cascades is the analogue of determiniz-
ing automata (it can also be seen as transfering the semantic notion of functionality to
a syntactic notion of determinism or co-determinism). A left-sequential (resp. right-
sequential) transducer is a transducer which reads the input from left-to-right (resp.
right-to-left) and produces the output synchronously. On finite words a transducer is
left-sequential (resp. right-sequential) if the automaton obtained by removing the out-
put letters is deterministic (resp. co-deterministic). It is a classical theorem due to
Elgot and Mezei [11] that every rational function on finite words (i.e. one defined by a
functional transducer) is defined by the cascade of a left-sequential and right-sequential
transducer. A similar result holds also for ω-words due to Carton [12]. In the case of
ω-words a left-sequential transducer, as before, is one where the underlying automaton
is deterministic, while the notion of a right sequential transducer is not immediate as
the word does not have a maximal position. In this case one has to use the notion of a
prophetic automaton (Prophecy is a strong form of co-determinism. See [12] for more
details.)

Definition 5.11 (Cascade of sequential transducers). A global (resp. class) transducer
over data words is left-sequential if it is deterministic and it is right-sequential if it
is is co-deterministic. A global (resp. class) transducer G (resp. L,Lω) over data
ω-words is left-sequential if it is deterministic (resp. both L,Lω are deterministic).
A global transducer Gω (resp. class transducer (L,Lω)) is right-sequential if Gω is
prophetic (resp. if L is right-sequential and Lω is prophetic). A cascade of sequential
transducers is defined in the obvious way.

Remark 5.12. Every cascade in C (resp. Cω) of height k is equivalent to a cascade of
sequential transducers of height at most 2k.

Proof. Inductively replace each class (resp. global) transducer with a cascade of left-
sequential and right sequential class (resp. global) transducers.

Remark 5.13 (BMA⊆DA). We claim that the class of cascades obtained by removing
the restriction of functionality from Definitions 5.1 ,5.2 and 5.3 is equivalent to data au-
tomata. It is easy to see that data automata belong to this class. For the other direction,

22

it is sufficient to observe that given a cascade C = 〈Σ = Σ0,A1,Σ1, . . . ,Σn−1,An,Σn〉
of (not necessarily functional) class and global transducers (without loss of generality
assume n is even and even numberedAi’s work on class projections and odd numbered
Ai’s work on global projection) there is a data automaton (B,Σ′, C) (resp. data ω-
automatonA = (B,Σ′, C, Cω)) with the intermediate alphabet Σ′ = (Σ1 × Σ2 × . . .× Σn)

∗

which works in the following way; Note that there is an obvious correspondence be-
tween words in Σ′∗ and tuples of words (of identical length) of the form (w1, w2, . . . , wn)
where wi ∈ Σ∗i . We implicitly make use of this correspondence below. The transducer
B guesses the words w1, w2, . . . , wn and outputs it while verifying that on each odd i,
Ai has a run on wi−1 outputting wi. The class automaton C (resp. C and Cω) verifies
that for each even i, Ai has a run on wi−1 outputting wi. It is clear that C has an ac-
cepting run on w if and only ifA has an accepting run on w. Hence the claim is shown.
It follows that BMA ⊆ DA.

5.2 Characterizing BR
Take note that we treat BR on data words only below. The results presented do not
extend to data ω-words. First we formally define cascades of class memory transducers,
which is then followed by the proof of the equivalence.

The transducers we use are the transducer versions of class-memory automata
(CMA for short) introduced in [10]. A class-memory automaton is an automaton which
reads the data word from left-to-right and at every position the state depends on the
current letter, the previous state and the state the automaton was in when reading the
class-predecessor position. Let us remark that it is known that CMA are equivalent to
data automata, while their deterministic variant is strictly weaker [10]. For characteriz-
ing BR we use cascades of deterministic CMA transducers which reads the data word
either from left to right and from right to left.

