
July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Chapter 1

Automata over infinite alphabets

Amaldev Manuel and R. Ramanujam

Institute of Mathematical Sciences, C.I.T campus,

Taramani, Chennai - 600113.

In many contexts such as validation of XML data, software model checking and
parametrized verification, the systems studied are naturally abstracted as finite
state automata, but whose input alphabet is infinite. While use of such automata
for verification requires that the non-emptiness problem be decidable, ensuring
this is non-trivial, since the space of configurations of such automata is infinite.
We describe some recent attempts in this direction, and suggest that an entire
theoretical framework awaits development.

1.1. Motivation

The theory of finite state automata over (finite) words is an arena that is rich in

concepts and results, offering interesting connections between computability theory,

algebra, logic and complexity theory. Moreover, finite state automata provide an

excellent abstraction for many real world applications, such as string matching in

lexical analysis [1, 2], model checking finite state systems [3] etc.

Considering that finite state machines have only bounded memory, it is a priori

reasonable that their input alphabet is finite. If the input alphabet were infinite, it

is hardly clear how such a machine can tell infinitely many elements apart. And yet,

there are many good reasons to consider mechanisms that achieve precisely this.

Abstract considerations first: consider the set of all finite sequences of natu-

ral numbers (given in binary) separated by hashes. A word of this language, for

example, is 100#11#1101#100#10101. Now consider the subset L containing all

sequences with some number repeating in it. It is easily seen that L is not regular,

it is not even context-free. The problem with L has little to do with the represen-

tation of the input sequence. If we were given a bound on the numbers occurring

in any sequence, we could easily build a finite state automaton recognizing L. The

difficulty arises precisely because we don’t have such a bound or because we have

‘unbounded data’. It is not difficult to find instances of languages like L occurring

naturally in the computing world. For example consider the sequences of all nonces

used in a security protocol run. Ideally this language should be L. The question

1

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

2 Amaldev Manuel and R. Ramanujam

is how to recognize such languages, and whether there is any hope of describing

regular collections of this sort.

Note that we could simply take the set of binary numbers as the alphabet in

the example above: D = {#, 0, 1, 10, 11, . . .}). Now, L = {w = b0#b1# . . . bn | w ∈

D∗, ∃i, j.bi = bj}. Note further that D itself is a regular language over the alphabet

{#, 0, 1}.

There are more concrete considerations that lead to infinite alphabets as well,

arising from two strands of computation theory: one from attempts to extend clas-

sical model checking techniques to infinite state systems, and the other is the realm

of databases. Systems like software programs, protocols (communication, cryptog-

raphy, . . .), web services and alike are typically infinite state, with many different

sources of unbounded data: program data, recursion, parameters, time, commu-

nication media, etc. Thus, model checking techniques are confronted with infinite

alphabets. In databases, the XML standard format of semi-structured data con-

sists of labelled trees whose nodes carry data values. The trees are constrained by

schemes describing the tree structure, and restrictions on data values are specified

through data constraints. Here again we have either trees or paths in trees whose

nodes are labelled by elements of an infinite alphabet.

Building theoretical foundations for studies of such systems leads us to the ques-

tion of how far we can extend finite state methods and techniques to infinite state

systems. The attractiveness of finite state machines can mainly be attributed to

the easiness of several decision problems on them. They are robust, in the sense

of invariance under nondeterminism, alternation etc. and characterizations by a

plurality of formalisms such as Kleene expressions, monadic second order logic,

and finite semigroups. Regular languages are logically well behaved (closed under

boolean operations, homomorphisms, projections, and so on). What we would like

to do is to introduce mechanisms for unbounded data in finite state machines in

such a way that we can retain as many of these nice properties as possible.

In the last decade, there have been several answers to this question. We make

no attempt at presenting a comprehensive account of all these, but point to some

interesting automata theory that has been developed in this direction. Again, while

many theorems can be discussed, we concentrate only on one question, that of

emptiness checking, guided by concerns of system verification referred to above.

The material discussed here covers the work of several researchers, and much of

it can be found in [4–8]. Our own contribution is limited to the material in 1.5.

1.2. Languages of data words

Notation: Let k > 0; we use [k] to denote the set {1, 2, . . . k}. When we say [k]0,

we mean the set {0} ∪ [k]. By N we mean the set of natural numbers {0, 1, . . .}.

When f : A→ B, (a, b) ∈ (A×B), by f ⊕ (a, b), we mean the function f ′ : A→ B,

where f ′(a′) = f(a′) for all a′ ∈ A, a′ 6= a, and f ′(a) = b.

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 3

Before we consider automaton mechanisms, we discuss languages over infinite

alphabets. We will look only at languages of words but it is easily seen that similar

notions can be defined for languages of trees, whose nodes are labelled from an

infinite alphabet. We will use the terminology of database theory, and refer to

languages over infinite alphabets as data languages. However, it should be noted

that at least in the context of database theory, data trees (as in XML) are more

natural than data words, but as it turns out, the questions discussed here turn out

to be considerably harder for tree languages than for word languages.

Customarily, the infinite alphabet is split into two parts: it is of the form Σ×D,

where Σ is a finite set, and D is a countably infinite set. Usually, Σ is called the

letter alphabet and D is called the data alphabet. Elements of D are referred to as

data values. We use letters a, b etc to denote elements of Σ and use d, d′ to denote

elements of D.

The letter alphabet is a way to provide the data values ‘contexts’. In the case of

XML, Σ consists of tags, and D consists of data values. Consider the XML descrip-

tion: <name> ‘‘Tagore’’</name>: the tag <name> can occur along with different

strings; so also, the string ‘‘Tagore’’ can occur as the value associated with dif-

ferent tags. As another example, consider a system of unbounded processes with

states {b, w} for ‘busy’ and ‘wait’. When we work with the traces of such a system,

each observation records the state of a process denoted by its process identifier (a

number). A word in this case will be, for example, (b, d1)(w, d2)(w, d1)(b, d2).

A data word w is an element of (Σ × D)∗. A collection of data words L ⊆

(Σ×D)∗ is called a data language. In this article, by default, we refer to data words

simply as words and data languages as languages. As usual, by |w| we denote the

length of w.

Let w = (a1, d1)(a2, d2) . . . (an, dn) be a data word. The string projection of

w, denoted as str(w) = a1a2 . . . an, the projection of w to its Σ components. Let

i ∈ [n] = |w|. The data class of di in w is the set {j ∈ [n] | di = dj}. A subset of [n]

is called a data class of w if it is the data class of some di, i ∈ [n]. Note that the

set of data classes of w form a partition of [|w|].

We introduce some example data languages which we will keep referring to in

the course of our discussion; these are over the alphabet Σ = {a, b}, D = N.

• L∃n is the set of all words in (Σ × D)∗ in which at least n distinct data

values occur.

• L<n is the set of all data words in which every data value occurs at most

n times.

• La∗b∗ is the set of all data words whose string projections are in the set

a∗b∗.

• L∀a∃b is the set of all data words where every data value occurring under a

occurs under b also.

• Lfd(a) is the collection of all data words in which all the data values in

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

4 Amaldev Manuel and R. Ramanujam

context a are distinct. (fd(a) stands for functional dependency on a.)

Let · denote concatenation on data words. For L ⊆ (Σ×D)∗, consider the Myhill

- Nerode equivalence on (Σ × D)∗ induced by L: w1 ∼L w2 iff ∀w.w1 · w ∈ L ⇔

w2 · w ∈ L. L is said to be regular when ∼L is of finite index. A classical theorem

of automata theory equates the class of regular languages with those recognized by

finite state automata, in the context of languages over finite alphabets.

It is easily seen that ∼Lfd(a)
is not of finite index, since each singleton data word

(a, d) is distinguished from (a, d′), for d 6= d′. Hence we cannot expect a classical

finite state automaton to accept Lfd(a); we need to look for another device, perhaps

an infinite state machine.

Indeed, for most data languages, the associated equivalence relation is of infinite

index. Is there a notion of recognizability that can be defined meaningfully over such

languages and yet corresponds (in some way) to finite memory? This is the central

question addressed in this article.

