Counter Automata and Classical Logics for Data Words

Amal Dev Manuel amal@imsc.res.in
Institute of Mathematical Sciences,
Taramani, Chennai, India.

January 31, 2012

Data Words

Definition (Data Words)
A data word $w=\left(a_{1}, d_{1}\right) \ldots\left(a_{n}, d_{n}\right), a_{i} \in \Sigma, d_{i} \in \Delta$ where,

- Σ is a finite alphabet.
- Δ is an (recursive) infinite set .

Definition (Data Language)
A data language $L \subseteq(\Sigma \times \Delta)^{*}$.
Example
$L_{\exists n} \quad$ All w in which at least n distinct data values occur.
$L_{<n} \quad$ All w in which every data value occurs at most n times.
$L_{a^{*} b^{*}}$ All w whose string projections are in the set $a^{*} b^{*}$.
$L_{a} \quad$ All w under the label a are different.
$L_{a \rightarrow b} \quad$ All w occurring under a occurs under b as well.
$L_{d d} \quad$ There is a d in w which occurs in consecutive positions.

Regularity for Data Languages

Regularity - Confluence of $\left\{\begin{array}{l}\text { Robustness, } \\ \text { Low complexity decision problems, } \\ \text { Alternate characterizations, } \\ \text { Nice closure properties. }\end{array}\right.$

Question. What constitutes the class of regular data languages? Approach. Try to extend regular word "devices" to data words.
"devices" - Regular expressions, Linear grammars, Monadic second order logic, Finite state automata.

Extensions of finite state automata

Memory-structures

- stack
- push-down
- hash-table
- registers
- counters

Register automata

Finite state automata + registers storing data values
Definition ([KF94])
A k-Register automaton $A=\left(Q, \Sigma, \Delta, k, q_{0}, F\right)$, where

- Q is a finite set of states
- $q_{0} \subseteq Q$ is the initial state
- $F \subseteq Q$ is the set of final states
- k is the number of registers
- $\Delta \subseteq(Q \times \Sigma \times[k] \times Q) \cup(Q \times \Sigma \times Q \times[k])$

For $p, q \in Q, a \in \Sigma, i \in[k]$, transitions of the form (p, a, i, q) are called read transitions and transitions of the form (p, a, q, i) are called write transitions.

Register automaton - example

Figure: Register automaton accepting the language $\overline{L_{a}}$.

Register automaton - example

Figure: 1-Register automaton accepting the language $L_{d d}$

Register automaton - properties

Fact

Register automata are closed under union, intersection, length-preserving morphisms.
Not closed under complementation (L_{a} is not accepted by any register automaton.)

Register automaton - properties

Fact

Register automata are closed under union, intersection, length-preserving morphisms.
Not closed under complementation (L_{a} is not accepted by any register automaton.)
Lemma
If a k-register automaton A accepts any word at all, then it accepts a word containing at most $k+1$ distinct data values.

Register automaton - properties

Fact

Register automata are closed under union, intersection, length-preserving morphisms.
Not closed under complementation (L_{a} is not accepted by any register automaton.)

Lemma
If a k-register automaton A accepts any word at all, then it accepts a word containing at most $k+1$ distinct data values.

Theorem ([KF94])
Emptiness checking of register automata is decidable (NP-c).

Data automaton

Definition
A data automaton is a tuple $A=(B, C)$ where

- B is a finite state transducer with input alphabet Σ and output alphabet Σ^{\prime}.
- C is a finite state auotmaton with alphabet Σ^{\prime}.
A has an (accepting) run on w if
- B has an (accepting) run on w defining a unique output word w^{\prime}.
- C has an (accepting) run on each class of w^{\prime}.

Data automaton - example

Example (The language L_{a})

- The transducer B is a copy machine, copies every letter to the output
- The automaton C accepts the language $\overline{\Sigma^{*} a \Sigma^{*} a \Sigma^{*}}$.

Data automaton - example

Example (The language $L_{d d}$)
Choose the intermediate alphabet to be $\{0,1\}$.

- B chooses two consecutive positions and label them by ' 1 ', all other positions are labelled 0 .
- The automaton C accepts the language $0^{*} 10^{*} 10^{*}+0^{*}$.

Data automaton - properties

Theorem ([KF94, BS10])
Register automata are strictly less powerful than Data automata in terms of expressiveness.

Theorem ([$\left.\mathrm{BMS}^{+} 06, \mathrm{BS} 10\right]$)

The emptiness problem for Data automata is decidable (not known to be elementary).

Counters for data words

Setup : Finite state automata $+|\Gamma|$-many counters.

- A counter for each data value.
- All counters are initially zero.
- Whenever the automaton encounters a pair (a, d)
- The counter for d is checked against a constraint,
- Counter is incremented or reset.