Definition 5.14 (Class-memory transducers). A deterministic class-memory transducer
(denoted by CMT)A is given by a tuple (Q,Σ,Σ′,∆, q0, Fc, Fg) where Q is the finite
set of states, Σ is the input alphabet, Σ′ is the output alphabet, ∆ : Q×Q ∪ {>,⊥}×
Σ×M→ Q×Σ′ is the transition function, q0 is the initial state, Fc is the set of class
final states and Fg is the set of global final states.

A forward (resp. backward) deterministic class-memory transducer is a CMT
which reads its input data word from left-to-right (resp. right-to-left).

LetA be a forward (resp. backward) CMT. Given a data wordw = (a1, d1) . . . (an, dn),
a successful run ρ ofA onw (a unique one if it exists) is a sequence of states q0q1 . . . qn
(resp. qn . . . q1q0) and the output of the run is a word a′1 . . . a

′
n such that,

- q0 is the initial state,

- qn is a global final state,

- for any position i which does not have a class successor (resp. class predecessor),
the state qi (resp. qn−i+1) is a class final state.

- Let i be a position with the types (p, s) ∈M. Then,

23

– if i has no class predecessor (resp. no class successor) then the tuple (qi−1,⊥, ai, p, s, qi, a′i)
(resp. (qn−i,>, ai, p, s, qn−i+1, a

′
i)) is in ∆, and,

– if has a class predecessor (resp. class successor) (say j), then the tuple (qi−1, qj , ai, p, s, qi, a
′
i)

(resp. (qn−i, qn−j+1, ai, p, s, qn−i+1, a
′
i)) is in ∆.

Note that if there is a successful run it is unique and it defines a unique output data
word w′ which is obtained by applying the labelling supplied by the run to the data
word w (that is dp (w′) = dp (w) and sp (w′) = A(msp(w))).

Definition 5.15. A cascade of CMT C is a sequence, 〈Σ = Σ0,A1,Σ1, . . . ,Σn−1,An,Σn〉
such thatA1, . . . ,An is a sequence of forward and backward CMTs and for each i,Ai
is a CMT with input alphabet Σi−1 and output alphabet Σi. We denote by D the set of
all cascades of CMT.

The run of C is defined as before.

Remark 5.16. Using standard product construction it follows that forward (resp. back-
ward) CMT are closed under product. This can be extended to cascades.

Proposition 5.17. For every BR-formula ϕ of Comp-height k there is an equivalet
cascade in D of height k.

Proof. Let us observe that it is sufficient to prove the following claim; (?) for every
formula ϕ in Formulas(MY) there is a forward CMT which outputs ϕ at every position
where it holds in the input. By symmetry we will obtain that for every formula ϕ in
Formulas(MX) there is a backward CMT which outputs ϕ at every position where it
holds in the input. Since by Remark 5.16 given a finite set of formulas {ϕ1, . . . , ϕk}we
can find a forward CMT which will label every position of the input with the precise
subset of formulas which are true there. Finally since BR and D are closed under
composition (by induction on height k) the proposition follows.

Next we show (?). Without loss of generality assume ϕ is guarded and uses only
ν-fixpoints. Recall the definition of closure and atom (Definitions 3.9 and 3.10). We
define a forward-CMT Aϕ whose states are precisely the atoms in CL(ϕ). Let us
observe that using Corollary 4.9 every formula in every atom in CL(ϕ) can also be
transformed to use only ν-fixpoints. Next we discuss the transitions of Aϕ; this ma-
chine verifies that the sequence of atoms defined by the run of the automaton indeed
satisfies all consistency conditions defined below. We let (A−1, A−c1, a, p, s, A, a

′) to
be a transition of Aϕ such that

(i) if A−c1 = ⊥ then firstc ∈ A,

(ii) a ∈ A,

(iii) S ∈ A iff s = S, similarly, P ∈ A iff p = P ,

(iv) if ϕ ∈ A−1 then Ygϕ ∈ A,

(v) if ϕ ∈ A−c1 then Ycϕ ∈ A,

(vi) a′ = ϕ iff ϕ ∈ A.

