Counter Automata and Classical Logics for Data Words

Amal Dev Manuel

amal@imsc.res.in

Institute of Mathematical Sciences, Taramani, Chennai, India.

January 31, 2012

Data Words

Definition (Data Words)

A data word $w = (a_1, d_1) \dots (a_n, d_n), a_i \in \Sigma, d_i \in \Delta$ where,

- Σ is a finite alphabet.
- Δ is an (recursive) infinite set .

Definition (Data Language) A data language $L \subseteq (\Sigma \times \Delta)^*$.

Example

$L_{\exists n}$	All w in which at least n distinct data values occur.
$L_{< n}$	All w in which every data value occurs at most n times.
$L_{a^*b^*}$	All w whose string projections are in the set a^*b^* .
L_a	All w under the label a are different.
$L_{a \to b}$	All w occurring under a occurs under b as well.
L_{dd}	There is a d in w which occurs in consecutive positions.

Regularity for Data Languages

 $\label{eq:Regularity} \mbox{Confluence of} \left\{ \begin{array}{l} \mbox{Robustness,} \\ \mbox{Low complexity decision problems,} \\ \mbox{Alternate characterizations,} \\ \mbox{Nice closure properties.} \end{array} \right.$

Question. What constitutes the class of regular data languages? Approach. Try to extend regular word "devices" to data words.

"devices" – Regular expressions, Linear grammars, Monadic second order logic, Finite state automata.

Extensions of finite state automata

Memory-structures

- ► stack
- ▶ push-down
- ▶ hash-table
- registers
- ► counters

Register automata

Finite state automata + registers storing data values

Definition ([KF94])

A k-Register automaton $A = (Q, \Sigma, \Delta, k, q_0, F)$, where

- Q is a finite set of states
- $q_0 \subseteq Q$ is the initial state
- $F \subseteq Q$ is the set of final states
- k is the number of registers
- $\blacktriangleright \ \Delta \subseteq (Q \times \Sigma \times [k] \times Q) \cup (Q \times \Sigma \times Q \times [k])$

For $p, q \in Q$, $a \in \Sigma$, $i \in [k]$, transitions of the form (p, a, i, q) are called read transitions and transitions of the form (p, a, q, i) are called write transitions.

Register automaton – example

Figure: Register automaton accepting the language $\overline{L_a}$.

Register automaton – example

Figure: 1-Register automaton accepting the language L_{dd}

Register automaton – properties

Fact

Register automata are closed under union, intersection, length-preserving morphisms.

Not closed under complementation (L_a is not accepted by any register automaton.)

Register automaton – properties

Fact

Register automata are closed under union, intersection, length-preserving morphisms.

Not closed under complementation (L_a is not accepted by any register automaton.)

Lemma

If a k-register automaton A accepts any word at all, then it accepts a word containing at most k + 1 distinct data values.

Register automaton – properties

Fact

Register automata are closed under union, intersection, length-preserving morphisms.

Not closed under complementation (L_a is not accepted by any register automaton.)

Lemma

If a k-register automaton A accepts any word at all, then it accepts a word containing at most k + 1 distinct data values.

Theorem ([KF94])

Emptiness checking of register automata is decidable (NP-c).

Data automaton

Definition

A data automaton is a tuple A = (B, C) where

- ► B is a finite state transducer with input alphabet Σ and output alphabet Σ' .
- C is a finite state automaton with alphabet Σ' .
- \boldsymbol{A} has an (accepting) run on \boldsymbol{w} if
 - ► B has an (accepting) run on w defining a unique output word w'.
 - C has an (accepting) run on each class of w'.

Data automaton – example

Example (The language L_a)

- \blacktriangleright The transducer B is a copy machine, copies every letter to the output
- The automaton C accepts the language $\overline{\Sigma^* a \Sigma^* a \Sigma^*}$.

Example (The language L_{dd})

Choose the intermediate alphabet to be $\{0, 1\}$.

- ▶ B chooses two consecutive positions and label them by '1', all other positions are labelled 0.
- ▶ The automaton C accepts the language $0^*10^*10^* + 0^*$.

Theorem ([KF94, BS10])

Register automata are strictly less powerful than Data automata in terms of expressiveness.

Theorem $([BMS^+06, BS10])$

The emptiness problem for Data automata is decidable (not known to be elementary).

Counters for data words

Setup : Finite state automata + $|\Gamma|$ -many counters.