1.3. Formulating an automaton mechanism

The notion of regularity on languages over infinite alphabets can be approached

using different mechanisms: descriptive ones like logics or rational expressions, or

operational ones like automata models. There are two reasons for our discussing only

automata here: one, machine models are closer to our algorithmic intuition about

language behaviour, and enable us to compare the computational power of different

machines; two, there are relatively fewer results to discuss on the descriptive side.

The first challenge in formulating an automaton mechanism is the question of

‘finite representability’. It is essential for a machine model that the automaton is

presented in a finite fashion. In particular, we need implicit finite representations

of the data alphabet. An immediate implication is that we need algorithms that

work with such implicit representations. Towards this, from now on, we consider

only data alphabets D in which membership and equality are decidable.

Automata for words over finite alphabets are usually presented as working on a

read-only finite tape, with a tape head under finite state control. One detail which

is often taken for granted is the complexity of the tape head. Since we can recognize

a finite language (which is the alphabet!) by a constant-sized circuit the computing

power of the tapehead is far inferior to that of the automaton.

In the case of infinite alphabets, the situation is different, and our assumption

about decidable membership and equality in D makes sense when we consider the

complexity of the tape head. For example, if we consider the alphabet as the

encodings of all halting Turing machines, the tapehead has to be a Σ0
1 machine,

which is obviously hard to conceive of as a machine model relevant to software

verification. Therefore, we see that our assumption needs tightening and we should

require the membership and equality checking in the alphabet to be computationally

feasible. In fact, we should also ensure that the language accepted by the automaton,

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 5

when restricted to a finite subset of the infinite alphabet, remains regular.

One obvious way of implementing finite presentations is by insisting that the

automaton uses only finitely many data values in its transition relation. This seems

reasonable, since any property of data that we wish to specify can refer explicitly

only to finitely many data values. However, when the only allowed operation on

data is checking for equality of data values, such an assumption becomes drastic: it

is easily seen that having infinite data alphabets is superfluous in such automata.

Every such machine is equivalent to a finite state machine over a finite alphabet.

Thus we note that infinite alphabets naturally lead us to infinite state systems,

whose space of configurations is infinite. The theory of computation is rich in such

models: pushdown systems, Petri nets, vector addition systems, Turing machines

etc. In particular, we are led to models in which we equip the automaton with some

additional mechanism to enable it to have infinitely many configurations.

This takes us to a striking idea from the 1960’s: “automata theory is the study

of memory structures”. These are structures that allow us to fold infinitely many

actions into finitely many instructions for manipulating memory, which can be part

of the automaton definition. These are storage mechanisms which provide specific

tools for manipulating and accessing data. Obvious memory mechanisms are regis-

ters (which act like scratch pads, for memorizing specific data values encountered),

stacks, queues etc.

One obvious memory structure is the input tape, which can be ‘upgraded’ to an

unbounded sequential read-write memory. But then it is easily noted that a finite

state machine equipped with such a tape is Turing-complete. On the other hand,

if the tape is read-only, the machine accepts all datawords whose string projections

belong to the letter language (subset of Σ∗) defined by the underlying automaton.

Clearly this machine is also not very interesting. We therefore look for structures

that keep us in between: those with infinitely many configurations, but for which

reachability is yet decidable. Note that such ambition is not unrealistic, since Petri

nets and pushdown systems are systems of this kind.

1.4. Automata with registers

The simplest form of memory is a finite random access read-write storage device,

traditionally called register. In register automata [4], the machine is equipped with

finitely many registers, each of which can be used to store one data value. Every

automaton transition includes access to the registers, reading them before the tran-

sition and writing to them after the transition. The new state after the transition

depends on the current state, the input letter and whether or not the input data

value is already stored in any of the registers. If the data value is not stored in any

of the registers, the automaton can choose to write it in a register. The transition

may also depend on which register contains the encountered data value.

Below, fix an alphabet Σ×D, with Σ finite and D countable. Let D⊥ = D∪{⊥},

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

6 Amaldev Manuel and R. Ramanujam

where ⊥ 6∈ D is a special symbol.

Definition 1.1. A k-register finite memory automaton is given by RA =

(Q, Σ, ∆, τ0, U, q0, F), where Q is a finite set of states, q0 ∈ Q is the initial state

and F ⊆ Q is the set of final states. τ0 is the initial register configuration given by

τ0 : [k] → D⊥, and U is a partial update function: (Q × Σ) → [k]. The transition

relation is ∆ ⊆ (Q × Σ × [k] × Q). We assume that for all i, j ∈ [k] if i 6= j and

τ0(i), τ0(j) ∈ D then τ0(i) 6= τ0(j) (that is, registers initially contain distinct data

values).

Note that the description of RA is finite, D appears only in the specification of

the initial register configuration. It is reasonable to suppose that bounded precision

suffices for this purpose. Thus the infinite alphabet plays only an implicit (albeit

critical) role in the behaviour of RA.

⊥ is used above to denote an uninitialized register. The working of the automa-

ton is as follows. Suppose that RA is in state p, with each of the registers ri holding

data value di, i ∈ [k], and its input is of the form (a, d) where a ∈ Σ and d ∈ D.

Now there are two cases:

• If d 6= di for all i, then a register update is enabled. If U(p, a) is undefined,

this is deemed to be an error, and the machine halts. Otherwise the value

d is put into rj where U(p, a) = j; other registers are left untouched, and

the state does not change.

• Suppose that d = di, for some i ∈ [k], and (p, a, i, q) ∈ ∆. Then this

transition is enabled, and when applying the transition, the registers are

left untouched.

This is formalized as follows. A configuration of RA is of the form (q, τ) where

q ∈ Q and τ : [k]→ D⊥. Let CA denote the set of all configurations of RA. ∆ and U

define a transition ∆(CA) ⊆ (CA×Σ×D×CA) as follows: there is a transition from

(q, τ) to (q′, τ ′) in ∆(CA) on (a, d) iff (a) τ = τ ′, d = τ(i), (i ∈ [k]), (q, a, i, q′) ∈ ∆,

or (b) for all i ∈ [k], d 6= τ(i), τ ′ = τ ⊕ (U(q, a), d), (q, a, U(q, a), q′) ∈ ∆.

A run of RA on a data word w = (a1, d1)(a2, d2) . . . (an, dn) is a sequence γ =

(q0, τ0)(q1, τ1) . . . (qn, τn), where (q0, τ0) is the initial configuration of RA, and for

every i ∈ [n], there is a transition from (qi−1, τi−1) to (qi, τi) on (ai, di) in ∆(CA).

γ is accepting if qn ∈ F . The language accepted by RA, denoted L(RA) = {w ∈

(Σ×D)∗ | RA has an accepting run on w}.

Example 1.1. Recall the language Lfd(a) mentioned earlier: it is the set of all data

words in which all the data values in context a are distinct. Formally:

Lfd(a) =

{

w = (a1, d1)(a2, d2) . . . (an, dn)

∣

∣

∣

∣

w ∈ (Σ×D)∗,

∀ij.ai = aj = a =⇒ di 6= dj

}

The language Lfd(a), can be accepted by a 2-register finite memory automaton

A = (Q, q0, ∆, τ0, U, F), where

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 7

- Q = {q0, q1, qf}

- τ0 = (⊥,⊥)

- U(q0, Σ) = 1, U(q1, Σ) = U(qf , Σ) = 2∗

- F = {qf}

- ∆ consists of,

- (q0, Σ, 1, q0)

- (q0, a, 1, q1)

- (q1, Σ, 2, q1)

- (q1, a, 1, qf)

- (qf , Σ, {1, 2}, qf)

A works as follows. Initially A is in state q0 and stores new input data in the

first register. When reading the data value with label a, which appears twice, A

changes the state to q1 and waits there storing the new data in the second register.

