
Two-Variable Logic over Countable Linear
Orderings
Amaldev Manuel and A. V. Sreejith

Chennai Mathematical Institute (CMI), India
{amal, sreejithav}@cmi.ac.in

Abstract
We study the class of languages of finitely-labelled countable linear orderings definable in two-
variable first-order logic. We give a number of characterisations, in particular an algebraic one
in terms of circle monoids, using equations. This generalises the corresponding characterisation,
namely variety DA, over finite words to the countable case. A corollary is that the membership
in this class is decidable: for instance given an MSO formula it is possible to check if there is an
equivalent two-variable logic formula over countable linear orderings. In addition, we prove that
the satisfiability problems for two-variable logic over arbitrary, countable, and scattered linear
orderings are Nexptime-complete.
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1 Introduction

Countable linear orderings are linear orderings over countable domains. They are of primary
interest in the context of satisfiability of logics due to a result of Shelah [24]: the satisfiability
problem of monadic second-order (MSO) logic is undecidable over arbitrary linear orderings,
and in particular over the Reals. But by Rabin’s theorem [18] the problem remains decidable
when considered over countable linear orderings. Thus the class of countable linear orderings
sets a natural limit to the decidability of satisfiability problem for MSO over linear orderings.
This is in sharp contrast with first-order (FO) logic, that has the corresponding question
decidable over arbitrary linear orderings. A second and perhaps more important reason
why the class of countable linear orderings are interesting is the logic-algebra connection on
its subclasses — MSO definable languages over finite words (resp. ω-words) are precisely
the class of languages definable by finite monoids (resp. ω-semigroups, equivalently Wilke
algebras) — extends to countable linear orderings: the result due to Carton-Colcombet-
Puppis [4] states that MSO definable languages of countable linear orderings are precisely
the class of languages of countable linear orderings recognisable by ◦-monoids (recalled in
the next section).

The principal import of such a connection is well displayed by the seminal theorem of
Schützenberger [21]: over finite words, FO definable languages are precisely the languages
recognisable by aperiodic finite monoids, in particular the syntactic monoids of FO definable
languages are aperiodic. This immediately yields the decidability of membership in the class
of FO definable languages: compute the syntactic monoid of the given language and check if
it is aperiodic. Since the time of Schützenberger numerous logics have been characterised
algebraically, over finite words, ω-words etc.

However, unlike finite words or ω-words, characterising a logic over countable linear order-
ings has the following added advantage: An algebraic, in particular decidable, characterisation
of a class of languages of countable linear orderings (for instance languages definable by
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XX:2 FO2(<) over countable linear orderings

FO) in terms of ◦-monoids, immediately provides decidable characterisations over restricted
classes of countable linear orderings that are equationally definable (for instance finite words,
ω-words, bi-infinite words, rationals etc.). In that sense, characterising a logic algebraically
over the class of countable linear orderings in one shot characterises it over all equationally
definable subclasses.

An elaborate study over a variety of sublogics over countable linear orderings was done
in [6] where FO, FO[cut], WMSO, WMSO[cut], MSO[ordinals], MSO[scattered] etc. were
characterised algebraically. These characterisations show that WMSO with “cut” quantifiers
are equivalent to those with “ordinal” quantifiers, whereas the rest of the logics are expressively
different from each other. The study also gives decidability of membership for all these logics.

As a continuation, in this work we consider the class of languages of countable linear
orderings that are definable in two-variable first-order logic (FO2). Two-variable FO is
the fragment of FO with at most two variables x, y. While over abritrary structures FO
has an undecidable satisfiable problem, FO2 has a decidable, low complexity satisfiability
problem. Yet FO2 is expressive enough to contain modal logics. This feature of FO2 has
been thoroughly studied and the decidability of satisfiability has been extended to special
classes of structures as well as particular vocabularies. FO2 has been of significant interest
over words (and ω-words) as well. Over finite words, FO2 definable languages have numerous
characterisations [26, 25]: they are precisely the class of languages (1) definable in unary
LTL [26, 8], (2) recognisable by 2-way partially ordered DFA [22], (3) definable by turtle
expressions [27], and (4) whose syntactic monoids are in the variety DA [26] (a finite monoid
is in DA if it is aperiodic and all its regular D-classes are subsemigroups) etc. The last
characterisation also gives a decision procedure for membership in the class. Not only that
FO2 languages have numerous characterisations, they also have a rich structure inside them
[17]— they form an infinite hierarchy under quantifier alternations that is also decidable as
shown recently [12].