- A counter for each data value.
- ▶ All counters are initially zero.
- Whenever the automaton encounters a pair (a, d)
 - The counter for d is checked against a constraint,
 - Counter is incremented or reset.

Class counting automata

Definition

A class counting automaton, abbreviated as CCA, is a tuple CCA = $(Q, \Sigma, \Delta, I, F)$, where

- Q is a finite set of states,
- $I \subseteq Q$ is the set of initial states,
- $F \subseteq Q$ is the set of final states,
- ► $\Delta \subseteq_{fin} (Q \times \Sigma \times C \times \text{Inst} \times \mathbb{N} \times Q)$, $\text{Inst} = \{\text{inc, reset}\}, C \text{ is the set of all univariate inequalities over } \mathbb{N}.$

Class counting automata – run

- A configuration of A is a pair (q, h), where $q \in Q$ and $h: \Gamma \to \mathbb{N}$.
- ► An initial configuration of A is $(q_0, h_0), q_0 \in I$ and $\forall d \in \Gamma, h_0(d) = 0.$

Given a data word $w = (a_1, d_1), \ldots, (a_n, d_n)$, a run of A on w is a sequence $\gamma = (q_0, h_0)(q_1, h_1) \ldots, (q_n, h_n)$ such that (q_0, h_0) is an initial configuration and for each $1 \leq i \leq n$ there exists a transition $t_i = (q, a, c, \pi, m, q') \in \Delta$ such that $q = q_i, q' = q_{i+1}, a = a_{i+1}$ and:

- $\blacktriangleright h_i(d_{i+1}) \models c.$
- h_{i+1} is given by:

$$h_{i+1} = \begin{cases} h_i \oplus (d_{i+1}, m') & \text{if } \pi = \text{inc}, m' = h_i(d_{i+1}) + m \\ h_i \oplus (d_{i+1}, m) & \text{if } \pi = \text{reset} \end{cases}$$

CCA – example

Figure: CCA accepting the language L_a

CCA – example

Figure: CCA accepting the language L_{dd} .

CCA – properties

Fact

CCA-recognizable data languages are closed under union and intersection but not under complementation.

CCA – properties

Fact

CCA-recognizable data languages are closed under union and intersection but not under complementation.

Theorem

The non-emptiness problem for CCA is Expspace-complete.

CCA – extensions and subclasses

- ▶ Many bag CCA is equivalent to one bag CCA.
- ▶ CCA + context check contains register automata.
- ► CCA with counter acceptance conditions is equivalent to Data automata.
- ► CCA with presburger constraints is still in EXPSPACE.
- ▶ Two-way-ness and alternation leads to undecidability.

Logic for data words

A data word can be naturally represented as a first-order structure $w = ([n], \Sigma, <, +1, \sim).$

Example

The word *ababab* is encoded as the structure,

$$\left([6], P_a = \{1, 3, 5\}, P_b = \{2, 4, 6\}, <, +1\right).$$

Example

The data word $(a, d_2)(b, d_1)(a, d_1)(b, d_2)(a, d_3)(b, d_2)$ is encoded as the structure,

$$([6], P_a = \{1, 3, 5\}, P_b = \{2, 4, 6\}, <, +1, \sim = \{\{1, 4, 6\}, \{2, 3\}, \{5\}\}).$$

First-order logic over data words

The set of first order (abbreviated as FO) formulas over the vocabulary τ is given by the following syntax;

$$\varphi ::= x = y \mid R(x_1, \dots, x_n) \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \neg \varphi \mid \exists x \varphi$$

Theorem $([BMS^+06])$

(finite) satisfiability of FO is undecidable over data words. Undecidability prevails even for three variable fragment.

First-order logic over data words

The set of first order (abbreviated as FO) formulas over the vocabulary τ is given by the following syntax;

$$\varphi ::= x = y \mid R(x_1, \dots, x_n) \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \neg \varphi \mid \exists x \varphi$$

Theorem ([BMS+06])

(finite) satisfiability of FO is undecidable over data words. Undecidability prevails even for three variable fragment.

Theorem $([BMS^+06])$

(finite) satisfiability of FO^2 is decidable over data words.