When the data value stored in the first register appears the second time with label

a, A changes state to qf and continues to be there.

q0

Σ→ 1

q1

Σ→ 2

qf

Σ→ 2

(Σ, 1) (Σ, 2) (Σ, 1), (Σ, 2)

a, 1 a, 1

Fig. 1.1. Automaton in the Example 1.1

Note that a finite memory automaton uses only finitely many registers to deal

with infinitely many symbols, and hence we get something analogous to the pumping

lemma for regular languages which asserts that a finite state automaton which

accepts sufficiently long words also accepts infinitely many words. Suppose there

are k registers and the automaton sees k+1 data values; since the only places where

it can store these data values are in the registers, it is bound to forget one of the

data values. This is made precise by the following lemma.

Lemma 1.1. If a k-register automaton A accepts any word at all, then it accepts

a word containing at most k distinct data values.

Proof. Let w = (a1, d1)(a2, d2) . . . (an, dn) be a data word accepted by A and

(q0, τ0)(q1, τ1) . . . (qn, τn) be an accepting run of A on w. Let Umin(w) = j be the

least integer such that dj 6∈ range(τj−1) and τj−1 (U(qj−1, aj)) 6= ⊥ (∞, if it is not

defined). The previous condition says that j is the first position in the run, where

A is going to replace a data value in the register which is not ⊥. If such a j does
∗We abuse the notation here, U(q0,Σ) = 1, denotes that for all a ∈ Σ, U(q0, a) = 1. We use
similar shorthands later on whenever they are handy and intuitive, for instance in writing the
transition relation of an automaton.

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

8 Amaldev Manuel and R. Ramanujam

not exist, then the register values are never replaced (other than ⊥’s) and therefore

w contains at most k distinct data values. If j ≤ n, then we will construct a data

word w′ of length n accepted by A, with j < Umin(w′). This implies that by finite

iteration (at most n times) of the process described below, we can construct a word

with at most k distinct symbols. Let u = U(qj−1, aj) and let du = τj−1(u).

Consider

w′ =
a1 a2 . . . aj−1

d1 d2 . . . dj−1

{

aj aj+1 . . . an

dj dj+1 . . . dn

}

[dj | du, du | dj]

which is got by replacing all the occurrences of dj with du and replacing du by

dj in the string, after the position j. It is clear that, when the automaton reaches

the position j, the data value is present in the register U(u), and therefore no

replacement will be done. Hence j < Umin(w′).

However, in order to show that w′ is accepted by A, it remains to be proved that

(q0, τ0)(q1, τ1) . . . (q′j , τ
′
j)(q

′
j+1, τ

′
j+1) . . . (q′n, τ ′

n) is an accepting run for w′, where,

q′i = qi and τ ′
i = τi [dj | τj−1(u), τj−1(u) | dj]. We prove this using induction

on the length of the modified part of the run. Since in the original run dj

is stored in the register u and (u, qj−1, aj , qj) ∈ ∆ it follows that there is a

transition from (qj−1, τj−1) to (q′j , τ
′
j) on (aj , τj−1(u)). Now for the inductive

step, assume that (q0, τ0)(q1, τ1) . . . (q′h, τ ′
h) is the modified run corresponding to

(q0, τ0)(q1, τ1) . . . (qh, τh). We have to prove that there is a transition from (q′h, τ ′
h)

to (q′h+1, τ
′
h+1) on (ah, d′h), where d′h stands for dh [dj | τj−1 (u) , τj−1 (u) | dj].

- If for some t ∈ [k], dh = τh(t) then (t, qh, ah, qh+1) ∈ ∆ and τh+1 = τh.

Therefore d′h appears in the register t. Hence there is a transition from

(q′h, τ ′
h) to (q′h+1, τ

′
h+1) on (ah, d′h) also.

- If dh 6∈ range(τh), then τh+1 is obtained from τh by replacing the contents

of the register U(qh, ah) with dh. Since d′h 6∈ range(τ ′
h), τ ′

h+1 is obtained

from τ ′
h by replacing the contents of register U(qh, ah). Again there is a

transition from (q′h, τ ′
h) to (q′h+1, τ

′
h+1) on (ah, d′h).

This completes the proof. �

Note that the language Lfd(a) requires unboundedly many data values to occur

with a, and hence by the above lemma, it cannot be recognized by any register

automaton. On the other hand, since Lfd(a) can accepted by a register automa-

ton, we see that languages recognized by register automata are not closed under

complementation. As this suggests, non-deterministic register automata are more

powerful than deterministic ones.

While the lemma demonstrates a limitation of register machines in terms of

computational power, it also shows the way for algorithms on these machines.

Theorem 1.1. Emptiness checking of register automata is decidable.

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 9

Proof. Let A be a register automaton with k registers, which we want to check

for emptiness. Let range(τ0) ⊆ D′ ⊆ D, |D′| = k be a subset of D containing

k different symbols including those in the register’s initialization. We claim that

L(A) 6= ∅ if and only if L(A) ∩ (Σ×D′)∗ 6= ∅. The if direction is trivial. The other

direction follows from the preceding lemma. Thus a classical finite state automaton

working on a finite alphabet can be employed for checking emptiness of A. �

The emptiness problem for register automata is in np, since we can guess a word of

length polynomial in the size of the automaton and verify that it is accepted. It has

also been shown that the problem is complete for np in [9]. The problem is no less

hard for the deterministic subclass of these automata. Though, as we mentioned

earlier, register automata are not closed under complementation, they are closed

under intersection, union, Kleene iteration and homomorphisms.

There are many extensions of the register automaton model. An obvious one is

to consider two-way machines: interestingly, this adds considerable computational

power and the emptiness problem becomes undecidable [4, 5, 10].

1.5. Automata with counters

Automata with counters have a long history. It is well known that a finite state

automaton equipped with two counters is Turing-complete, whereas with only one

counter, it has the computational power of a pushdown automaton. Can the counter

mechanism be employed in the context of unbounded data? While a register mech-

anism is used to note down data values, counters are used to record the number of

occurrences of some (pre-determined) events.

When automata with counters are considered on words over finite alphabets,

one typical use of counters is to note the multiplicity of a letter in the input word.

On infinite alphabets, we could similarly count the number of occurrences of data

values, or letter - value pairs, or these subject to constraints. But then, each

such ‘event type’ needs a counter for itself, which implies the need for unboundedly

many counters. On the other hand, as we observed above, two counter machines are

already Turing-complete. This suggests restraint on the allowed counter operations.

While there are many possible restrictions, a natural one is to consider monotone

counters, which can be incremented, reset and compared against constants, but

never decremented.

A model with such characteristics is presented below. The automaton includes

a bag of infinitely many monotone counters, one for each possible data value. When

it encounters a letter - data pair, say (a, d), the multiplicity of d is checked against a

given constraint, and accordingly updated, the transition causing a change of state,

as well as possible updates for other data as well. We can think of the bag as a

hash table, with elements of D as keys, and counters as hash values. Transitions

depend only on hash values (subject to constraints) and not keys.

Such counting is used in many infinite state systems. For instance, in systems of

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

10 Amaldev Manuel and R. Ramanujam

unbounded processes, a task enters the system with low priority which increases in

the course of a computation until the task is scheduled, resetting the priority. In the

context of web services, a server not only offers data dependent services, but also

needs information on how many clients are at any time using a particular service.

For instance, the loan requests granted by a server depend on how many clients are

requesting low credit and how many need high credit at that time.

A constraint is a pair c = (op, e), where op ∈ {<, =, 6=, >} and e ∈ N. When

v ∈ N, we say v |= c if v op e holds. Let C denote the set of all constraints. Define

a bag to be a map h : D→ N. Let B denote the set of bags.

Below, let Inst = {↑+, ↓} stand for the set of instructions: ↑+ tells the automa-

ton to increment the counter, whereas ↓ asks for a reset.

Definition 1.2. A class counting automaton, abbreviated as CCA, is a tuple

CCA = (Q, ∆, I, F), where Q is a finite set of states, I ⊆ Q is the set of initial

states, F ⊆ Q is the set of final states. The transition relation is given by: ∆ ⊆

(Q× Σ× C × Inst× U ×Q), where C is a finite subset of C and U is a finite subset

of N.

Let A be a CCA. A configuration of A is a pair (q, h), where q ∈ Q and h ∈ B.

The initial configuration of A is given by (q0, h0), where ∀d ∈ D, h0(d) = 0 and

q0 ∈ I.