24

All states of Aϕ are final and class final. The initial state is the unique atom which
contains firstg and ¬p for every propositional variable p. Let us verify that the automa-
ton is deterministic. Assume (A−1, A−c1, a, p, s, a) and (A−1, A−c1, a, p, s, A

′, a′)
are two transitions of Aϕ. We want to show that A = A′, that is to say for every ψ if
ψ ∈ A⇒ ψ ∈ A′ (This is sufficient since atoms are maximal). We proceed by induc-
tion on the structure of ψ. Observe that because of conditions (i–iii) whenever ψ is a
propositional variable, a zeroary modality or their negation the claim holds. When ψ
is of the form Ygχ (the case of Ycχ being similar) then ψ ∈ A⇒ χ ∈ A−1 ⇒ ψ ∈ A′
(by conditions (iv–v)). Assume ψ = χ ∨ δ ∈ A ⇒ χ ∈ A or δ ∈ A ⇒ χ ∈
A′ or δ ∈ A′ (by IH) ⇒ χ ∨ δ ∈ A′. The case of ∧ and ¬ is similar. Finally
assume that ψ = νx.χ(x) ∈ A where χ(x) is guarded. Hence χ(νx.χ(x)) ∈ A.
Let us safely assume (using the unfolding of the fixpoints in the atom) that χ(x) is
not of the form νy, χ′(x, y). In which case χ is a boolean combination of formu-
las of the form Mφ(x) or φ′ where φ′ does not contain x. We apply induction hy-
pothesis to χ(νx.χ(x)). For every subformula φ′ of χ(x), φ′ ∈ A ⇔ φ′ ∈ A′.
For every formula of the form Mφ(νx.χ(x)), it is the case that (by conditions (iv–v))
Mφ(νx.χ(x)) ∈ A⇔ Mφ(νx.χ(x)) ∈ A′. Hence we conclude that ψ ∈ A′.

Next we show the correctness of the construction. For a given data word w, we
observe that the sequence of atoms A0, A1, . . . , An where Ai is the set of all formulas
in CL(ϕ) is an accepting run of Aϕ. For the other direction we need to show that
if A0, A1, . . . , An is the unique accepting run of Aϕ on w, then for every formula
ψ ∈ CL(ϕ), Ai 3 ψ ⇔ w, i |= ψ. We prove the stronger claim; for every formula ϕ
and for every data words w and every sequence A0, A1, . . . , An satisfying conditions
(i–vi) it is the case that for every formula ψ ∈ CL(ϕ), if Ai 3 ψ ⇒ w, i |= ψ. Note
that if Ai 63 ψ ⇒ Ai 3 ¬ψ ⇒ w, i |= ¬ψ ⇒ w, i 6|= ψ. Proof of the claim is a
repetition of the similar claim in the proof of Theorem 3.8 using Corollary 4.9.

Proposition 5.18. For every cascade of height k there is an equivalet BR-formula of
Comp-height k + 1.

Proof. We prove the following claim; Given a forward CMT A with output alpha-
bet Σ′ and a letter a′ ∈ Σ′ there is a formula ϕa′ in the composition (of height 2)
of Formulas(MY) ∪ Formulas(MX) such that A on input w outputs a′ on position i iff
w, i |= ϕa′ . By symmetry we obtain the analogous claim for backward CMT. Fur-
thermore since BR is closed under composition we obtain the claim for cascades of
arbitrary height (by induction on the height). Finally to check that the cascade accepts
the input, all we need to check is that the some output is produced at the first position .