Two-variable logic – examples

Example

The following FO² (Σ , <, +1) formula describes that the model (in this case a word) contains three '*a*'s.

$$\varphi_1 = \exists x \left(P_a(x) \land \exists y \left(x < y \land P_a(y) \land \exists x \left(y < x \land P_a(x) \right) \right) \right).$$

Example

The formula below states that each class contains an a' if it contains a b' and vice versa.

$$\varphi_2 = \forall x \left((P_a(x) \to \exists y \ (P_b(y) \land x \sim y)) \land (P_b(x) \to \exists y \ (P_a(y) \land x \sim y)) \land (P_b(x) \to \exists y \ (P_a(y) \land x \sim y)) \land (P_b(x) \to \exists y \ (P_b(y) \land x \sim y)) \land (P_b(y) \land x \sim y)) \land (P_b(y) \land x \sim y)) \land (P_b(y) \land x \sim y) \land (P_b(y) \land x \sim y)) \land (P_b(y) \land x \sim y) \land (P_b(y) \land x \sim y)) \land (P_b(y) \land x \sim y)) \land (P_b(y) \land x \sim y)) \land (P_b(y) \land x \sim y) \land (P_b(y) \land x \sim y)) \land (P_b(y) \land x \sim y)) \land (P_b(y) \land x \sim y) \land (P_b(y) \land x \sim y)) \land (P_b(y) \land x \land x \land y) \land (P_b(y) \land x \land y)) \land (P_b(y) \land x \land y) \land (P_b(y) \land x \land y)) \land (P_b(y) \land x \land y))$$

Ordered data words

Let \leq_{Γ} be a linear order on Γ .

Data values d_i and d_j on positions *i* and *j* can have any of the following relationships: $d_i = d_j$ or $d_i <_{\Gamma} d_j$ or $d_i >_{\Gamma} d_j$. This relationship can be expressed by a total preorder on positions given by,

$$i \leq_p j \Leftrightarrow d_i <_{\Gamma} d_j \text{ or } d_i = d_j.$$

Hence an ordered data word can be represented logically as a first order structure $w = ([n], \Sigma, \leq_l, +1_l, \leq_p, +1_p)$; where \leq_l denotes the linear order on positions and \leq_p denotes the total preorder on positions induced by the order on the data values.

Two-variable logic on ordered data words

Theorem $([BMS^+06, MZ11])$

Two variable logic on ordered data words is undecidable. More precisely FO² is undecidable on the vocabularies $(\Sigma, <, +1, +1_p)$ and $(\Sigma, <, +1, \leq_p)$.

To retrieve decidability one has to drop either < or +1.

Theorem ([SZ10]) Finsat of FO²($\Sigma, <_{l_1}, <_{p_2}, +1_{p_2}$) is decidable in EXPSPACE.

Theorem ([Man10])

Finsat of $FO^2(\Sigma, +1_{l_1}, +1_{l_2})$ is decidable in 2-NEXPTIME.

Theorem ([Man10])

The finite satisfiability problems for the following logics are undecidable.

(a) FO²
$$(\Sigma, \leq_{l_1}, +1_{l_1}, \leq_{l_2}, +1_{l_2})$$

(b) FO³ $(\Sigma, +1_{l_1}, +1_{l_2})$
(c) FO² $(\Sigma, +1_{l_1}, +2_{l_1}, +3_{l_1}, +1_{l_2}, +2_{l_2})$

Two-variable logic on ordered data words

Theorem ([MZ11])

Finite satisfiability of $FO^2(\Sigma, +1_{l_1}, <_{p_2}, +1_{p_2})$ is decidable when classes of $<_{p_2}$ are of size at most k.

For the proof, the notion of data automata are generalized so that they accept ordered data words. A translation from the above logic to these automata is established and finally the non-emptiness of these automata are shown to be decidable by reduction to reachability problem in vector addition systems. Since it is definable in FO² that \langle_{p_2} is a linear order,

Corollary

Finite satisfiability of $FO^2(\Sigma, +1_{l_1}, <_{l_2}, +1_{l_2})$ is decidable (not known to be elementary).

This corollary completes the classification of FO over two linear orders.

Undecidability in 2-ss

Theorem ([Man10])

The finite satisfiability problems for the following logics are undecidable.

(a)
$$FO^{2}(\Sigma, \leq_{l_{1}}, +1_{l_{1}}, \leq_{l_{2}}, +1_{l_{2}})$$

(b) $FO^{3}(\Sigma, +1_{l_{1}}, +1_{l_{2}})$
(c) $FO^{2}(\Sigma, +1_{l_{1}}, +2_{l_{1}}, +3_{l_{1}}, +1_{l_{2}}, +2_{l_{2}})$

Proof.