Though FO2 is well understood algebraically over finite words, its algebraic character-
isation over countable orderings, in particular over infinite ones, is not immediate. This is
because even with two variables one can express a variety of “infinitary” conditions: clearly
with two variables we can express that letter a has a minimum occurrence (for instance
by the formula ϕ1 = ∃y∀x (a(x) ∧ a(y) ∧ x ≥ y)), as well as its negation, that is there is
an infinite descending chain of a’s. Consider the following formula ϕ2 that says that if an
a-position has an a-position before it, then it has two a-positions before it.

ϕ2 = ∀x (a(x) ∧ ∃y (a(y) ∧ x > y)→ ∃y (a(y) ∧ x > y ∧ ∃x (a(x) ∧ y > x)))

The word aa, as well as aω∗ (the ordering (Z−, <) labelled with a) does not satisfy ϕ1 ∧ ϕ2
while the words a and aaω∗ satisfy ϕ1 ∧ ϕ2. Thus, as ϕ1 ∧ ϕ2 exemplifies, with two variables
one can stipulate both a minimum occurrence as well as existence of a descending chain of
a letter. Therefore for the algebraic characterisation of FO2 one has to make an intricate
analysis of whether the letters appear as a minimum or as an infinite chain at different factors
of the word.

In the rest of the section, we mention works that are related to the present paper and
our contributions.

Related Work

Algebraic characterisations, in particular for FO, for scattered linear orderings are given in
[1, 2, 5]. The connection between MSO over countable linear orderings and ◦-monoids was
proved in [4]. It showed that MSO is equivalent to ◦-monoids. This gives an alternate proof of
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decidability of MSO over countable linear orderings. Moreover it showed that MSO collapses
to the second level of the quantifier alternation hierarchy. An algebraic classification of MSO
under various forms of set quantifications, in particular corresponding to the sublogics FO,
FO[cut], WMSO, WMSO[cut], MSO[ordinals], MSO[scattered], was done in [6].

The literature on FO2 over arbitrary structures is extensive and we don’t mention it here.
FO2 over finite words as well as ω-words has been studied extensively [22, 26, 8, 25, 27, 12, 17].
A survey of various characterisations of FO2 is given in [25]. The quantifier alternation
hierarchy on FO2 was proved in [11] and the decidability of the hierarchy was shown in [12].

Satisfiability of FO2 over arbitrary structures were shown to be Nexptime-complete in
[10]. The corresponding results (also Nexptime-complete) was shown for ω-words in [8],
and for ordinals in [15]. More recently the satisfiability problem was studied for words with
additional linear orderings/preorderings [3, 23, 14, 13].

Satisfiability of LTL over countable linear orderings is Pspace-complete [7, 19].

Contributions

We study the two variable fragment of first order logic over countable linear orderings and
give a number of different characterisations. The simplest characterisation is in terms of
temporal logic (TL): FO2 is equivalent to TL with only the modalities Future (F) and Past
(P). Our major contribution is an algebraic characterisation for FO2. We show that it
corresponds to a subclass of ◦-monoids and give two algebraic characterisations for this
subclass: (1) by equations, and (2) as the class of ◦-monoids that are aperiodic and whose
regular J classes are sub ◦-monoids. It follows that the membership in the class is decidable.

Next we study the satisfiability problem for FO2 over countable linear orderings. The
models of FO2 formulas could be infinite, but we show that a satisfiable formula always
admits a scattered model that has a finite representation of small (exponential in the size of
the formula) size. Thus we prove that the satisfiability of FO2 over countable linear orderings
is Nexptime-complete. From this we also deduce that the satisfiability problems for FO2

over arbitrary and scattered orderings are Nexptime-complete.

Structure of the paper

In Section 2, we introduce words over countable linear orderings, two-variable first-order
logic, and the algebra required to characterise FO2, namely ◦-monoids. In Section 3 we prove
our main result (Theorem 8) which characterises FO2. Section 4 deals with the satisfiability
of FO2 over countable linear orderings. Finally we conclude our results in Section 5.

2 Preliminaries

In this section we recall the basic facts about (countable) linear orderings, ◦-monoids, logics
and related notions.

Words over countable linear orderings. A linear ordering α = (Z,<) is a set Z equipped
with a total order <. For X,Y ⊆ Z we write X < Y if x < y for each x in X and y in Y .
In particular ∅ < X < ∅ for any set X. Also if X < Y , Y < Z and Y is nonempty, then
X < Z. A cut of the linear ordering α is a pair (Z1, Z2) such that Z = Z1 ∪Z2 and Z1 < Z2.
The set of all cuts are linearly ordered and has the least upper bound property [2]. A set
L is a prefix of X if X = L ∪K and L < K for some K ⊆ X. Similarly if X = L ∪K and
L < K, then K is a suffix of X. Element z ∈ Z is an upperbound (resp. lowerbound) of a set



XX:4 FO2(<) over countable linear orderings

X ⊆ Z if x ≤ z (resp. z ≤ x) for each x in X. A set X is right-open (resp. left-open) if it
has no maximum element (resp. minimum element). Nonempty suffixes of right-open sets
are right-open and nonempty prefixes of left-open sets are left-open. The set X is dense if
between any two elements in the set there is another element; set X is scattered if it has no
dense subsets. An ordering is a countable (scattered) linear ordering if the set Z is countable
(scattered). See [20] for further details.

