
Counter Automata and Classical Logics for
Data Words

Amal Dev Manuel
amal@imsc.res.in

Institute of Mathematical Sciences,
Taramani, Chennai, India.

January 31, 2012

Data Words

Definition (Data Words)

A data word w = (a1, d1) . . . (an, dn), ai ∈ Σ, di ∈ ∆ where,

I Σ is a finite alphabet.

I ∆ is an (recursive) infinite set .

Definition (Data Language)

A data language L ⊆ (Σ×∆)∗.

Example

L∃n All w in which at least n distinct data values occur.
L<n All w in which every data value occurs at most n times.
La∗b∗ All w whose string projections are in the set a∗b∗.
La All w under the label a are different.
La→b All w occurring under a occurs under b as well.
Ldd There is a d in w which occurs in consecutive positions.

Regularity for Data Languages

Regularity — Confluence of

Robustness,
Low complexity decision problems,
Alternate characterizations,
Nice closure properties.

Question. What constitutes the class of regular data languages?
Approach. Try to extend regular word “devices” to data words.

“devices” – Regular expressions, Linear grammars, Monadic
second order logic, Finite state automata.

Extensions of finite state automata

Memory-structures

I stack

I push-down

I hash-table

I registers

I counters

Register automata

Finite state automata + registers storing data values

Definition ([KF94])

A k-Register automaton A = (Q,Σ,∆, k, q0, F), where

I Q is a finite set of states

I q0 ⊆ Q is the initial state

I F ⊆ Q is the set of final states

I k is the number of registers

I ∆ ⊆ (Q× Σ× [k]×Q) ∪ (Q× Σ×Q× [k])

For p, q ∈ Q, a ∈ Σ, i ∈ [k], transitions of the form (p, a, i, q) are
called read transitions and transitions of the form (p, a, q, i) are
called write transitions.

Register automaton – example

q0 q1 qf
(a, read1), (a,write 1)

(Σ, read 1)

(Σ,write 1)

(a, read 1)

(Σ, read 1)

(Σ,write 2)

(Σ, read 1), (Σ, read 2)

(Σ,write 2)

Figure: Register automaton accepting the language La.

Register automaton – example

q0 qf
(Σ, read 1)

(Σ,write 1) (Σ,write 1)

(Σ, read 1)

Figure: 1-Register automaton accepting the language Ldd

Register automaton – properties

Fact
Register automata are closed under union, intersection,
length-preserving morphisms.

Not closed under complementation (La is not accepted by any
register automaton.)

Lemma
If a k-register automaton A accepts any word at all, then it
accepts a word containing at most k + 1 distinct data values.

Theorem ([KF94])

Emptiness checking of register automata is decidable (NP-c).

Register automaton – properties

Fact
Register automata are closed under union, intersection,
length-preserving morphisms.

Not closed under complementation (La is not accepted by any
register automaton.)

Lemma
If a k-register automaton A accepts any word at all, then it
accepts a word containing at most k + 1 distinct data values.

Theorem ([KF94])

Emptiness checking of register automata is decidable (NP-c).

Register automaton – properties

Fact
Register automata are closed under union, intersection,
length-preserving morphisms.

Not closed under complementation (La is not accepted by any
register automaton.)

Lemma
If a k-register automaton A accepts any word at all, then it
accepts a word containing at most k + 1 distinct data values.

Theorem ([KF94])

Emptiness checking of register automata is decidable (NP-c).

Data automaton

Definition
A data automaton is a tuple A = (B,C) where

I B is a finite state transducer with input alphabet Σ and
output alphabet Σ′.

I C is a finite state auotmaton with alphabet Σ′.

A has an (accepting) run on w if

I B has an (accepting) run on w defining a unique output
word w′.

I C has an (accepting) run on each class of w′.

Data automaton – example

Example (The language La)

I The transducer B is a copy machine, copies every letter to
the output

I The automaton C accepts the language Σ∗aΣ∗aΣ∗.