Class counting automata

Definition

A class counting automaton, abbreviated as CCA, is a tuple $\mathrm{CCA}=(Q, \Sigma, \Delta, I, F)$, where

- Q is a finite set of states,
- $I \subseteq Q$ is the set of initial states,
- $F \subseteq Q$ is the set of final states,
- $\Delta \subseteq_{\text {fin }}(Q \times \Sigma \times C \times \operatorname{Inst} \times \mathbb{N} \times Q)$, Inst $=\{$ inc, reset $\}, C$ is the set of all univariate inequalities over \mathbb{N}.

Class counting automata - run

- A configuration of A is a pair (q, h), where $q \in Q$ and $h: \Gamma \rightarrow \mathbb{N}$.
- An initial configuration of A is $\left(q_{0}, h_{0}\right), q_{0} \in I$ and $\forall d \in \Gamma, h_{0}(d)=0$.

Given a data word $w=\left(a_{1}, d_{1}\right), \ldots\left(a_{n}, d_{n}\right)$, a run of A on w is a sequence $\gamma=\left(q_{0}, h_{0}\right)\left(q_{1}, h_{1}\right) \ldots\left(q_{n}, h_{n}\right)$ such that $\left(q_{0}, h_{0}\right)$ is an initial configuration and for each $1 \leq i \leq n$ there exists a transition $t_{i}=\left(q, a, c, \pi, m, q^{\prime}\right) \in \Delta$ such that $q=q_{i}, q^{\prime}=q_{i+1}$, $a=a_{i+1}$ and:

- $h_{i}\left(d_{i+1}\right) \models c$.
- h_{i+1} is given by:

$$
h_{i+1}=\left\{\begin{array}{lll}
h_{i} \oplus\left(d_{i+1}, m^{\prime}\right) & \text { if } & \pi=\mathrm{inc}, m^{\prime}=h_{i}\left(d_{i+1}\right)+m \\
h_{i} \oplus\left(d_{i+1}, m\right) & \text { if } & \pi=\text { reset }
\end{array}\right.
$$

CCA - example

Figure: CCA accepting the language L_{a}

CCA - example

Figure: CCA accepting the language $L_{d d}$.

CCA - properties

Fact
CCA-recognizable data languages are closed under union and intersection but not under complementation.

CCA - properties

Fact
CCA-recognizable data languages are closed under union and intersection but not under complementation.

Theorem

The non-emptiness problem for $C C A$ is ExpSPACE-complete.

CCA - extensions and subclasses

- Many bag CCA is equivalent to one bag CCA.
- CCA + context check contains register automata.
- CCA with counter acceptance conditions is equivalent to Data automata.
- CCA with presburger constraints is still in Expspace.
- Two-way-ness and alternation leads to undecidability.

Logic for data words

A data word can be naturally represented as a first-order structure $w=([n], \Sigma,<,+1, \sim)$.
Example
The word $a b a b a b$ is encoded as the structure,

$$
\left([6], P_{a}=\{1,3,5\}, P_{b}=\{2,4,6\},<,+1\right) .
$$

Example
The data word $\left(a, d_{2}\right)\left(b, d_{1}\right)\left(a, d_{1}\right)\left(b, d_{2}\right)\left(a, d_{3}\right)\left(b, d_{2}\right)$ is encoded as the structure,

$$
\left([6], P_{a}=\{1,3,5\}, P_{b}=\{2,4,6\},<,+1, \sim=\{\{1,4,6\},\{2,3\},\{5\}\}\right) .
$$

First-order logic over data words

The set of first order (abbreviated as FO) formulas over the vocabulary τ is given by the following syntax;

$$
\varphi::=x=y\left|R\left(x_{1}, \ldots, x_{n}\right)\right| \varphi \vee \varphi|\varphi \wedge \varphi| \neg \varphi \mid \exists x \varphi
$$

Theorem ([BMS $\left.\left.{ }^{+} 06\right]\right)$
(finite) satisfiability of FO is undecidable over data words.
Undecidability prevails even for three variable fragment.

First-order logic over data words

The set of first order (abbreviated as FO) formulas over the vocabulary τ is given by the following syntax;

$$
\varphi::=x=y\left|R\left(x_{1}, \ldots, x_{n}\right)\right| \varphi \vee \varphi|\varphi \wedge \varphi| \neg \varphi \mid \exists x \varphi
$$

Theorem ([BMS $\left.\left.{ }^{+} 06\right]\right)$

(finite) satisfiability of FO is undecidable over data words.
Undecidability prevails even for three variable fragment.
Theorem ([BMS $\left.\left.{ }^{+} 06\right]\right)$
(finite) satisfiability of FO^{2} is decidable over data words.

