- You shall receive feedback on these problems only if:

1. You submit to Ankita by 2359 hrs on Thursday, August 22, 2019, and
2. Submit each problem in a separate sheet with your name on each sheet. This is essential because the TAs divide correction duties by problem.

- This problem set should take you approximately an hour to solve. This is the pace that will be expected in the quizzes.
"Express yourself." - Madonna

1. Convert the following automaton to a rational expression:

2. Write a rational expression for the language

$$
L=\{w \mid w \text { does not contain } 101 \text { as a substring, }|w| \text { is even }\}
$$

3. Define the shuffle of two words w_{1}, w_{2} as follows.
$\operatorname{shuffle}\left(w_{1}, w_{2}\right)=\left\{u_{1} v_{1} \cdots u_{m} v_{m} \mid u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m} \in \Sigma^{*}, w_{1}=u_{1} \cdots u_{m}, w_{2}=v_{1} \cdots v_{m}\right\}$
Using this, define the shuffle of two languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ as:

$$
\operatorname{shuffle}\left(L_{1}, L_{2}\right)=\left\{w \in \operatorname{shuffle}\left(w_{1}, w_{2}\right) \mid w_{1} \in L_{1}, w_{2} \in L_{2}\right\}
$$

Show that if L_{1} and L_{2} are recognizable, so is shuffle $\left(L_{1}, L_{2}\right)$.
4. Define the middle-third of a language L as follows:

$$
\operatorname{middle}-\operatorname{third}(L)=\left\{v \in \Sigma^{*}\left|\exists u_{1}, u_{2} \in \Sigma^{*},\left|u_{1}\right|=|v|=\left|u_{2}\right|, u_{1} v u_{2} \in L\right\}\right.
$$

Show that if L is recognizable, middle-third (L) is also recognizable.