Data automaton – example

Example (The language Ldd)

Choose the intermediate alphabet to be {0, 1}.
I B chooses two consecutive positions and label them by ‘1’,

all other positions are labelled 0.

I The automaton C accepts the language 0∗10∗10∗ + 0∗.

Data automaton – properties

Theorem ([KF94, BS10])

Register automata are strictly less powerful than Data automata
in terms of expressiveness.

Theorem ([BMS+06, BS10])

The emptiness problem for Data automata is decidable (not
known to be elementary).

Counters for data words

Setup : Finite state automata + |Γ|-many counters.

I A counter for each data value.

I All counters are initially zero.

I Whenever the automaton encounters a pair (a, d)
I The counter for d is checked against a constraint,
I Counter is incremented or reset.

Class counting automata

Definition
A class counting automaton, abbreviated as CCA, is a tuple
CCA = (Q,Σ,∆, I, F), where

I Q is a finite set of states,

I I ⊆ Q is the set of initial states,

I F ⊆ Q is the set of final states,

I ∆ ⊆fin (Q× Σ× C × Inst× N×Q), Inst = {inc, reset}, C is
the set of all univariate inequalities over N.

Class counting automata – run

I A configuration of A is a pair (q, h), where q ∈ Q and
h : Γ→ N.

I An initial configuration of A is (q0, h0), q0 ∈ I and
∀d ∈ Γ, h0(d) = 0.

Given a data word w = (a1, d1), . . . (an, dn), a run of A on w is a
sequence γ = (q0, h0)(q1, h1) . . . (qn, hn) such that (q0, h0) is an
initial configuration and for each 1 ≤ i ≤ n there exists a
transition ti = (q, a, c, π,m, q′) ∈ ∆ such that q = qi, q

′ = qi+1,
a = ai+1 and:

I hi(di+1) |= c.

I hi+1 is given by:

hi+1 =

{
hi ⊕ (di+1,m

′) if π = inc,m′ = hi(di+1) +m
hi ⊕ (di+1,m) if π = reset

CCA – example

q0 q1
a, x = 1, [0]

a, x = 0, [+1]

b, x ≥ 0, [0]

a, x ≥ 0, [0]

b, x ≥ 0, [0]

Figure: CCA accepting the language La

CCA – example

q0 q1 qf
Σ, x = 0, [+1]

Σ, x = 0, [0]

Σ, x = 1, [0]

Σ, x ≥ 0, [0]

Figure: CCA accepting the language Ldd.

CCA – properties

Fact
CCA-recognizable data languages are closed under union and
intersection but not under complementation.

Theorem
The non-emptiness problem for CCA is Expspace-complete.

CCA – properties

Fact
CCA-recognizable data languages are closed under union and
intersection but not under complementation.

Theorem
The non-emptiness problem for CCA is Expspace-complete.

CCA – extensions and subclasses

I Many bag CCA is equivalent to one bag CCA.

I CCA + context check contains register automata.

I CCA with counter acceptance conditions is equivalent to
Data automata.

I CCA with presburger constraints is still in Expspace.

I Two-way-ness and alternation leads to undecidability.

Logic for data words

A data word can be naturally represented as a first-order
structure w = ([n],Σ, <,+1,∼).

Example

The word ababab is encoded as the structure,

([6], Pa = {1, 3, 5}, Pb = {2, 4, 6}, <,+1) .

Example

The data word (a, d2)(b, d1)(a, d1)(b, d2)(a, d3)(b, d2) is encoded
as the structure,

([6], Pa = {1, 3, 5}, Pb = {2, 4, 6}, <,+1,∼= {{1, 4, 6}, {2, 3}, {5}}) .

First-order logic over data words

The set of first order (abbreviated as FO) formulas over the
vocabulary τ is given by the following syntax;

ϕ ::= x = y | R(x1, . . . , xn) | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ∃xϕ

Theorem ([BMS+06])

(finite) satisfiability of FO is undecidable over data words.
Undecidability prevails even for three variable fragment.