Reduction from PCP. $I = \{(u_i, v_i) \mid i \in [n], u_i, v_i \in \Sigma^{\leq 2}\}$ over the alphabet $\Sigma = \{l_1, l_2, \dots l_k\}.$ We encode the PCP solution as structures in the above vocabularies, in the following way. Let $\Sigma' = \{l'_1, l'_2, \dots l'_k\}$ and $\hat{\Sigma} = \Sigma \cup \Sigma'.$

Proof contd.

Given a word $w = a_1 a_2 \dots a_n$ in Σ^* , we denote by w' the word $a'_1 a'_2 \dots a'_n$ in Σ'^* . A solution of I is a structure $\mathcal{A} = (A, \hat{\Sigma}, +1_{l_1}, +1_{l_2})$ over $\hat{\Sigma}$ such that,

- (1) The word $(A, \hat{\Sigma}, +1_{l_1})$ is in the language $(u_1v'_1 + u_2v'_2 \dots + u_nv'_n)^+$. This language is expressible in FO² $(\hat{\Sigma}, +1_{l_1})$, let us call it φ_1 .
- (2) The word $(A, \hat{\Sigma}, +1_{l_2})$ is in the language $(l_1l'_1 + l_2l'_2 \dots + l_kl'_k)^+$. This language is expressible in FO² $(\hat{\Sigma}, +1_{l_2})$ by the formulas (call them φ_2),

Proof contd.

►

Enforcing the matching,

$$\varphi_{3a} \equiv \forall xy \ \left((\Sigma(x) \land \Sigma(y) \land x \leq_{l_1} y \to x \leq_{l_2} y) \right)$$
$$\land \left(\Sigma'(x) \land \Sigma'(y) \land x \leq_{l_1} y \to x \leq_{l_2} y \right)$$

$$\begin{split} \varphi_{3b} &\equiv \forall xyz \big(\big(\Sigma(x) \land \Sigma(y) \land \Sigma'(z) \land S(x,y) \land x + \mathbf{1}_{l_2} z \big) \to z + \mathbf{1}_{l_2} y \big) \\ \wedge \forall xyz \big(\big(\Sigma'(x) \land \Sigma'(y) \land \Sigma(z) \land S(x,y) \land x + \mathbf{1}_{l_2} z \big) \to z + \mathbf{1}_{l_2} y \big) \end{split}$$

$$\varphi_{3c} \equiv \forall xy \ \left((\Sigma(x) \land \Sigma(y) \land S(x,y)) \to x + 2_{l_2}y \right)$$

$$\land \forall xy \ \left((\Sigma'(x) \land \Sigma'(y) \land S(x,y)) \to x + 2_{l_2}y \right)$$

Logic	Complexity (lower/upper)	Comments		
One linear order				
$FO^2(+1_l)$	NEXPTIME-complete	[EVW02]		
$\mathrm{FO}^2(\leq_l)$	NEXPTIME-complete	[EVW02]		
$\mathrm{FO}^2(+1_l,\leq_l)$	NEXPTIME-complete	[EVW02]		
One total preorder				
$FO^2(+1_p)$	NEXPTIME-complete			
$\mathrm{FO}^2(\leq_p)$	NEXPTIME-complete			
$\mathrm{FO}^2(+1_p, \leq_p)$	Expspace-complete	[SZ11]		
Two linear orders				
${\rm FO}^2(+1_{l_1};+1_{l_2})$	NEXPTIME/2-NEXPTIME	[Man10]		
$\mathrm{FO}^2(+1_{l_1};\leq_{l_2})$	NEXPTIME/EXPSPACE	[SZ11]		
$\mathrm{FO}^2(+1_{l_1},\leq_{l_1};+1_{l_2})$	VASS-REACHABILITY/Decidable [MZ11]			
$\mathrm{FO}^2(+1_{l_1},\leq_{l_1};\leq_{l_2})$	NXPTIME/EXPSPACE	[SZ11]		
$\mathrm{FO}^2(+1_{l_1},\leq_{l_1};+1_{l_2},\leq_{l_2})$	Undecidable	[MZ11]		

Figure: Summary of results on finite satisfiability of FO^2 with successor and order relations. Cases that are symmetric and where undecidability is implied are omitted.