For a finite alphabet A and a linear ordering α = (Z,<), we define a word w : α → A

to be a mapping from the set Z to A. We call α the domain of w, dom(w). For a word w,
we say a point/position x to denote an element x ∈ dom(w). The notation w[x] denote the
letter at the xth position in w. A word has a minimal (respectively maximal) element if its
domain has a minimal (maximal) element. The word u is a suffix (prefix) of w if dom(u) is a
suffix (prefix) of dom(w). If u and v are words, then uv denotes the unique word w such
that (dom(u), dom(v)) is a cut of dom(w). This operation is naturally extended to a set of
words {wi}α indexed by a linear ordering α as

∏
i∈α wi (see [6] for more details). For a set

S ⊆ A, and a word w, we denote the restriction of w to the positions labelled by S as w|S .
That is w|S = {i ∈ dom(w) | w[i] ∈ S}.

The following words are of special interest. ε stands for the empty word (the word over an
empty domain). The word {a}ω (denoted in short as aω) denotes the word over the domain
(N, <) such that every position is mapped to the letter a. Similarly aω∗ denotes the word
over the domain (N−, <) where every position is mapped to letter a. A perfect shuffle over a
nonempty set S ⊆ A of letters, denoted by Sη, is the word over domain (Q, <) such that
any nonempty open interval contains each of the letters in S. This is a unique word (up to
isomorphism) (see [4]) and is an example of a dense word, i.e. a word whose domain is dense.

For an alphabet A, the set of all words over nonempty countable domains is denoted by
A◦. For a word w, we define alphabet(w) to be the set of all letters in w. A language over
the alphabet A is a subset of A◦. The language {a}∞ ⊆ {a}◦ (or written as a∞) denotes
all words which are right open. Similarly for a set S ⊆ A, the language S∞ is the set of all
words whose letters come only from S and any letter from S can be seen arbitrarily towards
the right. The sets a−∞ and S−∞ are defined analogously.

Circle monoids and algebras. A ◦-semigroup M = (M,π) consists of a set M with an
operation π : M◦ → M which satisfies the following two properties (1) π(a) = a for all
a ∈M , (2) generalised associativity property – that is π

(∏
i∈α ui

)
= π

(∏
i∈α π(ui)

)
for every

countable linear ordering α. If M has an identity element, then it is called a ◦-monoid. An
element e ∈M is an idempotent if π(ee) = e.

For the rest of the paper, we assume that the monoid M is finite, that is M is a finite
set. The product π is over countable linear orderings and hence it is not possible to finitely
represent π. Fortunately, we are able to represent this by a ◦-algebra that uses only finite
sets and finitely many operations. The following operations are derivable from a ◦-monoid
M = (M,π):

Finite product, · : M2 →M such that ·(a, b) = π(ab)
Omega, ω : M →M such that ω(a) = π(aω)
Omega∗, ω∗ : M →M such that ω∗(a) = π(aω∗)
Shuffle, η : P(M)→M such that {a1, . . . , ak}η = π({a1, . . . , ak}η)

The resulting structure (M, ·, ω, ω∗, η) is called a ◦-algebra if it satisfies some additional
axioms relating the operations (for example a · aω = aω, (aη)ω = aη etc.). We skip these
details and refer the reader to the paper by Carton et. al [4] for a detailed discussion. The
relavant fact is that, for any ◦-monoid there exists a unique ◦-algebra and vice versa [4].
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An important “tool” to understand finite monoids (in our case ◦-monoids) is Green’s
relations. In a ◦-monoid M, we say that two elements u ≥J v if there exists two elements
x, y ∈M such that v = xuy and uJ v (called J equivalent) if it is both u ≥J v and v ≥J u.
We also say that two elements are u ≥R v (similarly u ≥L v) if there exists an element
x ∈ M such that v = ux (v = xu). Also uRv if u ≥R v and v ≥R u. Similarly we can
define uLv. The relations L and R are right and left congruences respectively. If a J class
contains an idempotent then it is called a regular J class. All elements in a J class can be
described by an “eggbox” structure, such that uJ v iff there exists elements x, y ∈M such
that uRxLyRv. For a more detailed elaboration on this subject see [16].

The class of ◦-monoids that satisfies the property — there exists an n ∈ N such that
an = an+1 for all a ∈ M — are called aperiodic. It is precisely the class of ◦-monoids
which do not contain any non-trivial group as a subsemigroup of (M, ·) (by Schützenberger’s
theorem [21]).