Theorem ([BMS+06])

(finite) satisfiability of FO2 is decidable over data words.

First-order logic over data words

The set of first order (abbreviated as FO) formulas over the
vocabulary τ is given by the following syntax;

ϕ ::= x = y | R(x1, . . . , xn) | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ∃xϕ

Theorem ([BMS+06])

(finite) satisfiability of FO is undecidable over data words.
Undecidability prevails even for three variable fragment.

Theorem ([BMS+06])

(finite) satisfiability of FO2 is decidable over data words.

Two-variable logic – examples

Example

The following FO2 (Σ, <,+1) formula describes that the model
(in this case a word) contains three ‘a’s.

ϕ1 = ∃x (Pa(x) ∧ ∃y (x < y ∧ Pa(y) ∧ ∃x (y < x ∧ Pa(x)))) .

Example

The formula below states that each class contains an ‘a’ if it
contains a ‘b’ and vice versa.

ϕ2 = ∀x ((Pa(x)→ ∃y (Pb(y) ∧ x ∼ y)) ∧ (Pb(x)→ ∃y (Pa(y) ∧ x ∼ y)))

Ordered data words

Let ≤Γ be a linear order on Γ.
Data values di and dj on positions i and j can have any of the
following relationships: di = dj or di <Γ dj or di >Γ dj .
This relationship can be expressed by a total preorder on
positions given by,

i ≤p j ⇔ di <Γ dj or di = dj .

Hence an ordered data word can be represented logically as a
first order structure w = ([n],Σ,≤l ,+1l ,≤p ,+1p); where ≤l
denotes the linear order on positions and ≤p denotes the total
preorder on positions induced by the order on the data values.

Two-variable logic on ordered data words

Theorem ([BMS+06, MZ11])

Two variable logic on ordered data words is undecidable. More
precisely FO2 is undecidable on the vocabularies (Σ, <,+1,+1p)
and (Σ, <,+1,≤p).

To retrieve decidability one has to drop either < or +1.

Theorem ([SZ10])

Finsat of FO2(Σ, <l1 , <p2 ,+1p2) is decidable in Expspace.

Theorem ([Man10])

Finsat of FO2(Σ,+1l1 ,+1l2) is decidable in 2-Nexptime.

Undecidability

Theorem ([Man10])

The finite satisfiability problems for the following logics are
undecidable.

(a) FO2 (Σ,≤l1 ,+1l1 ,≤l2 ,+1l2)

(b) FO3 (Σ,+1l1 ,+1l2)

(c) FO2 (Σ,+1l1 ,+2l1 ,+3l1 ,+1l2 ,+2l2)

Two-variable logic on ordered data words

Theorem ([MZ11])

Finite satisfiability of FO2(Σ,+1l1 , <p2 ,+1p2) is decidable when
classes of <p2 are of size at most k.

For the proof, the notion of data automata are generalized so
that they accept ordered data words. A translation from the
above logic to these automata is established and finally the
non-emptiness of these automata are shown to be decidable by
reduction to reachability problem in vector addition systems.
Since it is definable in FO2 that <p2 is a linear order,

Corollary

Finite satisfiability of FO2(Σ,+1l1 , <l2 ,+1l2) is decidable (not
known to be elementary).

This corollary completes the classification of FO over two linear
orders.

Undecidability in 2-ss

Theorem ([Man10])

The finite satisfiability problems for the following logics are
undecidable.

(a) FO2 (Σ,≤l1 ,+1l1 ,≤l2 ,+1l2)

(b) FO3 (Σ,+1l1 ,+1l2)

(c) FO2 (Σ,+1l1 ,+2l1 ,+3l1 ,+1l2 ,+2l2)

Proof.
Reduction from PCP.
I = {(ui, vi) | i ∈ [n], ui, vi ∈ Σ≤2} over the alphabet
Σ = {l1, l2, . . . lk}.
We encode the PCP solution as structures in the above
vocabularies, in the following way. Let Σ′ = {l′1, l′2, . . . l′k} and

Σ̂ = Σ ∪ Σ′.