Next we prove the claim. Let A be a forward CMT with set of states {q1, . . . , qn}
and transitions ∆ and initial state q1 and class and global final states Fc and Fg respec-
tively. Let us assume without loss of generality that there are no incoming transitions
to q1. Denote by x̄q the tuple of variables xq1 , . . . , xqn . Let ψqi(x̄q) be the formula

ψqi(x̄q) :=
∨
δ∈∆

 (Ygxq ∧ firstc ∧ a ∧ p ∧ s) if q′ = ⊥
(firstg ∧ a ∧ p ∧ s) if q = q1

(Ygxq ∧ Ycxq′ ∧ a ∧ p ∧ s) else

where δ = (q, q′, a, p, s, qi, a
′).

25

We write a formula in vectorial form (see [13] for related definitions and results) of
the following form,

ϕ = ν

 xq1
...
xqn

 .

 ψq1(xq1 , . . . , xqn)
...

ψqn(xq1 , . . . , xqn)

which computes the unique run of the CMT (if it exists) as a vector of subsets of
positions. Now, using Bekic’s principle one can linearize this vectorial µ-calculus
formula to yield a µ-calculus formula ϕqi which computes the set of positions xqi at
the fixpoint of ϕ. Now ϕa′ is defined as

ϕa′ := (firstc → ∨qi∈Fcϕqi) ∧
(
firstg → ∨qi∈Fgϕqi

)
∧
∨
δ∈∆

ψqi (ϕq1 , . . . , ϕqn) ,

where δ = (q, q′, a, p, s, qi, a
′).

Note that so far the formulas ϕa′ is true at a position i iff the unique partial run
outputs a′ on it. For the inductive case this is enough. To assert that there is a successful
run we write the formula Gg ∨a′∈Σ′ ϕa′ which is of Comp-height 2.

Hence we obtain,

Theorem 5.19. BR and D are equivalent.

6 Data-LTL and FO2

Here we make a remark about two logics already discussed in the literature namely
FO2 [4] and Data-LTL [8]. Data-LTL (DLTL for short) was introduced in [8] in the
setting of data words with multiple data values. We restrict it to the case of data words.
The fragment described below is called Basic DLTL there. It has the following syntax,
let M1 = {Xg, Yg, Xc, Yc} and M2 = {Ug, Sg, Uc, Sc},

ϕ := p ∈ Prop | S | P | M1ϕ, M1 ∈M1

| ϕ ∧ ϕ | ¬ϕ | ϕM2ϕ, M2 ∈M2 .

From the Example 3.1 it is clear that DLTL is a subclass of BMA. The fragment of
DLTL containing the set of modalities {Xg, Xc, Yg, Yc, Fc, Fg, Pg, Pc} is called unary-
Data-LTL.

Define the modalities fF6∼ (far-future not in class) and dP6∼ (deep-past not in class)
as,

w, i |= fF 6∼ϕ ⇔ ∃j > i+ 1 such that i 6∼ j and w, j |= ϕ
w, i |= dP6∼ϕ ⇔ ∃j < i− 1 such that i 6∼ j and w, j |= ϕ

Lemma 6.1. The modalities fF 6∼ and dP 6∼ are expressible using the modalities {Xg, Xc, Yg, Yc, Fc, Fg, Pg, Pc}
over data words and data ω-words.

26

Proof. Finite data word case: We only do the case of fF 6∼. The case of dP 6∼ is
symmetric. Assume we are given a formula fF 6∼ϕ. Let k be the last position where ϕ
is true. Obviously it is the unique position where ϕlast = ϕ∧¬Fgϕ is true. A position
i satisfies fF 6∼ϕ if and only if one of the following scenarios hold;

1. k > i+ 1 and k 6∼ i,

2. k ∼ i and there is a j > i+ 1 such that j satisfies ϕ and j 6∼ k.