Given a data word w = (a1, d1), . . . (an, dn), a run of A on w is a sequence

γ = (q0, h0)(q1, h1) . . . (qn, hn) such that q0 ∈ I and for all i, 0 ≤ i < n, there exists

a transition ti = (q, a, c, π, n, q′) ∈ ∆ such that q = qi, q′ = qi+1, a = ai+1 and:

• hi(di+1) |= c.

• hi+1 is given by:

hi+1 =

{

hi ⊕ (d, n′) if π =↑+, n′ = hi(d) + n

hi ⊕ (d, n) if π =↓

γ is an accepting run above if qn ∈ F . The language accepted by A is given by

L(A) = {w ∈ Σ× D
∗ | A has an accepting run on w}. L ⊆ (Σ× D)∗ is said to be

recognizable if there exists a CCA A such that L = L(A). Note that the counters

are either incremented or reset to fixed values.

Note that the instruction (↑+, 0) says that we do not wish to make any update,

and (↑+, 1) causes a unit increment; we use the notation [0] and [+1] for these

instructions below.

Example 1.2. The language Lfd(a) = “Data values under a are all distinct” is

accepted by a CCA. The CCA accepting this language is the automaton A =

(Q, ∆, q0, F) where

Q = {q0, q1}, q0 is the only initial state and F = {q0}. ∆ consists of:

• (q0, a, (=, 0), q0, [+1])

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 11

q0 q1

a, (=, 0), [+1]
b, (≥, 0), [0] Σ, (≥, 0), [0]

a, (=, 1), [0]

Fig. 1.2. Automaton in the Example 1.2

• (q0, a, (=, 1), q1, [0])

• (q0, b, (≥, 0), q0, [0])

• (q1, Σ, (≥, 0), q1, [0])

Since the automaton above is deterministic, by complementing it, that is, setting

F = {q1}, we can accept the language Lfd(a) = “There exists a data value appearing

at least twice under a”.

It is easily seen that by a similar argument, the language L∀a,≤ n = “All data

values under a occur at most n times” can be accepted by a CCA. So also is the

language L∃a,≥ n = “ There exists a data value appearing under a occurring more

than n times”.

Given a CCA A = (Q, ∆, q0, F) let m be the maximum constant used in ∆.

We define the following equivalence relation on N, c ≃m+1 c′ iff c < (m + 1) ∨ c′ <

(m+1)⇒ c = c′. Note that if c ≃m+1 c′ then a transition is enabled at c if and only

if it is enabled at c′. We can extend this equivalence to configurations of the CCA

as follows. Let (q1, h1) ≃m+1 (q2, h2) iff q1 = q2 and ∀d ∈ D, h1(d) ≃m+1 h2(d).

Lemma 1.2. If C1, C2 are two configurations of the CCA such that C1 ≃m+1 C2,

then ∀w ∈ (Σ× D)∗, C1 ⊢∗w C′
1 =⇒ ∃C′

2, C2 ⊢∗w C′
2 and C′

1 ≃m+1 C′
2.

Proof. Proof by induction on the length of w. For the base case observe that

any transition enabled at C1 is enabled at C2 and the counter updates respects the

equivalence. For the inductive case consider the word w.a. By induction hypothesis

C1 ⊢∗w C′
1 =⇒ ∃C′

2, C2 ⊢∗w C′
2 and C′

1 ≃m+1 C′
2. If C′

1 ⊢a C′′
1 then using the above

argument there exists C′′
2 such that C′

2 ⊢a C′′
2 and C′′

1 ≃m+1 C′′
2 . �

In fact the lemma holds for any N ≥ m + 1, where m is the maximum constant

used in ∆. This observation paves the way for the route to decidability of the

emptiness problem.

Before we proceed to discuss decidability, we observe that the model admits

many extensions. For instance, instead of working with one bag of counters, the

automaton can use several bags of counters, much as multiple registers are used in

the register automaton. Another strengthening involves checking for the presence of

any counter satisfying a given constraint and updating it. Moreover, the language

of constraints can be strengthened: any syntax that can specify a finite or co-finite

subset of N will do. We do not pursue these generalizations here, but merely remark

that the theory extends straightforwardly.

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

12 Amaldev Manuel and R. Ramanujam

Theorem 1.2. The emptiness problem of class counting automata is decidable.

Proof. We reduce the emptiness problem of CCA to the covering problem on

Petri nets. Recall that in the case of nondeterministic finite state automata over

finite alphabets, for checking emptiness, we can omit the labels on transitions and

reduce the problem to reachability in graphs. In the context of CCA, the similar

simplification is to omit Σ × D labels from the configuration graph; we are then

left with counter behaviour. However reachability is no longer trivial, since we have

unboundedly many counters, leading us to the realm of vector addition systems.

Definition 1.3. An ω-counter machine B is a tuple (Q, ∆, q0) where Q is a finite

set of states, q0 ∈ Q is the initial state and ∆ ⊆ (Q× C × Inst× U ×Q), where C

is a finite subset of C and U is a finite subset of N.

A configuration of B is a pair (q, h), where q ∈ Q and h : N → N. The initial

configuration of B is (q0, h0) where h0(i) = 0 for all i in N. A run of B is a sequence

γ = (q0, h0)(q1, h1) . . . (qn, hn) such that for all i such that 0 ≤ i < n, there exists a

transition ti = (p, c, π, n, q) ∈ ∆ such that p = qi, q = qi+1 and there exists j such

that h(j) |= c, and the counters are updated in a similar fashion to that of CCA.

The reachability problem for B asks, given q ∈ Q, whether there exists a run of

B from (q0, h0) ending in (q, h) for some h (“Can B reach q?”).

Lemma 1.3. Checking emptiness for CCA can be reduced to checking reachability

for ω-counter machines.

Proof. It suffices to show, given a CCA, A = (Q, ∆, q0, F), where F = {q}, that

there exists a counter machine BA = (Q, ∆′, q0) such that A has an accepting run

on some data word exactly when BA can reach q. (When F is not a singleton,

we simply repeat the construction.) ∆′ is obtained from ∆ by converting every

transition (p, a, c, π, n, q) to (p, c, π, n, q). Now, let L(A) 6= ∅. Then there exists a

data word w and an accepting run γ = (q0, h0)(q1, h1) . . . (qn, hn) of A on w, with

qn = q. Let g : N → D be an enumeration of data values. It is easy to see that

γ′ = (q1, h0 ◦ g)(q1, h1 ◦ g) . . . (qn, hn ◦ g) is a run of BA reaching q.

(⇐) Suppose that BA has a run η = (q0, h0)(q1, h1) . . . (qn, hn), qn = q. It can

be seen that η′ = (q0, h0 ◦ g−1)(q1, h1 ◦ g−1) . . . (qn, hn ◦ g−1) is an accepting run of

A on w = (a1, d1) . . . (an, dn) where w satisfies the following. Let (p, c, π, n, q) be

the transition of BA taken in the configuration (qi, hi) on counter m. Then by the

definition of BA there exists a transition (p, a, c, π, n, q) in ∆. Then it should be the

case that ai+1 = a and di+1 = g(m). �

Proposition 1.1. Checking non-emptiness of ω-counter machines is decidable.

Let s ⊆ N, and c a constraint. We say s |= c, if for all n ∈ s, n |= c.

We define the following partial function Bnd on all finite and cofinite subsets of

N. Given s ⊆fin N, Bnd(s) is defined to be the least number greater than all the

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 13

elements in s. Given s ⊆cofinite N, Bnd(s) is defined to be Bnd(N\s). Given an

ω-counter machine B = (Q, ∆, q0) let mB = max{Bnd(s) | s |= c, c is used in ∆}.

We construct a Petri net NB = (S, T, F, M0) where,

• S = Q ∪ {i | i ∈ N, 1 ≤ i ≤ mB}.

• T is defined according to ∆ as follows. Let (p, c, π, n, q) ∈ ∆ and let i be

such that 0 ≤ i ≤ mB and i |= c. Then we add a transition t such that
•t = {p, i} and t• = {q, i′}, where (i) if π is ↑+ then i′ = min{mB, i + n},

and (ii) if π is ↓ then i′ = n.