One way to denote a class of ◦-monoids is by equations. For instance, we say that M
satisfies the equation x∗ = xωxω

∗ , if for all elements a ∈ M, a∗ = aωaω
∗ , where a∗ is the

unique idempotent power of a.
We say that a language L ⊆ A◦ is recognised by the ◦-monoid M, if there is a morphism,

γ : A◦ → M and a subset S ⊆ M such that L = γ−1(S). The syntactic ◦-monoid of
a language L is the minimal ◦-monoid M recognising L that has the following universal
property: any ◦-monoid recognising L has a morphism onto M.

Logics. Monadic second-order logic (MSO) over a finite alphabet A is a logic which can be
inductively built using the following operations.

a(x) | x < y | x = y | α1 ∨ α2 | ¬α | x ∈ X | ∃x α | ∃X α

Here a ∈ A. If we remove the second-order quantification, we get first-order logic (FO). If
we further restrict the logic to use only two variables (but allowing repetitions) we get FO2.
Note that, we do not have the successor relation in our logic.

A formula with no free variables is called a sentence. The language of a sentence ϕ
(denoted by L(ϕ)) is the set of all u ∈ A◦ that satisfies ϕ.

Over finite words, FO2 can talk about occurrence of letters and also about the order in
which they appear [8, 27]. Over countable linear orders, FO2 can also talk about an infinite
sequence of a letter. For example, the language a∞ is definable in FO2 by stating that, every
position is labelled by a and there is no maximum position.(

∀x ∃y > x
)
∧
(
∀x a(x)

)
Also, for a subset S ⊆ A, we can also express the language S∞ in FO2.(

∀x
∧
a∈S

∃y > x a(y)
)
∧
(
∀x

∨
a∈S

a(x)
)

Analogously, FO2 can also talk about left open words.
The temporal logic {F, P}-TL over the alphabet A is the logic with the set of formulas —

a when a is a letter in A, and Fϕ and Pϕ when ϕ is a formula — that is closed under Boolean
operations. To state the semantics fix a word u ∈ A◦. A position i ∈ dom(u) satisfies —
the formula a if i is labelled with the letter a, and the formula Fϕ (resp. Pϕ) if there is a
position i < j ∈ dom(u) (resp. i > j ∈ dom(u)) that satisfies the formula ϕ. The semantics
for Boolean connectives are defined in the usual way. The word u satisfies the formula ϕ if
there is a position i ∈ dom(u) that satisfies the formula (see [8] for a detailed presentation).
The language of the formula ϕ is the set of all u ∈ A◦ that satisfies ϕ.
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3 Characterisation

In this section, we give the algebraic characterisation for FO2(<) over countable linear
orderings. As we noted earlier, ◦-monoid captures MSO. Here we identify a subclass
which will capture the two-variable first-order fragment. Our characterisation builds on
the characterisation for FO2 on finite words given in [26]. In particular, we crucially use a
generalisation of the congruence given there.

I Definition 1. We define ◦-DA to be the subclass of ◦-monoids that satisfy the following
equations.
1. (xyz)∗y(xyz)∗ = (xyz)∗
2. x∗ = (x)ω(x)ω∗

3. {x1, . . . , xk}η = (x1 · · ·xk)ω∗(x1 · · ·xk)ω
The first equation corresponds to the variety DA of finite monoids [25]. It identifies the
constraints the product operation has to satisfy. The second equation corresponds to FO
definable languages of countable linear orderings [6]. This equation states that a J class
with an idempotent will also contain its omega and omega∗ powers. The last equation says
that, ◦-DA cannot differentiate between dense and scattered orderings.

The connection between logic and algebra is established using the following congruence.

A congruence on words

Let u ∈ A◦ be an arbitrary word. alphabet(u) is defined as the set of all letters occurring in
u. For a letter a in alphabet(u), let Pu(a) denote the set of all positions in u labelled with a.
Let T 1

r (u) ⊆ alphabet(u) be the set of all letters a such that Pu(a) has a maximal element.
Furthermore, let Tωr (u) be the set alphabet(u) \ T 1

r (u), i.e. the set of all letters that do not
have a maximal occurrence. Similarly let T 1

l (u) ⊆ alphabet(u) be the set of all letters a such
that P (a) has a minimal element, and let Tω∗l (u) be the set alphabet(u) \ T 1

l (u).

I Definition 2. The relation .r over the set of letters Tωr (u) is defined as follows:

a .r b if each a-position i in u has a b-position j to its right (i.e. j > i).

I Lemma 3. The relation .r is a total preorder on the set Tωr (u).