Logic	Complexity (lower/upper)	Comments		
Two total preorders				
$FO^2(+1_{p_1},+1_{p_2})$	Undecidable	[MZ11]		
$\mathrm{FO}^2(+1_{p_1};\leq_{p_2})$	Undecidable	[MZ11]		
$\mathrm{FO}^2(\leq_{p_1};\leq_{p_2})$	Undecidable	[SZ10]		
One linear order and one total preorder				
$FO^2(+1_{l_1};+1_{p_2})$?			
$\mathrm{FO}^2(+1_{l_1},\leq_{l_1};+1_{p_2})$	Undecidable	[MZ11]		
$\mathrm{FO}^2(+1_{l_1},\leq_{l_1};\leq_{p_2})$	Undecidable	[BMS ⁺ 06]		
${\rm FO}^2(+1_{l_1};+1_{p_2},\leq_{p_2})$?			
$\mathrm{FO}^2(\leq_{l_1};+1_{p_2},\leq_{p_2})$	Expspace-complete	[SZ11]		
Many orders				
$FO^2(\leq_{l_1},\leq_{l_2},\leq_{p_3})$	Undecidable	[SZ10]		
$\mathrm{FO}^2(\leq_{l_1},\ldots,\leq_{l_3})$	Undecidable	[Kie11]		
$\mathrm{FO}^2(+1_{l_1},\ldots,+1_{l_k})$?			

Figure: Summary of results on finite satisfiability of FO^2 with successor and order relations. Cases that are symmetric and where undecidability is implied are omitted.

2-successor structures

• Marking alphabet
$$\Gamma = \{-1, 0, 1\}$$
.

Definition (Marked String Projections of \mathfrak{A})

$$\operatorname{msp}_{\prec_1}(\mathfrak{A}) = \left(A, (P_a)_{a \in \Sigma}, (M_i)_{i \in \Gamma}, \prec_1\right)$$

$$\operatorname{msp}_{\prec_2}(\mathfrak{A}) = \left(A, (P_a)_{a \in \Sigma}, (M_i)_{i \in \Gamma}, \prec_2\right)$$

• msp's are words over the alphabet $\Sigma \times \Gamma$.

Lemma

Let $x \prec_1 y$. The marking $M_{\prec_2}(y)$ can be computed from $M_{\prec_1}(x)$ and $M_{\prec_1}(y)$.

Proof. Construct a table. Example

Automata on 2-ss

Definition (2-ss Automaton)

A 2-ss automaton \mathcal{T} is a tuple $(\mathcal{B}, \Sigma_o, \mathcal{C})$ where,

- \mathcal{B} Finite state transducer with input alphabet $\Sigma \times \Gamma$ and output alphabet Σ_o ,
- Σ_o Intermediate alphabet,
 - \mathcal{C} Finite state recognizer with input alphabet Σ_o .

Definition (Run of \mathcal{T})

A run $\rho_{\mathcal{T}}$ of the 2-ss automaton \mathcal{T} is of the form $\rho_{\mathcal{T}} = (\rho_{\mathcal{B}}, \rho_{\mathcal{C}})$,

- $\ \, \bullet \ \, \rho_{\mathcal{B}} \text{ is a run of } \mathcal{B} \text{ on } \operatorname{msp}_{\prec_1} \left(\mathfrak{A} \right) \text{ outputting } \left(A, (P_a)_{a \in \Sigma_o}, \prec_1 \right) \\ \text{ over } \Sigma_o,$
- $\rho_{\mathcal{C}}$ is a run of \mathcal{C} on $(A, (P_a)_{a \in \Sigma_o}, \prec_2)$.

The run is *accepting* if both $\rho_{\mathcal{B}}$ and $\rho_{\mathcal{C}}$ are accepting. $\mathcal{L}(\mathcal{T}) = \{\mathfrak{A} \mid \mathcal{T} \text{ has an accepting run on } \mathfrak{A}\}.$

Example Languages

Example

$$\mathcal{L}_1 = \{ \mathfrak{A} = (A, (P_a)_{a \in \Sigma}, \prec_1, \prec_2) \mid \prec_1 = \prec_2 \}$$

Check the markings.