Proof contd.

Given a word w = a1a2 . . . an in Σ∗, we denote by w′ the word
a′1a
′
2 . . . a

′
n in Σ′∗.

A solution of I is a structure A = (A, Σ̂,+1l1 ,+1l2) over Σ̂ such
that,

(1) The word (A, Σ̂,+1l1) is in the language
(u1v

′
1 + u2v

′
2 . . .+ unv

′
n)+. This language is expressible in

FO2 (Σ̂,+1l1), let us call it ϕ1.

(2) The word (A, Σ̂,+1l2) is in the language
(l1l
′
1 + l2l

′
2 . . .+ lkl

′
k)

+. This language is expressible in

FO2 (Σ̂,+1l2) by the formulas (call them ϕ2),

Proof contd.

Enforcing the matching,

I

ϕ3a ≡ ∀xy ((Σ(x) ∧ Σ(y) ∧ x ≤l1 y → x ≤l2 y)

∧
(
Σ′(x) ∧ Σ′(y) ∧ x ≤l1 y → x ≤l2 y

))
I

ϕ3b ≡ ∀xyz
((

Σ(x)∧Σ(y)∧Σ′(z)∧S(x, y)∧ x+ 1l2z
)
→z + 1l2y

)
∧∀xyz

((
Σ′(x)∧Σ′(y)∧Σ(z)∧S(x, y)∧x+ 1l2z

)
→z + 1l2y

)
I

ϕ3c ≡ ∀xy ((Σ(x) ∧ Σ(y) ∧ S(x, y))→ x+ 2l2y)

∧∀xy
((

Σ′(x) ∧ Σ′(y) ∧ S(x, y)
)
→ x+ 2l2y

)

Logic Complexity (lower/upper) Comments

One linear order

FO2(+1l) Nexptime-complete [EVW02]

FO2(≤l) Nexptime-complete [EVW02]

FO2(+1l ,≤l) Nexptime-complete [EVW02]

One total preorder

FO2(+1p) Nexptime-complete

FO2(≤p) Nexptime-complete

FO2(+1p ,≤p) Expspace-complete [SZ11]

Two linear orders

FO2(+1l1 ; +1l2) Nexptime/2-Nexptime [Man10]

FO2(+1l1 ;≤l2
) Nexptime/Expspace [SZ11]

FO2(+1l1 ,≤l1
; +1l2) VASS-Reachability/Decidable

[MZ11]

FO2(+1l1 ,≤l1
;≤l2

) Nxptime/Expspace [SZ11]

FO2(+1l1 ,≤l1
; +1l2 ,≤l2

) Undecidable [MZ11]

Figure: Summary of results on finite satisfiability of FO2 with successor and
order relations. Cases that are symmetric and where undecidability is implied are
omitted.

Logic Complexity (lower/upper) Comments

Two total preorders

FO2(+1p1 ,+1p2) Undecidable [MZ11]

FO2(+1p1 ;≤p2
) Undecidable [MZ11]

FO2(≤p1
;≤p2

) Undecidable [SZ10]

One linear order and one total preorder

FO2(+1l1 ; +1p2) ?

FO2(+1l1 ,≤l1
; +1p2) Undecidable [MZ11]

FO2(+1l1 ,≤l1
;≤p2

) Undecidable [BMS+06]

FO2(+1l1 ; +1p2 ,≤p2
) ?

FO2(≤l1
; +1p2 ,≤p2

) Expspace-complete [SZ11]

Many orders

FO2(≤l1
,≤l2

,≤p3) Undecidable [SZ10]

FO2(≤l1
, . . . ,≤l3

) Undecidable [Kie11]

FO2(+1l1 , . . . ,+1lk
) ?