• The flow relation F is defined according to •t and t• for each t ∈ T .

• The initial marking is defined as follows. M0(q0) = 1 and for all p in S, if

p 6= q0 then M0(p) = 0.

The construction above glosses over some detail: Note that elements of these

sets can be zero, in which case we add edges only for the places in [mB] and ignore

the elements which are zero.

Let M be any marking of NB. We say that M is a state marking if there exists

q ∈ Q such that M(q) = 1 and ∀p ∈ Q such that p 6= q, M(p) = 0. When M is a

state marking, and M(q) = 1, we speak of q as the state marked by M . For q ∈ Q,

define Mf(q) to be set of state markings that mark q. It can be shown, from the

construction of NB, that in any reachable marking M of NB, if there exists q ∈ Q

such that M(q) > 0, then M is a state marking, and q is the state marked by M .

We now show that the counter machine B can reach a state q iff NB has a reach-

able marking which covers a marking in Mf (q). We define the following equivalence

relation on N, m ≃mB
n iff (m < mB) ∨ (n < mB) ⇒ m = n. We can lift this

to the hash functions (in ω-counters) in the natural way: h ≃mB
h′ iff ∀i (h(i) <

mB) ∨ (h′(i) < mB) ⇒ h(i) = h′(i). It can be easily shown that if h ≃mB
h′ then

a transition is enabled at h if and only if it is enabled at h′.

Let µ be a mapping B-configurations to NB-configurations as follows: given

χ = (q, h), define µ(χ) = Mχ, where

Mχ(p) =







1 iff p = q

0 iff p ∈ Q\{q}

|[p]| iff p ∈ P\Q, p 6= 0







Above [p] denotes the equivalence class of p under ≃mB
on N in h. Now suppose

that B reaches q. Let the resulting configuration be χ = (q, h). We claim that

the marking µ(χ) of NB is reachable (from M0) and covers Mf(q). Conversely if

a reachable marking M of NB covers Mf (q), for some q ∈ Q, then there exists a

reachable configuration χ = (q, h) of B such that µ(χ) = M . This is proved by a

simple induction on the length of the run.

Since the covering problem for Petri nets is decidable, so is reachability for

ω-counter machines and hence emptiness checking for CCA is decidable. �

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

14 Amaldev Manuel and R. Ramanujam

The decision procedure above runs in expspace, and thus we have elementary

decidability, though CCA configurations form an infinite state system. The problem

is complete for expspace by an easy reduction from covering problem of Petri nets.

CCA are not closed under complementation, but they are closed under union and

intersection. The details can be found in [11].

1.6. Automata with hash tables

A hash table is a data structure containing ‘keys’ and ‘values’. It provides random

access to the stored ‘value’ corresponding to ‘key’. In the case of infinite data,

we can employ a hash table with the elements of D as the keys. The values have

to be from a finite set, since a finite state automaton can only distinguish only

finitely many symbols in the transition relation. Thus, the hash values impose an

equivalence relation of finite index on data.

The main idea is as follows. On reading a (a, d), the automaton reads the table

entry corresponding to d and makes a transition dependent on the table entry, the

input letter a and the current state. The transition causes a change of state as

well as updating of the table entry. Such a model has been termed a class memory

automaton [6].

Definition 1.4. A class memory automaton is a tuple CMA =

(Q, Σ, ∆, q0, Fℓ, Fg) where Q is a finite set of states, q0 is the initial state and

Fg ⊆ Fℓ ⊆ Q are the sets of global and local accepting states respectively. The

transition relation is ∆ ⊆ (Q× Σ× (Q ∪ {⊥})×Q).

The working of the automaton is as follows. The finite set of hash values is

simply the set of automaton states. A transition of the form (p, a, s, q) on input

(a, d) stands for the state transition of the automaton from p to q as well as the

updating of the hash value for d from s to q. The acceptance condition has two parts.

The global acceptance set Fg is as usual: after reading the input the automaton

state should be in Fg. The local acceptance condition refers to the state of the hash

table: the image of the hash function should be contained in Fℓ. Thus acceptance

depends on the memory of the data encountered.

Formally, a hash function is a map h : D → (Q ∪ {⊥}) such that h(d) = ⊥

for all but finitely many data values. h holds the hash value (the state) which is

assigned to the data value d when it was read the last time. A configuration of the

automaton is of the form (q, h) where h is a hash function. The initial configuration

of the automaton is (q0, h0) where h0(d) = ⊥ for all d ∈ D.

Transition on configurations is defined as follows: a transition from a configura-

tion (p, h) on input (a, d) to (q, h′) is enabled if (p, a, h(d), q) ∈ ∆ h′ = h⊕ (d, q).

A run of CMA on a data word w = (a1, d1)(a2, d2) . . . (an, dn) is, as usual, a

sequence γ = (q0, h0)(q1, h1) . . . (qn, hn), where h0 is the initial configuration of

CMA, and for every i ∈ [n], there is a transition from (qi−1, hi−1) to (qi, hi) on

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 15

(ai, di) in ∆(CA). γ is accepting if qn ∈ Fg and for all d ∈ D, f(d) ∈ Fl ∪ {⊥}.

The language accepted by CMA, denoted L(CMA) = {w ∈ (Σ × D)∗ | CMA has

an accepting run on w}.

Example 1.3. The language Lfd(a) can be accepted by the following class mem-

ory automaton A = (Q, Σ, ∆, q0, Fl, Fg) where Q = {q0, qa, qb} and ∆ con-

tains the tuples {(p, a,⊥, qa), (p, b,⊥, qb), (p, b, qa, qa), (p, b, qb, qb), (p, a, qb, qa) | p ∈

{q0, qa, qb}}. Fl is the set {qb} and Fg is the set Q.

Theorem 1.3. The emptiness problem for CMA is decidable.

Proof. Let A = (Q, Σ, ∆, q0, Fl, Fg) be a given CMA. We construct a Petri net

NA and a set of configurations MA such that A accepts a string if and only if NA

can reach any of MA.

Define NA = (S, T, F) where S = Q∪{qc | q ∈ Q}, and the transition relation T

is as follows. For each δ = (p, a, s, q) where s 6= ⊥ we add a new transition tδ such

that •tδ = {p, sc} and t•δ = {q, qc}. For each δ = (p, a,⊥, q) where we add a new

transition tδ such that •tδ = {p} and t•δ = {q, qc}. We add additional transitions

t(p,q) for each p ∈ Fg, q ∈ Fl such that •t(p,q) = {p, qc} and t•(p,q) = {p}. The flow

relation is defined accordingly.

The initial marking of the net is M0 where q0 has a single token and all other

places are empty. MA is the set of configurations in which exactly one of q ∈ Fg

has a single token and all other places are empty.

The details are routine. The place qc keeps track of the number of data values

with state q. Using induction it can be easily shown that a run of the automata

gives a firing sequence in the net and vice versa. Finally when we reach a global

state we can use the additional transitions to pump out all the tokens in the local

final states. The only subtlety is that the additional transitions in the net can be

used even before reaching an accepting configuration in the net, in which case it

amounts to abandoning certain data classes in the run of the automaton (these are

data values which are not going to be used again). �

Thus emptiness for CMA is reduced to reachability in Petri nets. As it happens,

it is also as hard as Petri net reachability [7]. Since the latter problem is not even

known to be elementary, we need to look for subclasses with better complexity.

CMA are not closed under complementation, but they are closed under union,

intersection, homomorphisms. It also happens that they admit a natural logical

characterization to which we will return later.

1.7. Automata with stacks

Another memory structure that has played a significant role in theory of computa-

tion is the stack, or pushdown mechanism. In automata theory, use of the pushdown

mechanism is related to acceptance of context free languages. The main idea is that

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

16 Amaldev Manuel and R. Ramanujam

we can remember unbounded information but can access the memory only in a lim-

ited fashion. This gives the same power as a finite state machine with a single

counter which can be incremented, decremented and checked for zero. In the con-

text of data words, such a mechanism can be employed either to remember data

values, or positions in the word, (denoting data classes), or both.