The first scenario holds if the formula XgXgFgϕlast ∧ ¬Fcϕlast is true at position i.
(Note that Fg evaluates a formula on all positions in the future including the current
position, hence XgXgFgϕlast). The second scenario holds if the formula Fcϕlast ∧
XgXgFg(ϕ ∧ ¬Fcϕlast) holds at position i. Hence fF6∼ϕ is equivalent to the formula

Ψ ≡ (XgXgFgϕlast ∧ ¬Fcϕlast) ∨ (Fcϕlast ∧ XgXgFg(ϕ ∧ ¬Fcϕlast)).

Data ω-word case: Let α be a data ω-word and i be a position of α. Below we
characterize the scenarios when i satisfies the formula ϕ. We do a case analysis based
on the number of classes in α which has infinitely many positions satisfying ϕ.

case 1: when all classes of α has only finitely many positions satisfying ϕ : Let
us observe that this is the case if and only if all class minimum positions in α satisfy
the formula FcGc¬ϕ . Hence α belongs to this case if and only if α satisfies the formula

C1 ≡ firstg → Gg (firstc → FcGc¬ϕ) .

In this scenario we have two subcases;
subcase 1: When there are only finitely many ϕ in α : This is the case if and only

if α satisfy the formula
S1 ≡ firstg → FgGg¬ϕ .

Note that in thie case our reasoning essentially is the same as that of the finite data
word case. Hence in this subcase a position i satisfies fF 6∼ϕ if and only if it satisfies
the formula

Φ1 ≡ Hg (C1 ∧ S1)→ Ψ .

subcase 2: When there are infinitely many ϕ in α : This is the case if and only if α
satisfies the formula

S2 ≡ firstg → GgFgϕ .

Also observe that since all classes in α contain only finitely many ϕ and α contain
infinitely positions with ϕ it is the case that there are infinitely many classes in α
containing a ϕ. Therefore it is guaranteed that all positions i have a position to the
right which is not in its class and which satisfies ϕ. We can characterize this subcase
by the formula

Φ2 ≡ Hg (C1 ∧ S2)→ true .

case 2: when there is exactly one class in α which has infinitely many positions
satisfying ϕ : First we observe that we can characterize this case using a formula.
This scenario holds if in α there is exactly one class minimum posiiton satisfying the

27

formula GcFcϕ and all other class minimum position satisfies the formula FcGc¬ϕ.
Therefore the positions in the unique class (call it I) containing infinitely many ϕ are
characterized by the formula

U ≡ Pc (firstc ∧ GcFcϕ ∧ XgFg (firstc → FcGc¬ϕ)

∧YgPg (firstc → FcGc¬ϕ)) .

Using the formula U we can assert that α belongs this class by stating that FgU .
Now observe that in this scenario a position i satisfies the formula fF6∼ϕ if and only if
one of the following two conditions hold;

1. i is not in the class I , which is encoded by the formula ¬U ,

2. i is in the class I and there is a j > i+ 1 such that j satisfies ϕ and j is not in I .
This is encoded by the formula

U ∧ XgXgFg (ϕ ∧ ¬U) .

Hence in this case we can say that fF 6∼ϕ is equivalent to the formula

Φ3 ≡ FgU ∨ PgU → (¬U ∨ (U ∧ XgXgFg (ϕ ∧ ¬U))) .

case 3: when there are atleast two classes in α containing infinitely many po-
sitions satisfying ϕ : If this is the case then every position in α satisfies the formula
fF 6∼ϕ. We can check this case by stating that there exist two class minimum positons
where the formula GcFcϕ holds. Hence in this case fF6∼ϕ is equivalent to the formula

Φ4 ≡ Pg (firstg ∧ Fg (firstc

∧ (GcFcϕ ∧ XgFg (firstc ∧ (GcFcϕ))))) .

Finally to conclude the proof we observe that the three cases described above are
exhaustive and hence the formula fF6∼ϕ is equivalent to the disjunction

Φ1 ∨ Φ2 ∨ Φ3 ∨ Φ4 .