Figure: Summary of results on finite satisfiability of FO2 with successor and
order relations. Cases that are symmetric and where undecidability is implied are
omitted.

2-successor structures

I Marking alphabet Γ = {−1, 0, 1}.

Definition (Marked String Projections of A)

msp≺1
(A) =

(
A, (Pa)a∈Σ , (Mi)i∈Γ ,≺1

)
msp≺2

(A) =
(
A, (Pa)a∈Σ , (Mi)i∈Γ ,≺2

)
I msp’s are words over the alphabet Σ× Γ.

Lemma
Let x ≺1 y. The marking M≺2 (y) can be computed from
M≺1 (x) and M≺1 (y).

Proof.
Construct a table.

Example

a b c d

msp≺1
(A)

(
a
−1

) (
b
0

) (
c
1

) (
d
0

)

msp≺2
(A)

(
b
−1

) (
a
0

) (
c
1

) (
d
0

)

Automata on 2-ss

Definition (2-ss Automaton)

A 2-ss automaton T is a tuple (B,Σo, C) where,

B Finite state transducer with input alphabet Σ× Γ and
output alphabet Σo,

Σo Intermediate alphabet,

C Finite state recognizer with input alphabet Σo.

Definition (Run of T)

A run ρT of the 2-ss automaton T is of the form ρT = (ρB, ρC),

I ρB is a run of B on msp≺1
(A) outputting

(
A, (Pa)a∈Σo

,≺1

)
over Σo,

I ρC is a run of C on
(
A, (Pa)a∈Σo

,≺2

)
.

The run is accepting if both ρB and ρC are accepting.
L (T) = {A | T has an accepting run on A}.

Example Languages

Example

L1 = {A =
(
A, (Pa)a∈Σ ,≺1,≺2

)
| ≺1=≺2}

Check the markings.

Example

L2 = {A | sp≺1
(A) ∈ a∗ · b∗ · c∗, sp≺2

(A) ∈ (a · b · c)∗}
The transducer B projects the marked string to Σ and checks if
it belongs to a∗ · b∗ · c∗. The automaton C checks if its input is
in (a · b · c)∗.

Example

L3 = {A | ∀xy (a(x) ∧ b(y)→ x ≺1 y ∨ x ≺2 y)}
Use transduction!.

Lemma
1. Given a regular language L ⊆ Σ∗, there is a 2-ss automaton
accepting all 2-ss whose projections to ≺1 is in L.

2. Similarly, there is a 2-ss automaton accepting all 2-ss whose
projections to ≺2 is in L.

Proof.
1. The transducer B checks if the projection to ≺1 (ignoring the
markings) is in L and C accepts Σ∗o.

2. The transducer B simply copies the string (ignoring the
markings) and C accepts if its input is in L.

Lemma
Languages recognized by 2-ss automata are closed under union,
intersection and renaming.

Proof.
Closure under union and intersection is obtained from usual
product construction (using a composed output alphabet).

Closure under renaming is achieved using the non-determinism
of the transducer.

Lm is the set of all 2-ss A = (A, λ,≺1,≺2) such that,

I sp≺1
(A) ∈ ♦ · a+ · ♣ · ♥ · b+ · ♠,

I sp≺2
(A) ∈ ♦ · ♥ · (a · b)+ · ♣ · ♠,

I ∃x, y ∈ A, λ(x) = λ(y) such that x ≺+
1 y and y ≺+

2 x.

Lm is accepted by a 2-ss automaton. But Lm is not accepted
by any 2-ss automaton.

Proof.
Pumping and Crosswiring.

Lemma
The class of languages accepted by 2-ss automata are not closed
under complementation.

Theorem
Given a 2-ss automaton T , there is a formula
ϕT ∈ EMSO2 (Σ,≺1,≺2) such that L(T) = L (ϕT).