Example

 $\begin{aligned} \mathcal{L}_2 &= \{ \mathfrak{A} \ | \ \operatorname{sp}_{\prec_1}(\mathfrak{A}) \in a^* \cdot b^* \cdot c^*, \operatorname{sp}_{\prec_2}(\mathfrak{A}) \in (a \cdot b \cdot c)^* \} \\ \text{The transducer } \mathcal{B} \text{ projects the marked string to } \Sigma \text{ and checks if } \\ \text{it belongs to } a^* \cdot b^* \cdot c^*. \text{ The automaton } \mathcal{C} \text{ checks if its input is } \\ \text{in } (a \cdot b \cdot c)^*. \end{aligned}$

Example

$$\mathcal{L}_3 = \{ \mathfrak{A} \mid \forall xy \, (a(x) \land b(y) \to x \prec_1 y \lor x \prec_2 y) \}$$

Use transduction!.

1. Given a regular language $\mathcal{L} \subseteq \Sigma^*$, there is a 2-ss automaton accepting all 2-ss whose projections to \prec_1 is in \mathcal{L} .

2. Similarly, there is a 2-ss automaton accepting all 2-ss whose projections to \prec_2 is in \mathcal{L} .

Proof.

1. The transducer \mathcal{B} checks if the projection to \prec_1 (ignoring the markings) is in \mathcal{L} and \mathcal{C} accepts Σ_o^* .

2. The transducer \mathcal{B} simply copies the string (ignoring the markings) and \mathcal{C} accepts if its input is in \mathcal{L} .

Languages recognized by 2-SS automata are closed under union, intersection and renaming.

Proof.

Closure under union and intersection is obtained from usual product construction (using a composed output alphabet).

Closure under renaming is achieved using the non-determinism of the transducer.

 \mathcal{L}_m is the set of all 2-ss $\mathfrak{A} = (A, \lambda, \prec_1, \prec_2)$ such that,

$$\blacktriangleright \ \operatorname{sp}_{\prec_1}(\mathfrak{A}) \quad \in \quad \diamondsuit \cdot a^+ \cdot \clubsuit \cdot \heartsuit \cdot b^+ \cdot \diamondsuit,$$

$$\blacktriangleright \operatorname{sp}_{\prec_2}(\mathfrak{A}) \quad \in \quad \diamondsuit \cdot \heartsuit \cdot (a \cdot b)^+ \cdot \clubsuit \cdot \diamondsuit,$$

► $\exists x, y \in A, \lambda(x) = \lambda(y)$ such that $x \prec_1^+ y$ and $y \prec_2^+ x$.

 \mathcal{L}_m is accepted by a 2-ss automaton. But $\overline{\mathcal{L}_m}$ is not accepted by any 2-ss automaton.

Proof.

Pumping and Crosswiring.

Lemma

The class of languages accepted by 2-SS automata are not closed under complementation.

Theorem

Given a 2-ss automaton \mathcal{T} , there is a formula $\varphi_{\mathcal{T}} \in \text{EMSO}^2(\Sigma, \prec_1, \prec_2)$ such that $\mathcal{L}(\mathcal{T}) = \mathcal{L}(\varphi_{\mathcal{T}})$.

Proof.

Let $\Sigma_o = \{l_1, \ldots, l_n\}$. The formula $\varphi_{\mathcal{T}}$ states that there is a run of \mathcal{T} on \mathfrak{A} in the following way,

$$\varphi_{\mathcal{T}} = \exists P_{l_1} P_{l_2} \dots P_{l_n} \left(\varphi_{\text{part}} \left(P_{l_1}, \dots, P_{l_n} \right) \land \varphi_{\mathcal{B}} \land \varphi_{\mathcal{C}} \right)$$

- $\varphi_{\text{part}}(P_{l_1}, \ldots, P_{l_n})$ says that the predicates P_{l_1}, \ldots, P_{l_n} form a partition of the set of all positions.
- $\varphi_{\mathcal{B}}$ is the encoding of \mathcal{B} in EMSO² $(\Sigma, P_{l_1}, \ldots, P_{l_n}, \prec_1)$.
- $\varphi_{\mathcal{C}}$ is the encoding of \mathcal{C} in EMSO² $(P_{l_1}, \ldots, P_{l_n}, \prec_2)$.

 P_{l_1}, \ldots, P_{l_n} are free in $\varphi_{\mathcal{B}}$ and $\varphi_{\mathcal{C}}$.