An elegant way of modelling such memory of positions is the concept of a pebble:

whenever we wish to remember a position (perhaps one where we say a particular

data value), we place a pebble on it. How many pebbles we can use, and when

several pebbles have been placed, which one can be accessed first, determines the

memory structure. Below, we consider a model where a stack discipline is used to

access the pebbles.

1.7.1. Pebble automata

Below, let Ins = {↑, ↓,←,→}. These are instructions to the automaton: while ←

and → tell the machine to move right or left along the data word, ↑ and ↓ are for

pushing on to or popping up the stack.

Definition 1.5. A pebble automaton [5] PA is a system (Q, Σ, k, ∆, q0, F) where Q

is a finite set of states, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states;

k > 0 is called the stack height, and ∆ : (Q× Σ× [k]× 2[k] × 2[k])→ (Q× Ins).

When a transition is of the form α→ β where α = (p, a, i, P, V) and β = (q, π)

where π ∈ Ins, the automaton is in state p, reading letter a, and depending on the

”pointer stack” (i, P, V) transits to state q, moving the control head or operating

on the stack according to Ins. The stack information, which will be clearer as we

study configurations, is as follows: i is the current height of the stack, P is used to

collect the pointers at a position, whereas V collects pointers having the same data

value.

Let m ≥ 0. The set of m-configurations of PA is given by Cm = (Q × [k] ×

([k] → [m]0)). Given a string w ∈ (Σ × D)∗, we call χ ∈ C|w| a w-configuration.

χ0 = (q, i, θ) ∈ C0 is said to be initial if q = q0, i = 1 and θ(1) = 1. A configuration

(q, i, θ) is said to be final if q ∈ F and θ(i) = |w|.

Consider a data word (a1, d1) . . . (am, dm). A transition (p, i, a, P, V)→ (q, π) is

enabled at a w-configuration (q, j, θ) if p = q, i = j, aθ(i) = a, P = {ℓ < i | θ(ℓ) =

θ(i)}, and V = {ℓ < i | dθ(ℓ) = dθ(i)}. Thus P is the set of all pointers pointing

to the position pointed by θ(i), and V is the set of all positions which contains the

same data value pointed by θ(i).

PA can go from a w-configuration (p, i, θ) to a w-configuration (q, i′, θ′) if there

is a transition α→ (q, π) enabled at (p, i, θ) such that θ′(j) = θ(i) for all j < i and:

(1) if π =→ then i = i′ and θ′(i) = θ(i) + 1.

(2) if π =← then θ(i) > 1, i = i′ and θ′(i) = θ(i)− 1.

(3) if π =↓, then i < k, i′ = i + 1 and θ′(i′) = θ(i).

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 17

(4) if π =↑, then i > 1, and i′ = i− 1.

Above, whenever the side conditions are not met (as for instance, when it tries to

pop the empty stack), the machine halts. As one may expect, the pebble mechanism

adds considerable computational power.

Example 1.4. The language Lfd(a), can be accepted by a pebble automaton

A = (Q, Σ, 2, q0, F, ∆), where Q = {q0, q1, q→, qf} and F = {qf}. ∆ consists of

the following transitions: ∆ = {(q0, Σ, 1, ∅, ∅) → (q0,→), (q0, a, 1, ∅, ∅) → (q→, ↓

), (q→, a, 2, {1}, {1}) → (q1,→), (q1, Σ, 2, ∅, ∅) → (q1,→), (q1, a, 2, ∅, {1}) → (qf ,→

), (qf , Σ, 2, ∗, ∗)→ (qf ,→)}

q0 q→ q1 qf

1, Σ, ∅, ∅,→ 2, Σ, ∅, ∅,→ 2, Σ, ∗, ∗,→

1, a, ∅, ∅, ↓ 2, a, {1}, {1},→ 2, a, ∅, {1},→

Fig. 1.3. Pebble automaton in the Example 1.4

A works in the following way. It stays in state q0 while moving to the right and

non-deterministically places a new pebble at a position with label a. After placing

the new pebble the automaton moves one position to the right. A continues moving

to the right and after reaching a position with label a and having the same data

value (as that under the first pebble) it enters the final state.

Example 1.5. The language L∀a∃b, can be accepted by a pebble automaton. The

automaton works the following way. A starts in state q0, it continues moving to

the right, whenever it sees an a, it drops a new pebble at the first position and

enters the state q→. In the state q→ the automaton goes all the way to the left and

from there starts searching for a position with a label b and having the same data

value as the data value under the first pebble. Once it sees that, it lifts the pebble,

continues moving right in state q0 until it reaches the end of the input.

Indeed, the pebble automaton is too powerful, as the following theorem demon-

strates.

Theorem 1.4. Emptiness checking is undecidable for deterministic pebble au-

tomata.

Proof. We reduce the Post’s Correspondence Problem to emptiness checking de-

terministic pebble automata. The pebble automaton first checks whether the input

is of desired form and then accepts the input if it is a solution of the PCP instance.

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

18 Amaldev Manuel and R. Ramanujam

An instance of PCP consists of a finite number of pairs (ui, vi), ui, vi ∈ Σ∗. The

question is whether there exists a non-empty, finite sequence i0, ii, . . . in such that:

w = ui0ui1 . . . uin
= vi0vi1 . . . vin

This is done as follows. We take Σ′ = Σ ∪ Σ, two disjoint copies of Σ, as our

letter alphabet and D as the data alphabet. The words over Σ are denoted by u, v

etc. and the words over Σ are represented as u, v etc. The solution for the PCP can

be represented in (Σ′ ×D)∗ as:

ŵd =
ai0
1 ai0

2 .. ai0
|ui0 |

ai0
1 ai0

2 .. ai0
|vi0 |

d1 d2 .. d|ui0 |
d1 d2 .. d|vi0 |

..

ai1
1 ai1

2 .. ai1
|ui1 |

ai1
1 ai1

2 .. ai1
|vi1 |

d|ui0 |+1 d|ui0 |+2 .. d|ui0 |+|ui1 |
d|vi0 |+1 d|vi0 |+2 .. d|vi0 |+|vi1 |

..

The string projection of ŵd is str(ŵd) = ui0vi0ui1vi1 . . . uin
vin

. Every data value

appearing in the word appears exactly twice, once associated with a label in Σ and

once with the corresponding label in Σ.

We can verify these two properties by a pebble automaton A which has subrou-

tines to check the following,

- the string projection belongs to {uivi | 1 ≤ i ≤ k}+. In fact, this can be done

by a finite automaton over a finite alphabet.

- each data value occurs exactly twice, once labelled with a letter from Σ and

once with the corresponding letter in Σ′. This can be done by checking, for

each a, w belongs to the languages L∀a∃a, L∀a∃a.

- the sequence of data values are the same in w and w. This can be done by

checking every consecutive pair occurring in the Σ-labelled part occurs in the

Σ′-labelled part, and vice versa.

Thus the automaton A, by checking each property above, can verify the solution

of the PCP instance. Now it is clear that if there is a data word w such that w

is accepted by the automaton A then there is a solution for the PCP instance and

vice versa.

Therefore emptiness of deterministic pebble automata is undecidable. �

Undecidability suggests that the machine model under consideration has strong

computational power, which is reinforced by the fact that pebble automata are

robust. The class is closed under logical operations (complementation, union, inter-

section) and its expressive power is invariant under nondeterminism and alternation.

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 19

1.8. Logics for data languages

The celebrated theorem of Büchi [12] asserts the equivalence of languages recognized

by finite state automata and those defined by sentences of Monadic Second Order

Logic (MSO). We consider the language of First order logic with a single binary

relation < and a unary relation Qa for each a ∈ Σ, extended by set quantifiers. The

idea is that such formulas are interpreted over words in Σ∗, with first order variables

denoting positions in words, and second order (monadic) variables denoting sets of

positions. MSO logics have been extensively studied not only over finite and infinite

words (over finite alphabets) but also over trees and graphs.