Two-variable logic - examples

Example

The following $\mathrm{FO}^{2}(\Sigma,<,+1)$ formula describes that the model (in this case a word) contains three ' a 's.

$$
\varphi_{1}=\exists x\left(P_{a}(x) \wedge \exists y\left(x<y \wedge P_{a}(y) \wedge \exists x\left(y<x \wedge P_{a}(x)\right)\right)\right) .
$$

Example

The formula below states that each class contains an ' a ' if it contains a ' b ' and vice versa.

$$
\varphi_{2}=\forall x\left((P _ { a } (x) \rightarrow \exists y (P _ { b } (y) \wedge x \sim y)) \wedge \left(P_{b}(x) \rightarrow \exists y\left(P_{a}(y) \wedge x \sim y\right)\right.\right.
$$

Ordered data words

Let \leq_{Γ} be a linear order on Γ.
Data values d_{i} and d_{j} on positions i and j can have any of the following relationships: $d_{i}=d_{j}$ or $d_{i}<_{\Gamma} d_{j}$ or $d_{i}>_{\Gamma} d_{j}$. This relationship can be expressed by a total preorder on positions given by,

$$
i \leq_{p} j \Leftrightarrow d_{i}<_{\Gamma} d_{j} \text { or } d_{i}=d_{j} .
$$

Hence an ordered data word can be represented logically as a first order structure $w=\left([n], \Sigma, \leq_{l},+1_{l}, \leq_{p},+1_{p}\right)$; where \leq_{l} denotes the linear order on positions and \leq_{p} denotes the total preorder on positions induced by the order on the data values.

Two-variable logic on ordered data words

Theorem ([BMS $\left.\left.{ }^{+} 06, ~ M Z 11\right]\right)$

Two variable logic on ordered data words is undecidable. More precisely FO^{2} is undecidable on the vocabularies $\left(\Sigma,<,+1,+1_{p}\right)$ and $\left(\Sigma,<,+1, \leq_{p}\right)$.
To retrieve decidability one has to drop either $<$ or +1 .
Theorem ([SZ10])
Finsat of $\operatorname{FO}^{2}\left(\Sigma,<_{l_{1}},<_{p_{2}},+1_{p_{2}}\right)$ is decidable in Expspace.
Theorem ([Man10])
Finsat of $\mathrm{FO}^{2}\left(\Sigma,+1_{l_{1}},+1_{l_{2}}\right)$ is decidable in 2 -Nexptime.

Undecidability

Theorem ([Man10])
The finite satisfiability problems for the following logics are undecidable.
(a) $\mathrm{FO}^{2}\left(\Sigma, \leq_{l_{1}},+1_{l_{1}}, \leq_{l_{2}},+1_{l_{2}}\right)$
(b) $\mathrm{FO}^{3}\left(\Sigma,+1_{l_{1}},+1_{l_{2}}\right)$
(c) $\mathrm{FO}^{2}\left(\Sigma,+1_{l_{1}},+2_{l_{1}},+3_{l_{1}},+1_{l_{2}},+2_{l_{2}}\right)$

Two-variable logic on ordered data words

Theorem ([MZ11])

Finite satisfiability of $\mathrm{FO}^{2}\left(\Sigma,+1_{l_{1}},<_{p_{2}},+1_{p_{2}}\right)$ is decidable when classes of $<p_{2}$ are of size at most k.
For the proof, the notion of data automata are generalized so that they accept ordered data words. A translation from the above logic to these automata is established and finally the non-emptiness of these automata are shown to be decidable by reduction to reachability problem in vector addition systems. Since it is definable in FO^{2} that $<_{p_{2}}$ is a linear order,

Corollary

Finite satisfiability of $\mathrm{FO}^{2}\left(\Sigma,+1_{l_{1}},<l_{l_{2}},+1_{l_{2}}\right)$ is decidable (not known to be elementary).
This corollary completes the classification of FO over two linear orders.

Undecidability in 2-ss

Theorem ([Man10])

The finite satisfiability problems for the following logics are undecidable.
(a) $\mathrm{FO}^{2}\left(\Sigma, \leq_{l_{1}},+1_{l_{1}}, \leq_{l_{2}},+1_{l_{2}}\right)$
(b) $\mathrm{FO}^{3}\left(\Sigma,+1_{l_{1}},+1_{l_{2}}\right)$
(c) $\mathrm{FO}^{2}\left(\Sigma,+1_{l_{1}},+2_{l_{1}},+3_{l_{1}},+1_{l_{2}},+2_{l_{2}}\right)$

Proof.
Reduction from PCP.
$I=\left\{\left(u_{i}, v_{i}\right) \mid i \in[n], u_{i}, v_{i} \in \Sigma^{\leq 2}\right\}$ over the alphabet
$\Sigma=\left\{l_{1}, l_{2}, \ldots l_{k}\right\}$.
We encode the PCP solution as structures in the above vocabularies, in the following way. Let $\Sigma^{\prime}=\left\{l_{1}^{\prime}, l_{2}^{\prime}, \ldots l_{k}^{\prime}\right\}$ and $\hat{\Sigma}=\Sigma \cup \Sigma^{\prime}$.

Proof contd.