Corollary 6.2. The modalities F6∼ (future not in class) and P 6∼ (past not in class) de-
fined as

w, i |= F 6∼ϕ ⇔ ∃j > i such that i 6∼ j and w, j |= ϕ
w, i |= P6∼ϕ ⇔ ∃j < i such that i 6∼ j and w, j |= ϕ

G6∼ϕ ⇔ ¬F6∼¬ϕ
H6∼ϕ ⇔ ¬P6∼¬ϕ

is definable in DLTL over data words and data ω-words.

28

Proof. Define F 6∼ϕ ≡ (¬S ∧ Xgϕ) ∨ fF 6∼ϕ and P 6∼ϕ ≡ (¬P ∧ Ygϕ) ∨ dP 6∼ϕ.

Remark 6.3. In [6] it is shown that FO2(Σ, <,+1,∼) and simple freeze-LTL (LTL
with the operators ↓, ↑ for the registers and modalities Xg, Fg, Yg, Pg and their duals
such that the each modality is immediately preceded by a freeze ↓) are equivalent. Ap-
plying the above idea it follows that formulas in simple freeze-LTL can be equivalently
written such that the negation appears only at the propositional variables (i.e. no need
to have negation at the de-freeze operator, i.e. no need to have ↑6∼).

Next using the above lemma, we prove the equivalence between FO2 (Σ, <,+1,∼,+c1)
and DLTL. The modal-depth of a DLTL formula and the quantifier-depth of an FO2

formula are defined as the maximum number of nested modalities and the maximum
number of nested quantifiers in the formula.

Theorem 6.4. FO2 (Σ, <,+1,∼,+c1) and unary-DLTL are equivalent over data words
and data ω-words1. More precisely,

1. for every unary-DLTL formula ϕ there is a FO2 (Σ, <,+1,∼,+c1) formula
ϕ′(x) such that w, i |= ϕ if and only if w, i |= ϕ′(x). Moreover the size of
ϕ′(x) is linear in the size of the formula. Similarly the quantifier-depth of ϕ′(x)
is the same as the modal-depth of of ϕ′.

2. Similarly, for every FO2 (Σ, <,+1,∼,+c1) formula ϕ(x) there is a unary-
DLTL formula ϕ′ such that w, i |= ϕ′ if and only if w, i |= ϕ(x). The size
of ϕ′ is exponential in the size of ϕ(x). The modal-depth of ϕ′ is linear in the
quantifier-depth of ϕ(x).

Proof. (⇐) Follows simply from the fact that the modalities used in unary-DLTL are
expressible in FO2 (Σ, <,+1,∼,+c1) and we use the obvious analogue of the stan-
dard translation from modal logic to two-variable first order logic. The translation is
linear and preserves the depth as claimed.

(⇐)
For convenience we define the abbreviations x� y and x�c y for x < y∧x+1 6=

y and x ∼ y ∧ x < y ∧ x+c1 6= y.
We intend to prove that for every FO2 (Σ, <,+1,∼,+c1) formula ϕ(x) there is a

unary-DLTL formula ϕ′ such that w, i |= ϕ′ if and only if w, i |= ϕ(x). The proof idea
is quite standard (see [14]). Let ϕ(x) be a formula in FO2, the quantifier depth of ϕ(x)
is defined as usual as the maximum number of nested quantifiers in ϕ(x). The proof is
by induction on the structure of the formula. When ϕ(x) is a(x) then ϕ′ is simply a.
When ϕ(x) is of the form ϕ1(x) ∨ ϕ2(x) (or ¬ϕ1(x)), using inductive hypothesis, we
define ϕ′ as ϕ′1 ∨ ϕ′2 (or ¬ϕ′1). The remaining cases are that when ϕ(x) is of the form
∃x.ϕ1(x) or ∃y.ϕ1(x, y). Both cases are identical upto a renaming of variables. So it is
enough to consider only ∃y.ϕ(x, y). We write ϕ(x, y) in disjunctive normal form and
distribute the existential quantifier over the disjunctions to obtain a formula of the form∨
i ∃y.ϕi(x, y) where each ϕi(x, y) is of the form αi(x) ∧ βi(y) ∧ δi(x, y) ∧ γi(x, y)

1It is known from [8](Proposition 2) that unary-Data-LTL extended with the additional modalities P 6∼

and F 6∼ is equivalent to FO2 (Σ, <,+1,∼,+c1). However this result uses fewer modalities and is not
known before.