Proof.
Let Σo = {l1, . . . , ln}. The formula ϕT states that there is a run
of T on A in the following way,

ϕT = ∃Pl1Pl2 . . . Pln (ϕpart (Pl1 , . . . , Pln) ∧ ϕB ∧ ϕC)

I ϕpart (Pl1 , . . . , Pln) says that the predicates Pl1 , . . . , Pln
form a partition of the set of all positions.

I ϕB is the encoding of B in EMSO2 (Σ, Pl1 , . . . , Pln ,≺1).

I ϕC is the encoding of C in EMSO2 (Pl1 , . . . , Pln ,≺2).

Pl1 , . . . , Pln are free in ϕB and ϕC .

Logic to Automata

Translation to Scott Form

ϕ⇔ ∃R1 . . . Rn

(
∀x∀y χ ∧

∧
i

∀x∃y ψi

)

The predicates Ri are unary, and χ and ψi are quantifier-free
formulas in FO2(Σ,≺1,≺2).

2-ss are closed under renaming and intersection.

Hence it suffices to construct a 2-ss automaton for each of the
formulas ∀x∀y χ and ∀x∃y ψi.

Lemma
Given an FO2(Σ,≺1,≺2) formula of the form ϕ = ∀x∀y χ
where χ is quantifier free, an equivalent 2-ss automaton of
doubly exponential size can be constructed.

Proof.
ϕ can be reduced to a conjunction of exponentially many
formulas in one the following forms,

1. True, False, A formula over one successor relation,

2. ∀xy (α(x) ∧ β(y) ∧ x 6= y ∧ x ≺1 y → δ2(x, y)),

3. ∀xy (α(x) ∧ β(y) ∧ x 6= y ∧ x ≺2 y → δ1(x, y)),

4. ∀xy
(
α(x) ∧ β(y) ∧ x 6= y → δ+

1 (x, y) ∨ δ+
2 (x, y)

)
,

where
α, β : types, δi : disjunction over Oi, δ

+
i : disjunction over O+

i .
O+
i = {x ≺i y, y ≺i x} , Oi= {x ≺i y, x 6≺i y, y ≺i x, y 6≺i x} .

Each of these formulas can be translated to a 2-ss
automaton.

Lemma
For each FO2(Σ,≺1,≺2) formula of the form ϕ = ∀x∃y ψ where
ψ is quantifier free, an equivalent 2-ss automaton of doubly
exponential size can be constructed.

Proof.
ϕ can be reduced to a conjunction of exponentially many
formulas in one the following forms,

1. A formula over one successor relation,

2. ∀x∃y
(
α(x)→ β(y) ∧ x 6= y ∧ δ+

1 (x, y) ∧ δ2(x, y)
)
,

3. ∀x∃y
(
α(x)→ β(y) ∧ x 6= y ∧ δ+

2 (x, y) ∧ δ1(x, y)
)
,

4. ∀x∃y
(
α(x)→ β(y) ∧ x 6= y ∧ δ−1 (x, y) ∧ δ−2 (x, y)

)
.

where
α, β : types, δi ∈ Oi, δ+

i ∈ O
+
i , δ−i : conjunction over O−i .

O−i = {x 6≺i y, y 6≺i x} ,
Each of these formulas can be translated to a 2-ss automaton.

Lemma
Given an EMSO2 (Σ,≺1,≺2) formula ϕ, there exists a 2-ss
automaton Tϕ such that L (ϕ) = L (Tϕ).

Theorem
L is definable in EMSO2(Σ,≺1,≺2) if and only if L is
recognized by a 2-ss automaton.

Decidability of 2-ss Automata

Proof Idea

Given a 2-ss automaton T = (B, C), L (T) is non-empty if there
is a marked word w such that,

I w is accepted by B
I a permutation of output of B on w, ‘consistent’ with the

marking of w, is accepted by C.

I Let w = ([n], λ,≺) be a marked word of length n. We
denote the projection of w to Σ by w ↓ Σ.

I Given a permutation π : [n]→ [n], π(w) is defined as the
word (

[n], π−1 ◦ λ,≺
)
.