Considering the variety of automata models we have been discussing for lan-

guages of words over infinite alphabets, a natural criterion for assessing such models

is in terms of how they relate to such logical presentations. This is an extensive

area of research, and we merely sketch the main ideas here.

In the same spirit as Σ-words are defined as Σ-labels over positions, we can

consider data words over (Σ × D) as well. Guided by our decisions to consider

data values only implicitly and restricting operations on data to only checking for

equality, we are led to an equivalence relation on word positions: two positions are

equivalent if they carry the same data value. Thus, we can consider data words

to be structures with positions labelled by Σ and an equivalence relation on word

positions.

This discussion suggests that we consider enriching the standard syntax of MSO

with equivalence on first order terms. The syntax of MSO(Σ, <, +1,∼) is given by:

ϕ ::= a(x) | x = y | x = y + 1 | x < y | x ∼ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

Note that < and +1 are inter-definable in the logic. The First order fragment of

this logic is denoted FO(Σ, <, +1,∼).

Let FV denote the collection of first order variables, and SV that of set variables.

Given a word w = (a1, d1)(a2, d2) . . . (an, dn) and an interpretation I = (If , Is) of

the variables If : FV → [n] and Is : SV → 2[n], we can define the semantics of

formulas as follows.

w, I |= a(x) if aIf (x) = a

w, I |= x = y if If (x) = If (y)

w, I |= x = y + 1 if If (x) = If (y) + 1

w, I |= x < y if If (x) < If (y)

w, I |= x ∈ X if If (x) ∈ Is(X)

w, I |= x ∼ y if dIf (x) = dIf (y)

w, I |= ¬ϕ if w, I 6|= ϕ

w, I |= ϕ1 ∨ ϕ1 if w, I |= ϕ1 or w, I |= ϕ2

w, I |= ∃x.ϕ if there is an i in [n] s.t. w, (If [x→ i], Is) |= ϕ

w, I |= ∃X.ϕ if there exists J ⊆ [n] s.t. w, (If , Is[X → J]) |= ϕ

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

20 Amaldev Manuel and R. Ramanujam

A sentence σ is a formula with no free variables, and it is easily seen that

for any w, either w |= σ or w |= ¬σ independent of any interpretation I. Let

L(σ) = {w | w |= σ}.

Let L ⊆ (Σ ×D)∗. We say L is definable when there exists a sentence σ such

that L = L(σ). We are interesting in relating definable languages of data words

with those recognized by automata models.

The sentence ∀x∀y.x 6= y → x 6∼ y defines the language of data words in which

no data value repeats. Similarly ∀x∀y.a(x) ∧ a(y) ∧ x 6= y → x 6∼ y defines the

language Lfd(a). The sentence ∀x∃y.a(x) → b(y) ∧ x 6∼ y defines the language

L∀a∃b.

The above examples show that definability is computationally powerful, as as-

serted by the following proposition.

Proposition 1.2. The satisfiability problem for FO(Σ, <, +1,∼) is undecidable [7].

For a proof of the above claim, note that the PCP coding which we used in the

undecidability of pebble automata can in fact be carried out in FO(Σ, <, +1,∼).

The above proposition suggests that for restricting definability to implementabil-

ity by devices, we should look for some fragment of the logic. There are many ways

to obtain decidable fragments of quantificational logic: for example, by specifying

the form of quantifier prefixes allowed [13], restricting the number of variables which

can used in the formula [14], or restricting the syntactic structure of formulas, such

as in Guarded fragments ([15, 16]). The study of decidable fragments of first order

logics over special classes of structures is an interesting area of study in its own

right ([13]).

The restriction by number of variables used turns out to be especially interesting

for infinite alphabets. A careful look at the undecidability proof above shows that

three variables suffice. On the other hand, the example languages we have been

working with are all defined above using only two variables. This provides sufficient

motivation to focus attention on the two variable fragment of the logic above.

FO2(Σ, <, +1,∼), is the set of all formulas in the language of FO(Σ, <, +1,∼)

using at most two variables. As the following theorem shows, such a restriction

pays off.

Theorem 1.5. Satisfiability of FO2(Σ, <, +1,∼) is decidable [7].

Proof. Here we only sketch the proof, the details are intricate and require a more

elaborate presentation. We refer to the logic simply as FO2.

We denote by α, β etc unary quantifier free formulas (which are called types). It

is easy to see that FO2 can express the following properties.

• data-blind properties, i.e. properties not using the predicate ∼. These are the

word languages over Σ expressible by FO2.

• Each class contains at most one occurrence of α: This can be expressed by the

formula ∀xy.α(x) ∧ α(y) ∧ x ∼ y → x = y.

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 21

• In each class every α occurs before every β: This can be expressed by the

formula ∀xy.α(x) ∧ β(y) ∧ x ∼ y → x < y.

• Each class with an α has also a β: This can be expressed by the formula

∀x∃y.α(x)→ β(y) ∧ x ∼ y.

• If a position is in a different class than its successor then it has type α: This

can be expressed by ∀xy.x 6∼ y ∧ y = x + 1→ α(x).

The idea behind the proof is to convert any given formula to a disjunction of

conjunction of formulas of the above kinds (which is called Data Normal Form). In

order to do this we first convert the given formula to the so-called Scott Normal

Form:
(

∀xy.χ ∧
∧

i

∀x∃y.χi

)

A formula in this form is then converted to the form
∧

i

θi

where each θi belongs to one of the five kinds.

The crucial next step is the fact that each of these formulas can be recognized

by a Class Memory automaton. The existential predicates correspond to nonde-

terminism in the automaton. Since CMA are closed under union, intersection and

projection we can compose automata corresponding to the subformulas to get an au-

tomaton corresponding to a formula. Hence the satisfiability of the formula reduces

to non-emptiness problem of the automaton, which is decidable. �

This connection can be strengthened as the following corollary shows.

Corollary 1.1. Languages recognized by CMA are the languages expressed by

EMSO2(Σ, <, +1,∼,⊕).

Here EMSO2 stands for existential monadic second order formulas with their first

order fragment containing only two variables and ⊕ stands for the class successor

relation.

1.8.1. Temporal logics for data languages

If Büchi’s theorem relates MSO definability and recognizability by automata, an-

other celebrated theorem due to Kamp [17] relates FO definability to temporal logics.

These are modal logics with modalities such as eventually, until, since etc. The suc-

cess of formal methods in system verification has to do with the ease of temporal

logics both in terms of algorithmic tools and reasoning.

Hence, when we consider description of data languages, temporal logic is a natu-

ral candidate. We need modalities to mark positions, and recall marks when needed.

A temporal logic developed by [8] adds freeze operators to propositional linear time

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

22 Amaldev Manuel and R. Ramanujam

temporal logic. These come in two forms: unary modalities ↓i, i > 0, and atomic

formulas ↑i. Informally, the semantics is as follows. ↓i stores the current data value

in register i and ↑i checks whether the current data value equals to the data stored

in the register i.

The syntax of the logic is given by:

ϕ ::= ⊤ | a | ↑i | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ | ↓i ϕ

The semantics (over finite words) is defined in the obvious manner.

The formula F ↓1 XF ↑1 expresses the set of data words in which at least one

data value repeats. Hence its negation expresses the language of all data words in

which no data value repeats. G(a→↓1 XF (↑1 ∧ b) expresses the set of data words

in which in every class, if an a occurs there is a b occurring later.

Again, the logic is too powerful: the satisfiability problem for LTL with freeze

operators is undecidable. However satisfiability of LTL-freeze with one register is

decidable [8]. Also, there is a natural definition of register automata corresponding

to LTL-freeze, though this definition is not equivalent to the register machines we

discussed earlier.

LTL-freeze cannot express the language L∀a∃b, and this is precisely because of

the absence of past operators. Similarly FO2 cannot express the following language,

which LTL with freeze can: between two a of the same class there is an a which

belongs to some other class. This is due to the shortage of variables in FO2. Hence

in general FO2 and LTL-freeze are incomparable.

1.9. Related models and logics

Though register automata are relatively weak, they possess an interesting theory,

and the algebraic and rational aspects of register automata have been studied. As an

extension of recognizability by register automata, in [18] a Myhill-Nerode theorem

for data strings is shown. [19] proposes a notion of regular expressions for data

languages.