Given a word $w=a_{1} a_{2} \ldots a_{n}$ in Σ^{*}, we denote by w^{\prime} the word $a_{1}^{\prime} a_{2}^{\prime} \ldots a_{n}^{\prime}$ in $\Sigma^{\prime *}$.
A solution of I is a structure $\mathcal{A}=\left(A, \hat{\Sigma},+1_{l_{1}},+1_{l_{2}}\right)$ over $\hat{\Sigma}$ such that,
(1) The word $\left(A, \hat{\Sigma},+1_{l_{1}}\right)$ is in the language $\left(u_{1} v_{1}^{\prime}+u_{2} v_{2}^{\prime} \ldots+u_{n} v_{n}^{\prime}\right)^{+}$. This language is expressible in $\mathrm{FO}^{2}\left(\hat{\Sigma},+1_{l_{1}}\right)$, let us call it φ_{1}.
(2) The word $\left(A, \hat{\Sigma},+1_{l_{2}}\right)$ is in the language $\left(l_{1} l_{1}^{\prime}+l_{2} l_{2}^{\prime} \ldots+l_{k} l_{k}^{\prime}\right)^{+}$. This language is expressible in $\mathrm{FO}^{2}\left(\hat{\Sigma},+1_{l_{2}}\right)$ by the formulas (call them φ_{2}),

Proof contd.

Enforcing the matching,

$$
\begin{aligned}
\varphi_{3 a} & \equiv \forall x y \quad\left(\left(\Sigma(x) \wedge \Sigma(y) \wedge x \leq_{l_{1}} y \rightarrow x \leq_{l_{2}} y\right)\right. \\
& \left.\wedge\left(\Sigma^{\prime}(x) \wedge \Sigma^{\prime}(y) \wedge x \leq_{l_{1}} y \rightarrow x \leq_{l_{2}} y\right)\right)
\end{aligned}
$$

$$
\varphi_{3 b} \equiv \forall x y z\left(\left(\Sigma(x) \wedge \Sigma(y) \wedge \Sigma^{\prime}(z) \wedge S(x, y) \wedge x+1_{l_{2}} z\right) \rightarrow z+1_{l_{2}} y\right)
$$

$$
\wedge \forall x y z\left(\left(\Sigma^{\prime}(x) \wedge \Sigma^{\prime}(y) \wedge \Sigma(z) \wedge S(x, y) \wedge x+1_{l_{2}} z\right) \rightarrow z+1_{l_{2}} y\right)
$$

$$
\varphi_{3 c} \equiv \forall x y \quad\left((\Sigma(x) \wedge \Sigma(y) \wedge S(x, y)) \rightarrow x+2_{l_{2}} y\right)
$$

$$
\wedge \forall x y \quad\left(\left(\Sigma^{\prime}(x) \wedge \Sigma^{\prime}(y) \wedge S(x, y)\right) \rightarrow x+2_{l_{2}} y\right)
$$

Logic	Complexity (lower/upper)	Comments

One linear order		
$\mathrm{FO}^{2}\left(+1_{l}\right)$	Nexptime-complete	[EVW02]
$\mathrm{FO}^{2}\left(\leq_{l}\right)$	Nexptime-complete	[EVW02]
$\mathrm{FO}^{2}\left(+1_{l}, \leq_{l}\right)$	Nexptime-complete	[EVW02]
One total preorder		
$\mathrm{FO}^{2}\left(+1_{p}\right)$	Nexptime-complete	
$\mathrm{FO}^{2}\left(\leq_{p}\right)$	Nexptime-complete	
$\mathrm{FO}^{2}\left(+1_{p}, \leq_{p}\right)$	EXPSPACE-complete	[SZ11]
Two linear orders		
$\mathrm{FO}^{2}\left(+1_{l_{1}} ;+1_{l_{2}}\right)$	Nexptime/2-Nexptime	[Man10]
$\mathrm{FO}^{2}\left(+1_{l_{1}} ; \leq_{l_{2}}\right)$	Nexptime/Expspace	[SZ11]
$\mathrm{FO}^{2}\left(+1_{l_{1}}, \leq_{l_{1}} ;+1_{l_{2}}\right)$	VASS-Reachability/Decidable [MZ11]	
$\mathrm{FO}^{2}\left(+1_{l_{1}}, \leq_{l_{1}} ; \leq_{l_{2}}\right)$	NXPTIME/ExPSPACE	[SZ11]
$\mathrm{FO}^{2}\left(+1_{l_{1}}, \leq_{l_{1}} ;+1_{l_{2}}, \leq_{l_{2}}\right)$	Undecidable	[MZ11]

Figure: Summary of results on finite satisfiability of FO^{2} with successor and order relations. Cases that are symmetric and where undecidability is implied are omitted.