29

in which αi(x), βi(y) are formulas with only one free variable δi(x, y) ∈ ∆(x, y) and
γi(x, y) ∈ Γ(x, y) where the sets ∆(x, y) and Γ(x, y) are,

∆(x, y) = {y � x, y + 1 = x, x = y, x+ 1 = y, x� y},
Γ(x, y) = {y �c x, y+c1 = x, x 6∼ y, x+c1 = y, x�c y}.

We also note that writing each conjuct ϕi in this form might require replacing sub-
formulas in ϕi which are negations of formulas in ∆(x, y) by an equivalent formula
consisting of disjunctions of formulas from ∆(x, y) (and further distributing these dis-
junctions in the conjunct). Let us observe that it is enough to define a translation for
each of the disjunct of the form ϕ(x, y) ≡ ∃y. α(x)∧ β(y)∧ δ(x, y)∧ γ(x, y). Induc-
tively we assume that we have the DLTL formulas α′ and β′ which are equivalent to
α(x) and β(y). We define the translation below.

Consider the case when γ(x, y) is x 6∼ y. Then the translations are listed below.

δ(x, y) ϕ′

x = y false
x� y α′ ∧ fF 6∼β′
x+ 1 = y α′ ∧ ¬S ∧ Xgβ′
y + 1 = x α′ ∧ ¬P ∧ Ygβ′
y � x α′ ∧ dP 6∼β′

The rest of the cases are symmetric and hence we treat only the cases when x ≤ y.
Assume δ(x, y) = x� y. Then ϕ(x, y) is satisfiable only when γ(x, y) is x+c1 =

y, x�c y and we define the respective translations as α∧Xcβ′∧¬S and α∧XcXcFcβ′.
When δ(x, y) is x + 1 = y, ϕ(x, y) is satisfiable only when γ(x, y) is x+c1 = y

and we define the translation as α ∧ Xcβ′ ∧ S .
For estimating the size and modal depth one proceeds by induction. We omit the

analysis as it is straightforward.

Finally, remark that the separation of LTL and unary-LTL over words implies that
(consider data words in which all data values are identical) unary-DLTL is a strictly
less expressive than DLTL. Similarly the separation of µ-calculus and LTL over words
implies that DLTL is strictly less expressive than BMA.

7 Discussion
Over data words we have the following inclusions.

FO2 = uDLTL
1
(DLTL

2
(BMA

3
(BR

4
(ν-Fragment

5
⊆ DA

Over data ω-words we have the following inclusions.

FO2 = uDLTL
1′

(DLTL
2′

(BMA
3′

(DA
4′

⊇ ν-Fragment

Inclusions 1,1′,2 and 2′ follow from Example 3.1 and Theorem 6.4 while the strict-
ness of the inclusions follow from the respective strictness on words and ω-words

30

(which are data words and data ω-words when D is singleton). Inclusion 3 and 3′ fol-
lows from Theorem 4.5 and Remark 5.13 while the strictness of the inclusion depends
on deep results from additive combinatorics which will appear in a later publication.
Inclusion 4 follows from Theorem 4.8 while strictness follows from the fact that BR
is closed under complementation while ν-fragment is not (Theorem 3.6). Inclusions 4′

and 5 follow from Theorem 3.8. The strictness is open. Also note that over data ω-
words ν-fragment has non-empty intersection with uDLTL but do not contain it. The
non-containment follows from the non-containment of unary-LTL in the ν-fragment of
µ-calculus on ω-words.