In [10], an extension of register automata is offered in which the automaton

can guess the data values, called look-ahead register automata. An equivalent

characterization in terms of regular expressions and grammar is presented for this

class of automata. One interesting property of look-ahead register automata is that

they are closed under reversal.

[20] seeks a notion of context-free data languages. They extend register au-

tomata with stack which can hold data values, called pushdown register automata.

The automaton has the ability to rewrite the registers with arbitrary data values.

The stack operations transfer symbols from the registers to the stack. The transi-

tion is based on the register which matches the top of the stack. The automaton

is able to accept some analogous languages in this way, for example w#wr , where

w is a data string. A definition of context-free grammars over infinite alphabets is

proposed and is shown equivalent to pushdown register automata. A lemma similar

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 23

to that of register automata holds in the case of pushdown automata which says

that given a pushdown register automaton there exists an n such that if the automa-

ton accepts a word it accepts a word with at most n data values. While it is not

apparent how to determine n from the definition of the automata, the observation

shows that the emptiness problem for this class of automata is decidable.

In [21], a notion of monoid recognizability for data languages is introduced. A

corresponding extension of register automata is shown to be equivalent to recogni-

tion by monoids. This model is an extension of register automata with an equiv-

alence relation of finite index. During a transition the automaton, in addition to

reading the register, checks to which equivalence class the register configuration

belongs to, selects the next state and updates the register accordingly. Though

this certainly enhances computational‘ power, the automaton can still remember

only finitely many data values. Moreover, decidability of the emptiness problem is

obtained only in the case where register updates respect the equivalence. In [22] an

EMSO characterization of monoid recognizablity is shown.

Another simple computational model, based on transducers is the Data Automa-

ton model introduced in [7]. A Data Automaton A = (B, C) consists of:

- a non-deterministic letter-to-letter string transducer B, the base automaton,

with input alphabet Σ and some output alphabet Γ, and

- a non-deterministic automaton C, the class automaton, with input alphabet Γ

A data word w is accepted by A if there is an accepting run of B on the string

projection of w, giving an output string γ1γ2 . . . γn ∈ Γ∗, such that for each class

{x1, x2, . . . , xk} ⊆ {1, 2, . . . , n}, x1 < x2 < . . . < xk, the class automaton accepts

γx1γx2 . . . γxk
.

Example 1.6. The language Lfd(a), can be accepted by a data automaton A =

(B, C) as follows.

The transducer

q0

Σ→ Σ

The finite automaton

q0 q1

b b

a

Fig. 1.4. Automaton in the Example 1.6

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

24 Amaldev Manuel and R. Ramanujam

- The base automaton B : Σ → Σ is a copy automaton which copies the input

(string part) to the output.

- The class automaton C accepts b∗ + b∗ab∗, words containing at most one a.

Theorem 1.6 ([6]). Class Memory automata and Data automata are expressively

equivalent.

1.10. Conclusion

We have taken the reader on a touristic journey of automata models over infinite

alphabets, pointing out interesting sights very briefly, without studying any of the

models as they really should be. We have looked at the models only from the

perspective of decidability of the emptiness problem, and if there is any moral to

the story, it is only this: systems with unbounded data give rise to infinite state

systems, and identifying machine classes with manageable complexity is a challenge.

Our bag of tools for addressing such problems needs considerable enrichment, and

it is hoped that automata theory and logic will contribute substantially towards

this. Developing an underlying algebraic theory may be an important step in this

direction.

On a positive note, automata over infinite alphabets provide an abstract the-

oretical model in which we seem to be able to represent situations that arise in a

wide variety of contexts: systems with unboundedly many processes such as those

studied in infinite state verification, communicating systems such as Petri nets, the

verification of software programs with recursion and pointers, navigation over trees

representing semistructured data, web services handling unboundedly many clients,

to list a few. Such diversity suggests that use of techniques across areas may lead

to new techniques in the theory of automata over infinite alphabets.

References

[1] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and

Computation. (Addison-Wesley, 1979). ISBN 0-201-02988-X.
[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Princiles, Techniques, and Tools.

(Addison-Wesley, 1986). ISBN 0-201-10088-6.
[3] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. (The MIT Press,

2000). ISBN 0-262-03270-8.
[4] M. Kaminski and N. Francez, Finite-memory automata, Theor. Comput. Sci. 134(2),

329–363, (1994).
[5] F. Neven, T. Schwentick, and V. Vianu, Finite state machines for strings over infinite

alphabets, ACM Trans. Comput. Log. 5(3), 403–435, (2004).
[6] H. Björklund and T. Schwentick. On notions of regularity for data languages. In eds.

E. Csuhaj-Varjú and Z. Ésik, FCT, vol. 4639, Lecture Notes in Computer Science,
pp. 88–99. Springer, (2007). ISBN 978-3-540-74239-5.

[7] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable

July 6, 2009 19:0 World Scientific Review Volume - 9.75in x 6.5in ramanujam

Automata over infinite alphabets 25

logic on data trees and xml reasoning. In ed. S. Vansummeren, PODS, pp. 10–19.
ACM, (2006). ISBN 1-59593-318-2.

[8] S. Demri and R. Lazic. Ltl with the freeze quantifier and register automata. In LICS,
pp. 17–26. IEEE Computer Society, (2006).

[9] H. Sakamoto and D. Ikeda, Intractability of decision problems for finite-memory
automat a., Theor. Comput. Sci. 231(2), 297–308, (2000).

[10] D. Zeitlin. Look-ahead finite-memory automata. Master’s thesis, Technion - Israel
Institute of Technology, Tamuz, 5766, Haifa, Israel (July, 2006).

[11] R. Ramanujam and M. Amaldev, Class counting automata on datawords, manuscript.
(2007). URL http://www.imsc.res.in/~amal/cca.pdf.

[12] J.R. Büchi, Weak second order arithmetic and finite automata, Z. Math. Logik Grund-

lagen Math. 6, 66–92, (1960).
[13] E. Börger, E. Grädel, and Y. Gurevich, The Classical Decision Problem. Perspectives

in Mathematical Logic, (Springer-Verlag, Berlin, 1997).
[14] E. G. Adel, P. G. Kolaitis, and Y. Vardi. On the decision problem for two-

variable first-order logic (Aug. 28, 1997). URL http://citeseer.ist.psu.edu/

435533.html;http://www.math.ucla.edu/~asl/bsl/0301/0301-003.ps.
[15] H. Andréka, I. Németi, and J. van Benthem, Modal logic and bounded fragments of

predicate logic, Journal of Philosophical Logic. 27(3), 217–274, (1998).
[16] E. Gradel and R. Aachen. On the restraining power of guards (Dec. 20, 1999).

URL http://citeseer.ist.psu.edu/386986.html;http://www-mgi.informatik.

rwth-aachen.de/Publications/pub/graedel/Gr-jsl99.ps.
[17] H. Kamp. On tense logic and the theory of order. PhD thesis, UCLA, (1968).
[18] N. Francez and M. Kaminski, An algebraic characterization of deterministic regular

languages over infinite alphabets, Theor. Comput. Sci. 306(1-3), 155–175, (2003).
[19] M. Kaminski and T. Tan. Regular expressions for languages over infinite alphabets.

In eds. K.-Y. Chwa and J. I. Munro, COCOON, vol. 3106, Lecture Notes in Computer

Science, pp. 171–178. Springer, (2004). ISBN 3-540-22856-X.
[20] E. Y. C. Cheng and M. Kaminski, Context-free languages over infinite alphabets,

Acta Inf. 35(3), 245–267, (1998).
[21] P. Bouyer, A. Petit, and D. Thérien, An algebraic approach to data languages and

timed languages, Information and Computation. 182(2), 137–162 (May, 2003). URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BPT-IetC.pdf.

[22] P. Bouyer, A logical characterization of data languages, Information Processing

Letters. 84(2), 75–85 (Oct., 2002). URL http://www.lsv.ens-cachan.fr/Publis/

PAPERS/PS/Bou-IPL2002.ps.