Logic	Complexity (lower/upper)	Comments
Two total preorders		
$\mathrm{FO}^{2}\left(+1_{p_{1}},+1_{p_{2}}\right)$	Undecidable	[MZ11]
$\mathrm{FO}^{2}\left(+1_{p_{1}} ; \leq_{p_{2}}\right)$	Undecidable	[MZ11]
$\mathrm{FO}^{2}\left(\leq_{p_{1}} ; \leq_{p_{2}}\right)$	Undecidable	[SZ10]
One linear order and one total preorder		
$\mathrm{FO}^{2}\left(+1_{l_{1}} ;+1_{p_{2}}\right)$		
$\mathrm{FO}^{2}\left(+1_{l_{1}}, \leq_{l_{1}} ;+1_{p_{2}}\right)$	Undecidable	[MZ11]
$\mathrm{FO}^{2}\left(+1_{l_{1}}, \leq_{l_{1}} ; \leq_{p_{2}}\right)$	Undecidable	$\left[\mathrm{BMS}^{+} 06\right]$
$\mathrm{FO}^{2}\left(+1_{l_{1}} ;+1_{p_{2}}, \leq_{p_{2}}\right)$		
$\mathrm{FO}^{2}\left(\leq_{l_{1}} ;+1_{p_{2}}, \leq_{p_{2}}\right)$	Expspace-complete	[SZ11]
Many orders		
$\mathrm{FO}^{2}\left(\leq_{l_{1}}, \leq_{l_{2}}, \leq_{p_{3}}\right)$	Undecidable	[SZ10]
$\mathrm{FO}^{2}\left(\leq_{l_{1}}, \ldots, \leq_{l_{3}}\right)$	Undecidable	[Kie11]
$\mathrm{FO}^{2}\left(+1_{l_{1}}, \ldots,+1_{l_{k}}\right)$?	

Figure: Summary of results on finite satisfiability of FO^{2} with successor and order relations. Cases that are symmetric and where undecidability is implied are omitted.

2 -successor structures

- Marking alphabet $\Gamma=\{-1,0,1\}$.

Definition (Marked String Projections of \mathfrak{A})

$$
\begin{aligned}
& \operatorname{msp}_{\prec_{1}}(\mathfrak{A})=\left(A,\left(P_{a}\right)_{a \in \Sigma},\left(M_{i}\right)_{i \in \Gamma}, \prec_{1}\right) \\
& \operatorname{msp}_{\prec_{2}}(\mathfrak{A})=\left(A,\left(P_{a}\right)_{a \in \Sigma},\left(M_{i}\right)_{i \in \Gamma}, \prec_{2}\right)
\end{aligned}
$$

- msp's are words over the alphabet $\Sigma \times \Gamma$.

Lemma
Let $x \prec_{1} y$. The marking $M_{\prec_{2}}(y)$ can be computed from $M_{\prec_{1}}(x)$ and $M_{\prec_{1}}(y)$.

Proof.
Construct a table.

Example

$$
\operatorname{msp}_{\prec_{1}}(\mathfrak{A})
$$

$$
\operatorname{msp}_{\prec_{2}}(\mathfrak{A})
$$

Automata on $2-\mathrm{ss}$

Definition (2-SS Automaton)
A 2 -ss automaton \mathcal{T} is a tuple $\left(\mathcal{B}, \Sigma_{o}, \mathcal{C}\right)$ where,
\mathcal{B} Finite state transducer with input alphabet $\Sigma \times \Gamma$ and output alphabet Σ_{o},
Σ_{o} Intermediate alphabet,
\mathcal{C} Finite state recognizer with input alphabet Σ_{o}.
Definition (Run of \mathcal{T})
A run $\rho_{\mathcal{T}}$ of the 2 -SS automaton \mathcal{T} is of the form $\rho_{\mathcal{T}}=\left(\rho_{\mathcal{B}}, \rho_{\mathcal{C}}\right)$,

- $\rho_{\mathcal{B}}$ is a run of \mathcal{B} on $\operatorname{msp}_{\prec_{1}}(\mathfrak{A})$ outputting $\left(A,\left(P_{a}\right)_{a \in \Sigma_{o}}, \prec_{1}\right)$ over Σ_{o},
- $\rho_{\mathcal{C}}$ is a run of \mathcal{C} on $\left(A,\left(P_{a}\right)_{a \in \Sigma_{o}}, \prec_{2}\right)$.

The run is accepting if both $\rho_{\mathcal{B}}$ and $\rho_{\mathcal{C}}$ are accepting. $\mathcal{L}(\mathcal{T})=\{\mathfrak{A} \mid \mathcal{T}$ has an accepting run on $\mathfrak{A}\}$.