We write ∼r to denote the equivalence relation associated with the preorder .r. For a
letter a in Tωr (u) we let [a]r ⊆ Tωr (u) denote the equivalence class of a with respect to the
total preorder .r, i.e. [a]r = {b ∈ Tωr (u) : b ∼r a}. Also, we extend the definition of Pu to
equivalence classes by defining Pu([a]r) =

⋃
a∈[a]r

Pu(a). We write <r to denote the total
order on {[a]r : a ∈ Tωr (u)}.

By symmetry, the dual relation .l defined as,

b .l a if each a-position in u has a b-position to its left,

is also a total preorder. The corresponding equivalence relation and strict order relation
are denoted as ∼l and <l. Given a circle word u the preorders .r and .l associated with
u are called the right preorder and left preorder of u respectively. As before we define
Pu([a]l) =

⋃
a∈[a]l

Pu(a).

I Example 4. Let S = {a, b} and let u ∈ S−∞ be an arbitrary word. Consider the word
v = uaω

∗
aωabω ∈ {a, b}◦. Then T 1

l (u) = T 1
l (v) = ∅ and Tω∗l (u) = Tω

∗

l (v) = {a, b}, since a
and b occur infinitely often towards left in both u and v. It also follows that a .l b and
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b .l a. Since u is an arbitrary word, we do not know about T 1
r (u) and Tωr (u). But, since a

has a maximum point in v, we have T 1
r (v) = {a} and Tωr (v) = {b}. Moreover b .r b.

Consider another word w = aωbω. Here we have T 1
l (w) = {a, b} and Tω∗l (w) = T 1

r (w) = ∅.
We also have Tωr (w) = {a, b} and a .r b but b 6.r a.

We will now introduce left/right decomposition of words. The idea is to factorise a word
in a particular way to capture the “pivot” points for an FO2 formula.

I Definition 5. Let a ∈ alphabet(u). If a ∈ T 1
l (u), then there exists a unique factorisation

of u as (u0, a, u1) such that u = u0au1 and a /∈ alphabet(u0). This is called the a-left
decomposition of u. Similarly there is a unique factorisation of u as (u0, a, u1) such that
a /∈ alphabet(u1), if a ∈ T 1

r (u). This is called the a-right decomposition of u.
We are also interested in left decomposition obtained by a set of positions Pu([a]l),

where [a]l ∈ Tω
∗

l (u)/ ∼l. That is for a subset of positions Pu([a]l) of u, we define the
Pu([a]l)-left decomposition of a word u to be the unique maximal cut (u0, u1) such that
Pu([a]l) ∩ dom(u0) = ∅. Note that if S = {b | b ∼l a}, then there is a prefix of u1 such that
u1 ∈ S−∞. This follows from the fact that, the decomposition (u0, u1) is a maximal cut.
Similarly the Pu([a]r)-right decomposition of a word u is defined to be the unique minimal
cut (u0, u1) such that Pu([a]r) ∩ dom(u1) = ∅.

With the left/right decomposition defined, we can define the congruence on words, ≡n
which essentially captures a sequence of unique decompositions.

I Definition 6. For an alphabet A, a natural number n ∈ N and words u, v ∈ A◦, we define
u ≡n v by induction on m = n+ |A| as follows.
1. If n = 0 (the base case): u ≡0 v for all u, v ∈ A◦.
2. If n > 0: We say u ≡n v if the following conditions are satisfied:

a. alphabet(u) = alphabet(v), T 1
r (u) = T 1

r (v), and T 1
l (u) = T 1

l (v). (This condition
implies that Tωr (u) = Tωr (v) and Tω∗l (u) = Tω

∗

l (v)).
b. The right preorders of u and v (both on the same set by the previous observation) are

the same. Similarly the left preorders of u and v are the same. (We denote the left
and right preorders as .l,.r respectively).

c. For each a ∈ T 1
l (u) = T 1

l (v), let (u0, a, u1) be the a-left decomposition of u, and let
(v0, a, v1) be the a-left decomposition of v, then u0 ≡n v0 and u1 ≡n−1 v1. Note that
the induction parameter has reduced in both cases: u0 has at least one letter less than
u; and we have a lesser congruence in u1.

d. Similarly, for each a ∈ T 1
r (u) = T 1

r (v), let (u0, a, u1) be the a-right decomposition of u
and let (v0, a, v1) be the a-right decomposition of v, then u0 ≡n−1 v0 and u1 ≡n v1.

e. For each class [a]l ∈ Tω
∗

l (u)/∼l = Tω
∗

l (v)/∼l, let (u0, u1) be the Pu([a]l)-left decom-
position of u and let (v0, v1) be the Pv([a]l)-left decomposition of v, then u0 ≡n v0
and u1 ≡n−1 v1. Again, the induction parameter has reduced in both cases: u0 has at
least one letter less than u; and we have a lesser congruence in u1.

f. Similarly for each class [a]r ∈ Tωr (u)/∼r = Tωr (v)/∼r, let (u0, u1) be the Pu([a]r)-
right decomposition of u and let (v0, v1) be the Pv([a]r)-right decomposition of v, then
u0 ≡n−1 v0 and u1 ≡n v1.