Logic to Automata

Translation to Scott Form

$$\varphi \Leftrightarrow \exists R_1 \dots R_n \left(\forall x \forall y \ \chi \land \bigwedge_i \forall x \exists y \ \psi_i \right)$$

The predicates R_i are unary, and χ and ψ_i are quantifier-free formulas in FO²(Σ, \prec_1, \prec_2).

2-ss are closed under renaming and intersection.

Hence it suffices to construct a 2-ss automaton for each of the formulas $\forall x \forall y \ \chi$ and $\forall x \exists y \ \psi_i$.

Given an FO²(Σ, \prec_1, \prec_2) formula of the form $\varphi = \forall x \forall y \chi$ where χ is quantifier free, an equivalent 2-ss automaton of doubly exponential size can be constructed.

Proof.

 φ can be reduced to a conjunction of exponentially many formulas in one the following forms,

- 1. True, False, A formula over one successor relation,
- 2. $\forall xy (\alpha(x) \land \beta(y) \land x \neq y \land x \prec_1 y \to \delta_2(x, y)),$
- 3. $\forall xy (\alpha(x) \land \beta(y) \land x \neq y \land x \prec_2 y \to \delta_1(x,y)),$
- 4. $\forall xy \left(\alpha(x) \land \beta(y) \land x \neq y \to \delta_1^+(x,y) \lor \delta_2^+(x,y) \right),$

where

 $\begin{array}{l} \alpha,\beta: \text{ types, } \delta_i: \text{ disjunction over } O_i, \, \delta_i^+: \text{ disjunction over } O_i^+.\\ O_i^+ = \{x \prec_i y, y \prec_i x\}, \, O_i = \{x \prec_i y, x \not\prec_i y, y \prec_i x, y \not\prec_i x\}.\\ \text{Each of these formulas can be translated to a 2-SS}\\ \text{automaton.} \end{array}$

For each $FO^2(\Sigma, \prec_1, \prec_2)$ formula of the form $\varphi = \forall x \exists y \ \psi$ where ψ is quantifier free, an equivalent 2-ss automaton of doubly exponential size can be constructed.

Proof.

 φ can be reduced to a conjunction of exponentially many formulas in one the following forms,

- 1. A formula over one successor relation,
- 2. $\forall x \exists y (\alpha(x) \to \beta(y) \land x \neq y \land \delta_1^+(x, y) \land \delta_2(x, y)),$
- 3. $\forall x \exists y (\alpha(x) \rightarrow \beta(y) \land x \neq y \land \delta_2^+(x,y) \land \delta_1(x,y)),$
- 4. $\forall x \exists y (\alpha(x) \to \beta(y) \land x \neq y \land \delta_1^-(x, y) \land \delta_2^-(x, y)).$

where

 $\begin{array}{l} \alpha,\beta: \text{ types, } \delta_i \in O_i, \, \delta_i^+ \in O_i^+, \, \delta_i^-: \text{ conjunction over } O_i^-.\\ O_i^- = \left\{ x \not\prec_i y, y \not\prec_i x \right\}, \end{array}$

Each of these formulas can be translated to a 2-ss automaton.

Given an EMSO² $(\Sigma, \prec_1, \prec_2)$ formula φ , there exists a 2-ss automaton \mathcal{T}_{φ} such that $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{T}_{\varphi})$.

Theorem

 \mathcal{L} is definable in EMSO²(Σ, \prec_1, \prec_2) if and only if \mathcal{L} is recognized by a 2-ss automaton.

Decidability of 2-ss Automata

Proof Idea

Given a 2-ss automaton $\mathcal{T} = (\mathcal{B}, \mathcal{C}), \mathcal{L}(\mathcal{T})$ is non-empty if there is a marked word w such that,

- w is accepted by \mathcal{B}
- a permutation of output of \mathcal{B} on w, 'consistent' with the marking of w, is accepted by \mathcal{C} .

- ► Let $w = ([n], \lambda, \prec)$ be a marked word of length n. We denote the projection of w to Σ by $w \downarrow \Sigma$.
- ▶ Given a permutation $\pi : [n] \to [n], \pi(w)$ is defined as the word

 $([n], \pi^{-1} \circ \lambda, \prec).$

► π defines a successor relation $\prec_{\pi} = \pi^{-1}(1) \dots \pi^{-1}(n)$ on the positions.

We say that the permutation π is *consistent* with the marking if w is the marked string projection of the 2-ss $\mathfrak{A} = ([n], \lambda, \prec, \prec_{\pi})$ to the order \prec .