Example Languages

Example

$\mathcal{L}_{1}=\left\{\mathfrak{A}=\left(A,\left(P_{a}\right)_{a \in \Sigma}, \prec_{1}, \prec_{2}\right) \mid \prec_{1}=\prec_{2}\right\}$
Check the markings.
Example
$\mathcal{L}_{2}=\left\{\mathfrak{A} \mid \mathrm{sp}_{\prec_{1}}(\mathfrak{A}) \in a^{*} \cdot b^{*} \cdot c^{*}, \mathrm{sp}_{\prec_{2}}(\mathfrak{l}) \in(a \cdot b \cdot c)^{*}\right\}$
The transducer \mathcal{B} projects the marked string to Σ and checks if it belongs to $a^{*} \cdot b^{*} \cdot c^{*}$. The automaton \mathcal{C} checks if its input is in $(a \cdot b \cdot c)^{*}$.

Example
$\mathcal{L}_{3}=\left\{\mathfrak{A} \mid \forall x y\left(a(x) \wedge b(y) \rightarrow x \prec_{1} y \vee x \prec_{2} y\right)\right\}$
Use transduction!.

Lemma

1. Given a regular language $\mathcal{L} \subseteq \Sigma^{*}$, there is a 2 -SS automaton accepting all 2 -SS whose projections to \prec_{1} is in \mathcal{L}.
2. Similarly, there is a 2-SS automaton accepting all 2 -SS whose projections to \prec_{2} is in \mathcal{L}.

Proof.

1. The transducer \mathcal{B} checks if the projection to \prec_{1} (ignoring the markings) is in \mathcal{L} and \mathcal{C} accepts Σ_{o}^{*}.
2. The transducer \mathcal{B} simply copies the string (ignoring the markings) and \mathcal{C} accepts if its input is in \mathcal{L}.

Lemma

Languages recognized by 2 -ss automata are closed under union, intersection and renaming.

Proof.
Closure under union and intersection is obtained from usual product construction (using a composed output alphabet).
Closure under renaming is achieved using the non-determinism of the transducer.
\mathcal{L}_{m} is the set of all 2 -ss $\mathfrak{A}=\left(A, \lambda, \prec_{1}, \prec_{2}\right)$ such that,
$-\operatorname{sp}_{\prec_{1}}(\mathfrak{A}) \in \diamond \cdot a^{+} \cdot \boldsymbol{\&} \cdot \nabla \cdot b^{+} \cdot \boldsymbol{\uparrow}$,
$-\mathrm{sp}_{\prec_{2}}(\mathfrak{A}) \in \diamond \cdot \vee \cdot(a \cdot b)^{+} \cdot \boldsymbol{\&} \cdot \boldsymbol{\phi}$,

- $\exists x, y \in A, \lambda(x)=\lambda(y)$ such that $x \prec_{1}^{+} y$ and $y \prec_{2}^{+} x$.
\mathcal{L}_{m} is accepted by a 2 -sS automaton. But $\overline{\mathcal{L}_{m}}$ is not accepted by any 2 -ss automaton.

Proof.
Pumping and Crosswiring.
Lemma
The class of languages accepted by 2-Ss automata are not closed under complementation.

Theorem

Given a 2-ss automaton \mathcal{T}, there is a formula
$\varphi_{\mathcal{T}} \in \mathrm{EMSO}^{2}\left(\Sigma, \prec_{1}, \prec_{2}\right)$ such that $\mathcal{L}(\mathcal{T})=\mathcal{L}\left(\varphi_{\mathcal{T}}\right)$.
Proof.
Let $\Sigma_{o}=\left\{l_{1}, \ldots, l_{n}\right\}$. The formula $\varphi_{\mathcal{T}}$ states that there is a run of \mathcal{T} on \mathfrak{A} in the following way,

$$
\varphi_{\mathcal{T}}=\exists P_{l_{1}} P_{l_{2}} \ldots P_{l_{n}}\left(\varphi_{\mathrm{part}}\left(P_{l_{1}}, \ldots, P_{l_{n}}\right) \wedge \varphi_{\mathcal{B}} \wedge \varphi_{\mathcal{C}}\right)
$$

- $\varphi_{\text {part }}\left(P_{l_{1}}, \ldots, P_{l_{n}}\right)$ says that the predicates $P_{l_{1}}, \ldots, P_{l_{n}}$ form a partition of the set of all positions.
- $\varphi_{\mathcal{B}}$ is the encoding of \mathcal{B} in $\operatorname{EMSO}^{2}\left(\Sigma, P_{l_{1}}, \ldots, P_{l_{n}}, \prec_{1}\right)$.
- $\varphi_{\mathcal{C}}$ is the encoding of \mathcal{C} in $\operatorname{EMSO}^{2}\left(P_{l_{1}}, \ldots, P_{l_{n}}, \prec_{2}\right)$.
$P_{l_{1}}, \ldots, P_{l_{n}}$ are free in $\varphi_{\mathcal{B}}$ and $\varphi_{\mathcal{C}}$.

Logic to Automata

Translation to Scott Form

$$
\varphi \Leftrightarrow \exists R_{1} \ldots R_{n}\left(\forall x \forall y \chi \wedge \bigwedge_{i} \forall x \exists y \psi_{i}\right)
$$

The predicates R_{i} are unary, and χ and ψ_{i} are quantifier-free formulas in $\mathrm{FO}^{2}\left(\Sigma, \prec_{1}, \prec_{2}\right)$.