I Lemma 7. The relation ≡n is a congruence relation for every n ∈ N.

Main theorem

We are now in a position to state our main theorem.
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I Theorem 8. Let L ⊆ A◦. Then the following are equivalent:

1. L is definable in {F, P}-TL.
2. L is FO2(A,≤) definable.
3. L is a union of ≡n congruent classes for some n ∈ N.
4. L is recognised by a ◦-DA.
5. L is recognised by an aperiodic ◦-monoid where all regular J classes are sub ◦-monoids.
6. The syntactic ◦-monoid of L is in ◦-DA.
The proof of (1⇔ 2) follows easily (see [8, 7]).
In subsection 3.1 we show the equivalence of the different monoid views (4⇔ 5⇔ 6).
In subsection 3.2 we show (4⇒ 3).
To prove (2⇒ 4), we use 2-pebble Ehrenfeucht-Fraïssé (EF) games [26]. The EF game gives
a game congruence ∼=n defined as: u ∼=n v if the duplicator wins the n-round 2-pebble game
on the pair of words (u, v). See [26] for the game congruence and its equivalence to FO2.
Thus it suffices to show that the game congruence satisfies the equations of ◦-DA.
To show direction (3⇒ 2) we follow the proof in [26]. It suffices to show that if L ⊆ A◦ is a
union of ≡n congruent classes for some n, then it is definable in FO2(<). More precisely we
prove the following lemma (again using the equivalence of game congruence ∼=n and FO2).

I Lemma 9. For words u, v ∈ A◦, If u 6≡n v, then u 6∼=n+alphabet(u) v i.e. the spoiler has a
winning strategy in the 2-pebble n+ alphabet(u)-round EF game on u and v.

Since the syntactic ◦-monoid (and its finite representation using ◦-algebra) is computable
given an MSO formula [4], it follows that it is decidable to check whether the language is
FO2 definable.

I Corollary 10. For a sentence φ in MSO[<], it is decidable whether L(φ) is FO2[<] definable.

In the next subsection we show the equivalence of the different monoid views. The
subsection after that shows that if a language is accepted by a ◦-monoid, then it is a union
of congruence classes ≡n for some n ∈ N.

3.1 The different Monoid views
In this subsection we show that the different views of ◦-DA are equivalent. That is, (4⇔
5 ⇔ 6) of Theorem 8. The direction (4 ⇒ 5), follows from standard ideas in semigroup
theory and the reverse direction (5⇒ 4), follows from the below lemma:

I Lemma 11. Let M be an aperiodic ◦-monoid such that all regular J classes of M are sub
◦-monoids. Let γ : A◦ →M be a morphism and u ∈ A◦, such that γ(u) = e an idempotent.
Then, for all words v ∈ {alphabet(u)}◦, we have γ(uvu) = γ(u).

To prove direction (4⇒ 6), assume L is recognised by a monoid in ◦-DA. Since, ◦-DA is
closed under quotienting, it follows that the syntactic monoid of L satisfies the equations of
◦-DA (see [6] for more details about syntactic congruence and monoids).

3.2 Algebra to Congruence
In this subsection we show direction (4 ⇒ 3) of Theorem 8. The proof improves on the
equivalence of the congruence and algebra given in [26]. We show that a language recognisable
by a ◦-monoid in ◦-DA, satisfies the congruence relation ≡n for some n ∈ N. Let L be
recognised by the morphism γ : A◦ →M, where M is in ◦-DA. It suffices to show that there
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exists an n ∈ N such that ≡n is a finer congruence than the monoid congruence. That is
for u, v ∈ A◦, if u ≡n v, then γ(u) = γ(v). Since M is an aperiodic monoid (follows from
equations of ◦-DA) it is sufficient to show that uRv and uLv.

The left/right decomposition of words are closely related to how the R classes fall in the
word. The following definition identifies a sequence of R-smooth factors (those factors where
there is no R fall), and the subsequent lemma shows there exists such a unique sequence.