Definition (mperm(w))

Given $w \in \Sigma^*$, by mperm(w), we denote the set of all the marked words w' such that there is a permutation π consistent with the marking such that $\pi(w \downarrow \Sigma) = w$. Given $\mathcal{L} \subseteq \Sigma^*$, we define mperm $(\mathcal{L}) = \bigcup_{w' \in \mathcal{L}} mperm(w')$.

Definition (Presburger word automaton, Habermahl–Muscholl–Schwentick–Seidl, 04)

A Presburger word automaton \mathcal{P} is a tuple $(\mathcal{A}, \mathcal{S})$,

- \mathcal{A} is a finite state automaton with states $Q = \{q_1, \dots, q_n\},\$
- S is a semi-linear set in \mathbb{N}^n .

A word w is accepted by the automaton \mathcal{P} if,

• there is an accepting run ρ of \mathcal{A} on w,

$$\bullet (|\rho|_{q_0}, \ldots, |\rho|_{q_n}) \in \mathcal{S}.$$

Example

The following languages are recognizable by a Presburger word automaton.

$$\{a^{n}b^{n}c^{n} \mid n \in \mathbb{N}\}, \{w \in \Sigma^{*} \mid 5 \cdot |w|_{a} = 2 \cdot |w|_{b} - 3 \cdot |w|_{c}\},\$$

Permutation(\mathcal{L}) if \mathcal{L} is context-free.

If \mathcal{L} is regular then mperm (\mathcal{L}) is accepted by a Presburger automaton.

Proof.

- Given an automaton C for \mathcal{L} , the Presburger automaton \mathcal{P} checks non-deterministically if there is a run of C on some consistent permutation of w.
- ► To achieve this, the automaton \mathcal{P} assigns a transition $\delta = (p, a_i, q) \in \Delta$ to each position *i* of the marked word.
- ► We can define a flow f where each transition δ of C is labelled by the number of times it is associated with a position.
- ▶ Finally, we can write linear constraints which checks that,
 - 1. f is locally consistent,
 - 2. the subgraph induced by the states with a non-zero flow is connected,
 - **3**. f is consistent with the marking.
- ▶ The resulting automata \mathcal{P} is poly-sized in terms of the size

Theorem

Emptiness checking of a 2-ss automaton $\mathcal{T} = (\mathcal{B}, \mathcal{C})$ is in NP.

Proof.

- ► Construct a Presburger automaton \mathcal{P} with linear constraints which accepts mperm($\mathcal{L}(\mathcal{C})$).
- ► Take the intersection of the transducer \mathcal{B} and \mathcal{P} in such a way that the output of \mathcal{B} is supplied as the input of \mathcal{P} .
- ► Finally we check the emptiness of the resulting automaton which is in NP.

Theorem

Emptiness checking of a Presburger automaton is polynomial time reducible to the emptiness checking of a 2-SS automaton. Theorem Finite Satisfiability problem of $FO^2(\Sigma, \prec_1, \prec_2)$ is in 2-NEXPTIME.

Proof.

Given φ , construct \mathcal{T}_{φ} , check if $\mathcal{L}(\mathcal{T}_{\varphi})$ is non-empty.

Over words, FINSAT of both $FO^2(\Sigma)$ and $FO^2(\prec)$ with one unary predicate are NEXPTIME-hard [Etessami, 02].

Thank You!

 Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David. Two-variable logic on words with data. In *LICS*, pages 7–16. IEEE Computer Society, 2006.

Henrik Björklund and Thomas Schwentick. On notions of regularity for data languages. *Theoretical Computer Science*, 411(4-5):702–715, 2010.

Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables and unary temporal logic. Information and Computation, 179(2):279 – 295, 2002.

Michael Kaminski and Nissim Francez.
 Finite-memory automata.
 Theoretical Computer Science, 134(2):329–363, 1994.

🔋 Emanuel Kieronski.

Decidability issues for two-variable logics with several linear orders.

In CSL, volume 12 of LIPIcs, pages 337–351, 2011.

Amaldev Manuel.

Two orders and two variables. In *MFCS*, volume 6281 of *LNCS*, pages 513–524, 2010.

- Amaldev Manuel and Thomas Zeume. Two variable logic with a linear successor and a preorder. Under preparation, 2011.
- Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. In *CSL*, volume 6247 of *LNCS*, pages 499–513, 2010.
- Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. To appear, 2011.