2-SS are closed under renaming and intersection.

Hence it suffices to construct a 2 -ss automaton for each of the formulas $\forall x \forall y \chi$ and $\forall x \exists y \psi_{i}$.

Lemma

Given an $\mathrm{FO}^{2}\left(\Sigma, \prec_{1}, \prec_{2}\right)$ formula of the form $\varphi=\forall x \forall y \chi$ where χ is quantifier free, an equivalent 2 -ss automaton of doubly exponential size can be constructed.

Proof.

φ can be reduced to a conjunction of exponentially many formulas in one the following forms,

1. True, False, A formula over one successor relation,
2. $\forall x y\left(\alpha(x) \wedge \beta(y) \wedge x \neq y \wedge x \prec_{1} y \rightarrow \delta_{2}(x, y)\right)$,
3. $\forall x y\left(\alpha(x) \wedge \beta(y) \wedge x \neq y \wedge x \prec_{2} y \rightarrow \delta_{1}(x, y)\right)$,
4. $\forall x y\left(\alpha(x) \wedge \beta(y) \wedge x \neq y \rightarrow \delta_{1}^{+}(x, y) \vee \delta_{2}^{+}(x, y)\right)$,
where
$\alpha, \beta:$ types, $\delta_{i}:$ disjunction over $O_{i}, \delta_{i}^{+}:$disjunction over O_{i}^{+}.
$O_{i}^{+}=\left\{x \prec_{i} y, y \prec_{i} x\right\}, O_{i}=\left\{x \prec_{i} y, x \prec_{i} y, y \prec_{i} x, y \nprec_{i} x\right\}$.
Each of these formulas can be translated to a 2 -SS automaton.

Lemma

For each $\mathrm{FO}^{2}\left(\Sigma, \prec_{1}, \prec_{2}\right)$ formula of the form $\varphi=\forall x \exists y \psi$ where ψ is quantifier free, an equivalent 2 -ss automaton of doubly exponential size can be constructed.

Proof.

φ can be reduced to a conjunction of exponentially many formulas in one the following forms,

1. A formula over one successor relation,
2. $\forall x \exists y\left(\alpha(x) \rightarrow \beta(y) \wedge x \neq y \wedge \delta_{1}^{+}(x, y) \wedge \delta_{2}(x, y)\right)$,
3. $\forall x \exists y\left(\alpha(x) \rightarrow \beta(y) \wedge x \neq y \wedge \delta_{2}^{+}(x, y) \wedge \delta_{1}(x, y)\right)$,
4. $\forall x \exists y\left(\alpha(x) \rightarrow \beta(y) \wedge x \neq y \wedge \delta_{1}^{-}(x, y) \wedge \delta_{2}^{-}(x, y)\right)$.
where
$\alpha, \beta:$ types, $\delta_{i} \in O_{i}, \delta_{i}^{+} \in O_{i}^{+}, \delta_{i}^{-}:$conjunction over O_{i}^{-}.
$O_{i}^{-}=\left\{x \nprec_{i} y, y \nprec_{i} x\right\}$,
Each of these formulas can be translated to a 2-ss automaton.

Lemma

Given an $\mathrm{EMSO}^{2}\left(\Sigma, \prec_{1}, \prec_{2}\right)$ formula φ, there exists a 2 -SS automaton \mathcal{T}_{φ} such that $\mathcal{L}(\varphi)=\mathcal{L}\left(\mathcal{T}_{\varphi}\right)$.

Theorem
\mathcal{L} is definable in $\operatorname{EMSO}^{2}\left(\Sigma, \prec_{1}, \prec_{2}\right)$ if and only if \mathcal{L} is recognized by a 2 -SS automaton.

Decidability of 2-ss Automata

Proof Idea

Given a 2 -ss automaton $\mathcal{T}=(\mathcal{B}, \mathcal{C}), \mathcal{L}(\mathcal{T})$ is non-empty if there is a marked word w such that,

- w is accepted by \mathcal{B}
- a permutation of output of \mathcal{B} on w, 'consistent' with the marking of w, is accepted by \mathcal{C}.
- Let $w=([n], \lambda, \prec)$ be a marked word of length n. We denote the projection of w to Σ by $w \downarrow \Sigma$.
- Given a permutation $\pi:[n] \rightarrow[n], \pi(w)$ is defined as the word

$$
\left([n], \pi^{-1} \circ \lambda, \prec\right) .
$$

- π defines a successor relation $\prec_{\pi}=\pi^{-1}(1) \ldots \pi^{-1}(n)$ on the positions.