I Definition 12. Let γ : A◦ →M. Let w ∈ A◦. Then the R decomposition of w is defined
as the sequence (w0, a1, w1, a2, . . . , ak, wk) such that
1. ai ∈ A ∪ {ε} and wi ∈ A∗, for all i ≤ k.
2. w = w0a1 . . . akwk.
3. For each 0 < i ≤ k, if ai is empty, then the following conditions hold:

a. wi does not have a left end point.
b. (w0a1 . . . aiw

′
i) R γ(w0a1 . . . aiwi), for all nonempty prefix w′i of wi.

c. γ(w0a1 . . . wi−1) ��R γ(w0a1 . . . wi−1aiwi).
4. For each 0 < i ≤ k, if ai is not empty, then the following holds:

a. γ(w0a1 . . . ai) R γ(w0a1 . . . aiwi).
b. γ(w0a1 . . . wi−1) ��R γ(w0a1 . . . wi−1ai).

I Lemma 13. Let w ∈ A◦ be an arbitrary word. Then, there is a unique R decomposition
(w0, a1, . . . , ak, wk) of w.

The following Lemma connects R decompositions and left decompositions.

I Lemma 14. Let (w0, a1, . . . , ak, wk) be the R decomposition of w. Then, for each 0 < i ≤ k,
1. If ai is not empty, then ai /∈ alphabet(wi−1).
2. If ai is empty, then there exists an a /∈ alphabet(wi−1) such that a ∈ Tω∗l (w′i) for all

nonempty prefix w′i of wi.

We are now in a position to prove our claim.

Proof of Theorem 8, (4⇒ 3). We show that if u ≡m v for a sufficiently large m (depending
only on alphabet(u) and M), then γ(u)Rγ(v). The L equivalence can be shown symmetrically.
As discussed in the beginning, this proves our claim. Our induction hypothesis is as follows:

If u ≡m v for an m > |alphabet(u)| × |M|, then γ(u) = γ(v).

The base case, when m = 0 is clearly true, since u = v = ε (note that, in this case
alphabet(u) = ∅). Let us now consider the inductive step, for m > 0, we have u ≡m v. Our
aim is to show that γ(u) = γ(v). Consider the R decomposition of u = (u0, a1, u1, . . . , ak, uk).
We give a sequence v = (v0, a1, v1, . . . , ak, vk) such that γ(ui) = γ(vi) for all i < k and hence
γ(u) ≥R γ(v).

Define u′i = uiai+1 . . . uk, for all i ≤ k. We do the following procedure for i ranging
from 1, 2, . . . , k. During every iteration of i, we give v′i, a suffix of vi such that the invariant
u′i ≡m−i v′i is maintained. To start the iteration we set v′0 = v and u′0 ≡m v′0
1. If ai is non empty, then (ui−1, ai, u

′
i) is the ai-left decomposition of the word u′i−1 (follows

from Lemma 14). Since (u′i−1 ≡m−(i−1) v
′
i−1), there exists an ai-left decomposition of

v′i−1 = (vi−1, ai, v
′
i) such that ui−1 ≡m−(i−1) vi−1 and u′i ≡m−i v′i.

2. If ai is empty, then (ui−1, u
′
i) is an [a]l-left decomposition of the word u′i−1 for an

[a]l ∈ Tω
∗

l (u′i−1)/ ∼l (follows from Lemma 14). Since (u′i−1 ≡m−(i−1) v′i−1), there
exists an [a]l-left decomposition of v′i−1 = (vi−1, v

′
i) such that ui−1 ≡m−(i−1) vi−1 and

u′i ≡m−i v′i.
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Assign vk = v′k obtained at the end of iteration.
Note that k ≤ |M|. For an i < k, we have |alphabet(ui)| = |alphabet(vi)| < |alphabet(u)|

(from Lemma 14) and thereforem−i > |alphabet(ui)|×|M|. Since ui ≡m−i vi from induction
hypothesis, it follows γ(ui) = γ(vi), for all i < k. Therefore γ(u0 . . . ak) = γ(v0 . . . ak).

It remains to show that γ(u) ≥R γ(v). Depending on whether ak is empty or not, we
get the following cases.
1. If ak is non empty, then γ(u0a1 . . . akuk) R γ(u0a1 . . . ak) = γ(v0a1 . . . ak) ≥R γ(v). The

first condition follows from the fact that the sequence (u0a1 . . . uk) is an R decomposition,
and the second condition follows from the fact that γ(ui) = γ(vi) for all i < k.

2. If ak is empty, then (u0 . . . uk−1, uk) and (v0 . . . vk−1, vk) are both S-left decomposition
for an S ∈ Tω

∗

l (ui)/ ∼l. Hence there are prefixes u′k of uk and v′k of vk such that
u′k, v

′
k ∈ S−∞. From Lemma 11 we know that γ(u′k)Rγ(v′k). Therefore,

γ(u0a1 . . . akuk) R γ(u0a1 . . . u
′
k) R γ(v0a1 . . . v

′
k) ≥R γ(v0a1 . . . akvk) = γ(v).