8 Conclusions
In this paper we have studied the expressive power of µ-calculus over data words.
Though the general logic is undecidable, we disclose several fragments that are: the
ν-fragment, the Bounded Reversal fragment (BR) and the Bounded Mode Alternation
fragment (BMA). BR and BMA happen to form Boolean algebras making them very
natural, and relatively expressive logics over data words. We also establish the rela-
tionship with earlier logics like FO2 or Data-LTL. We end with the following question.

Question 8.1. Cascades of finite state automata can be characterized as wreath product
of semigroups (Krohn-Rhodes theorem), a result which has an analogue on trees [15].
Is there a generalization to BMA?

References
[1] M. Kaminski and N. Francez, “Finite-memory automata,” Theor. Comput. Sci.,

vol. 134, no. 2, pp. 329–363, 1994.

[2] M. Bojańczyk, “Data monoids,” in STACS, 2011, pp. 105–116.

[3] M. Kaminski and D. Zeitlin, “Extending finite-memory automata with non-
deterministic reassignment (extended abstract),” in AFL, 2008, pp. 195–207.

[4] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin, “Two-
variable logic on data words,” ACM Trans. Comput. Log., vol. 12, no. 4, p. 27,
2011.

[5] T. Colcombet, C. Ley, and G. Puppis, “On the use of guards for logics with data,”
in MFCS, ser. LNCS, vol. 6907. Springer, 2011, pp. 243–255.

[6] S. Demri and R. Lazić, “LTL with the freeze quantifier and register automata,”
ACM Transactions on Computational Logic, vol. 10, no. 3, Apr. 2009.

[7] M. Jurdziński and R. Lazic, “Alternating automata on data trees and xpath satis-
fiability,” ACM Trans. Comput. Log., vol. 12, no. 3, p. 19, 2011.

[8] A. Kara, T. Schwentick, and T. Zeume, “Temporal logics on words with multiple
data values,” in FSTTCS, ser. LIPIcs, vol. 8, 2010, pp. 481–492.

31

[9] A. Manuel, A. Muscholl, and G. Puppis, “Walking on data words,” in CSR, ser.
LNCS, vol. 7913. Springer, 2013, pp. 64–75.

[10] H. Björklund and T. Schwentick, “On notions of regularity for data languages,”
Theor. Comput. Sci., vol. 411, no. 4-5, pp. 702–715, 2010.

[11] C. C. Elgot and J. E. Mezei, “On relations defined by generalized finite automata,”
IBM J. Res. Dev., vol. 9, no. 1, pp. 47–68, Jan. 1965.

[12] O. Carton, “Right-sequential functions on infinite words.” in CSR’10, ser. LNCS,
vol. 6072. Springer, 2010, pp. 96–106.

[13] A. Arnold and D. Niwinski, Rudiments of µ-calculus, ser. Studies in Logic and
the Foundations of Mathematics. Burlington, MA: Elsevier, 2001.

[14] K. Etessami, M. Y. Vardi, and T. Wilke, “First-order logic with two variables and
unary temporal logic,” Inf. Comput., vol. 179, no. 2, pp. 279–295, 2002.

[15] M. Bojanczyk, H. Straubing, and I. Walukiewicz, “Wreath products of forest al-
gebras, with applications to tree logics,” in LICS’09. IEEE, 2009, pp. 255–263.

32

	Introduction
	Preliminaries
	Data words, data -words and data languages
	Data automata and Data -automata

	-Calculus on Data Words
	The -fragment
	The -fragment

	The bounded reversal and bounded mode alternation fragments
	Composition and the BR and BMA logics

	Characterizing BMA and BR as cascades of automata
	Characterizing BMA
	Characterizing BR

	Data-LTL and FO2
	Discussion
	Conclusions