I π defines a successor relation ≺π= π−1(1) . . . π−1(n) on the
positions.

We say that the permutation π is consistent with the marking if
w is the marked string projection of the 2-ss A = ([n], λ,≺,≺π)
to the order ≺.

Definition (mperm(w))

Given w ∈ Σ∗, by mperm(w), we denote the set of all the
marked words w′ such that there is a permutation π consistent
with the marking such that π(w ↓ Σ) = w.
Given L ⊆ Σ∗, we define mperm(L) = ∪w′∈Lmperm(w′).

Definition (Presburger word automaton,
Habermahl–Muscholl–Schwentick–Seidl, 04)

A Presburger word automaton P is a tuple (A,S),

I A is a finite state automaton with states Q = {q1, . . . qn},
I S is a semi-linear set in Nn.

A word w is accepted by the automaton P if,

I there is an accepting run ρ of A on w,

I (|ρ|q0 , . . . , |ρ|qn) ∈ S.

Example
The following languages are recognizable by a Presburger word
automaton.

{anbncn | n ∈ N}, {w ∈ Σ∗ | 5 · |w|a = 2 · |w|b − 3 · |w|c},
Permutation(L) if L is context-free.

Lemma
If L is regular then mperm(L) is accepted by a Presburger
automaton.

Proof.

I Given an automaton C for L, the Presburger automaton P
checks non-deterministically if there is a run of C on some
consistent permutation of w.

I To achieve this, the automaton P assigns a transition
δ = (p, ai, q) ∈ ∆ to each position i of the marked word.

I We can define a flow f where each transition δ of C is
labelled by the number of times it is associated with a
position.

I Finally, we can write linear constraints which checks that,

1. f is locally consistent,
2. the subgraph induced by the states with a non-zero flow is

connected,
3. f is consistent with the marking.

I The resulting automata P is poly-sized in terms of the size
of C.

Theorem
Emptiness checking of a 2-ss automaton T = (B, C) is in NP.

Proof.

I Construct a Presburger automaton P with linear
constraints which accepts mperm(L(C)).

I Take the intersection of the transducer B and P in such a
way that the output of B is supplied as the input of P.

I Finally we check the emptiness of the resulting automaton
which is in NP.

Theorem
Emptiness checking of a Presburger automaton is polynomial
time reducible to the emptiness checking of a 2-ss automaton.

Theorem
Finite Satisfiability problem of FO2(Σ,≺1,≺2) is in
2-Nexptime.

Proof.
Given ϕ, construct Tϕ, check if L (Tϕ) is non-empty.

Over words, FinSat of both FO2(Σ) and FO2(≺) with one
unary predicate are Nexptime-hard [Etessami, 02].

Thank You!

Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick,
Luc Segoufin, and Claire David.
Two-variable logic on words with data.
In LICS, pages 7–16. IEEE Computer Society, 2006.

Henrik Björklund and Thomas Schwentick.
On notions of regularity for data languages.
Theoretical Computer Science, 411(4-5):702–715, 2010.

Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke.
First-order logic with two variables and unary temporal
logic.
Information and Computation, 179(2):279 – 295, 2002.

Michael Kaminski and Nissim Francez.
Finite-memory automata.
Theoretical Computer Science, 134(2):329–363, 1994.

Emanuel Kieronski.
Decidability issues for two-variable logics with several linear
orders.

In CSL, volume 12 of LIPIcs, pages 337–351, 2011.

Amaldev Manuel.
Two orders and two variables.
In MFCS, volume 6281 of LNCS, pages 513–524, 2010.

Amaldev Manuel and Thomas Zeume.
Two variable logic with a linear successor and a preorder.
Under preparation, 2011.

Thomas Schwentick and Thomas Zeume.
Two-variable logic with two order relations.
In CSL, volume 6247 of LNCS, pages 499–513, 2010.

Thomas Schwentick and Thomas Zeume.
Two-variable logic with two order relations.
To appear, 2011.