We now have γ(u) ≥R γ(v). By a symmetric argument we get γ(v) ≥R γ(u) and therefore
γ(u) R γ(v). By L-R symmetry, γ(u) L γ(v) and since M is aperiodic γ(u) = γ(v). J

4 Satisfiability

In this section we address the satisfiability problem of two-variable logic over countable linear
orderings. The rest of the section is devoted to the proof of the below theorem. Take note of
the fact that in this section Σ denotes a set of unary predicates (and not an alphabet). Our
models are words over the alphabet P(Σ).

I Theorem 15. The following problems are Nexptime-complete: Satisfiability of FO2(Σ, <)
over
1. arbitrary linear orderings,
2. countable linear orderings,
3. scattered linear orderings.

First we deal with the hardness part of the theorem. By downward Löwenheim-Skolem
theorem, every satisfiable first-order formula has a countable model, and therefore (1) reduces
to (2). Similary by Lemma 16 (given below), if a two-variable logic formula has a countable
model, then it has a scattered model. Therefore (2) reduces to (3). Secondly, satisfiability of
FO2(Σ) over arbitrary structures already is Nexptime-hard [9], and therefore (1), (2) and
(3) are Nexptime-hard.

Next we prove that (2) and (3) are in Nexptime. The idea is to show that for any
satisfiable formula there is a model of a particular form that admit at most exponentially
big (in the size of the formula) description.

Let ϕ be a FO2(Σ, <) formula. Using standard ideas we obtain a formula ϕ′ ∈ FO2(Σ′, <)
in Scott normal form, i.e.

ϕ′ = ∀x∀y ψ(x, y) ∧
∧
i

∀x∃y χi(x, y) , (1)

where Σ′ ⊇ Σ, |Σ′| = |Σ| + O(|ϕ|), |ϕ′| = O(|ϕ|), ψ(x, y) and χi(x, y) are quantifier free,
such that ϕ and ϕ′ are equisatisfiable (one is satisfiable if and only if the other is satisfiable).
More precisely, the sets of models of ϕ and ϕ′ are isomorphic upto the erasure of the unary
predicates Σ′ \ Σ.

We introduce some notation. Given a set of unary predicates P , we define a unary type
over P to be a maximal conjunction of literals (i.e. U(x) or ¬U(x) where U is a unary
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predicate in P ) over the same variable that is satisfiable. When the set P is clear from the
context we just use types to refer to the unary types over P . We write tp(P ) to denote the
types over the predicates P . Each position of a ◦-word satisfies exactly one type, called the
type of the position. Models of ϕ′ are ◦-words over the alphabet tp(Σ′).

Next we prove that formulas ϕ′ in Scott normal form possess particular kind of models.

I Lemma 16. If ϕ′ is satisfiable, then it has a model of the form uλ1
1 · · ·uλn

n where n ≥ 1 is
a natural number, for each 1 ≤ i ≤ n, ui is a finite word over the alphabet tp(Σ′) and λi is
in {1, ω, ω∗} , such that
1. every type occurs at most once in each ui, and
2. every type occurs in at most two ui’s.

A model of the form u = uλ1
1 · · ·uλn

n is finitely represented as a sequence of pairs
(u1, λ1) · · · (un, λn) . Lemma 16 guarantees that for every satisfiable formula ϕ′ there is a
representation of size at most 3 · tp(Σ) ≤ 3 · 2|ϕ′|.

I Lemma 17. Given a sequence of pairs (u1, λ1) · · · (un, λn) and a formula ϕ′ checking if
the ◦-word uλ1

1 · · ·uλn
n satisfies the formula ϕ in Scott normal form is in Ptime.

To complete the proof of the Theorem 15 we describe a Nexptime algorithm for FO2 formulas
over countable linear orders: The algorithm converts the input formula to Scott normal form
and guesses an atmost exponentially large representation of a model of the form described
by Lemma 16 and checks that it is indeed a model by Lemma 17.

5 Conclusion

In this paper we characterised first-order logic with two variables over countable linear
orderings. It is equivalent to a fragment of temporal logic and is characterised by a subclass
of ◦-monoids, called ◦-DA. The class ◦-DA is the class of ◦-monoids whose regular J classes
are sub ◦-monoids. We also proved an alternate characterisation of this class using equations
and this yields decidability of membership in this class. Next we considered the satisfiability
problem for FO2 over arbitrary, countable and scattered linear orderings and showed that all
the problems are Nexptime-complete.

Finally we note that FO2 with order and successor relation (position j > i is the successor
of position i if there is no position between them) is strictly more powerful that FO2 with only
the order relation. To see this it is enough to note that aω and aωaω are indistinguishable
by any formula in the latter class, while there is a formula, namely “there is exactly one
position without a predecessor” that separates them. We leave as future work the question
of extending the characterisation in the present paper to handle the successor relation.
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