We say that the permutation π is consistent with the marking if w is the marked string projection of the 2 -SS $\mathfrak{A}=\left([n], \lambda, \prec, \prec_{\pi}\right)$ to the order \prec.
Definition $(\operatorname{mperm}(w))$
Given $w \in \Sigma^{*}$, by $\operatorname{mperm}(w)$, we denote the set of all the marked words w^{\prime} such that there is a permutation π consistent with the marking such that $\pi(w \downarrow \Sigma)=w$. Given $\mathcal{L} \subseteq \Sigma^{*}$, we define $\operatorname{mperm}(\mathcal{L})=\cup_{w^{\prime} \in \mathcal{L}} \operatorname{mperm}\left(w^{\prime}\right)$.

Definition (Presburger word automaton, Habermahl-Muscholl-Schwentick-Seidl, 04)
A Presburger word automaton \mathcal{P} is a tuple $(\mathcal{A}, \mathcal{S})$,

- \mathcal{A} is a finite state automaton with states $Q=\left\{q_{1}, \ldots q_{n}\right\}$,
- \mathcal{S} is a semi-linear set in \mathbb{N}^{n}.

A word w is accepted by the automaton \mathcal{P} if,

- there is an accepting run ρ of \mathcal{A} on w,
- $\left(|\rho|_{q_{0}}, \ldots,|\rho|_{q_{n}}\right) \in \mathcal{S}$.

Example

The following languages are recognizable by a Presburger word automaton.
$\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\},\left\{\left.w \in \Sigma^{*}|5 \cdot| w\right|_{a}=2 \cdot|w|_{b}-3 \cdot|w|_{c}\right\}$,
Permutation (\mathcal{L}) if \mathcal{L} is context-free.

Lemma
If \mathcal{L} is regular then $\operatorname{mperm}(\mathcal{L})$ is accepted by a Presburger automaton.

Proof.

- Given an automaton \mathcal{C} for \mathcal{L}, the Presburger automaton \mathcal{P} checks non-deterministically if there is a run of \mathcal{C} on some consistent permutation of w.
- To achieve this, the automaton \mathcal{P} assigns a transition $\delta=\left(p, a_{i}, q\right) \in \Delta$ to each position i of the marked word.
- We can define a flow f where each transition δ of \mathcal{C} is labelled by the number of times it is associated with a position.
- Finally, we can write linear constraints which checks that,

1. f is locally consistent,
2. the subgraph induced by the states with a non-zero flow is connected,
3. f is consistent with the marking.

- The resulting automata \mathcal{P} is poly-sized in terms of the size

Theorem
Emptiness checking of a 2-ss automaton $\mathcal{T}=(\mathcal{B}, \mathcal{C})$ is in NP.
Proof.

- Construct a Presburger automaton \mathcal{P} with linear constraints which accepts mperm $(\mathcal{L}(\mathcal{C}))$.
- Take the intersection of the transducer \mathcal{B} and \mathcal{P} in such a way that the output of \mathcal{B} is supplied as the input of \mathcal{P}.
- Finally we check the emptiness of the resulting automaton which is in NP.

Theorem
Emptiness checking of a Presburger automaton is polynomial time reducible to the emptiness checking of a 2 -SS automaton.

Theorem
Finite Satisfiability problem of $\mathrm{FO}^{2}\left(\Sigma, \prec_{1}, \prec_{2}\right)$ is in 2-Nexptime.

Proof.

Given φ, construct \mathcal{T}_{φ}, check if $\mathcal{L}\left(\mathcal{T}_{\varphi}\right)$ is non-empty.

Over words, FinSAt of both $\mathrm{FO}^{2}(\Sigma)$ and $\mathrm{FO}^{2}(\prec)$ with one unary predicate are Nexptime-hard [Etessami, 02].

Thank You!

囯 Mikolaj Bojanczyk，Anca Muscholl，Thomas Schwentick， Luc Segoufin，and Claire David． Two－variable logic on words with data． In LICS，pages 7－16．IEEE Computer Society， 2006.

嗇 Henrik Björklund and Thomas Schwentick．
On notions of regularity for data languages．
Theoretical Computer Science，411（4－5）：702－715， 2010.
围 Kousha Etessami，Moshe Y．Vardi，and Thomas Wilke． First－order logic with two variables and unary temporal logic．
Information and Computation，179（2）：279－295， 2002.
目 Michael Kaminski and Nissim Francez．
Finite－memory automata．
Theoretical Computer Science，134（2）：329－363， 1994.
圊 Emanuel Kieronski．
Decidability issues for two－variable logics with several linear orders．

In CSL, volume 12 of LIPIcs, pages 337-351, 2011.
Amaldev Manuel.
Two orders and two variables.
In MFCS, volume 6281 of LNCS, pages 513-524, 2010.
E Amaldev Manuel and Thomas Zeume. Two variable logic with a linear successor and a preorder. Under preparation, 2011.
固 Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. In CSL, volume 6247 of $L N C S$, pages 499-513, 2010.
目 Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. To appear, 2011.

