You shall receive feedback on these problems only if:

1. You submit to one of the TAs by $\mathbf{2 3 5 9}$ hrs on Thursday, August 15, 2019, and
2. Submit each problem in a separate sheet with your name on each sheet. This is essential because the TAs divide correction duties by problem.

> "Appearances are not reality; but they often can be a convincing alternative to it." - Dean Koontz

1. For a word $w \in \Sigma^{*}, w=a_{1} \cdots a_{n}, a_{1}, \ldots, a_{n} \in \Sigma$, define the reverse word $w^{R}=a_{n} \cdots a_{1}$. For a language $L \subseteq \Sigma^{*}$, define the reverse language L^{R} of L as

$$
L^{R}=\left\{w^{R} \mid w \in L\right\}
$$

Consider some L that is recognizable. Show that L^{R} is recognizable.
2. We shall define the Kleene star operation. For a language L,

$$
L^{*}=\left\{w_{1} \cdots w_{n} \mid n \geq 0, w_{1}, \ldots, w_{n} \in L\right\}
$$

If L is recognizable, show that L^{*} is recognizable.
3. Show that recognizable languages are closed under :
(a) two-stutter, where for a language L,

$$
\text { two-stutter }(L)=\left\{a_{1} a_{1} \cdots a_{n} a_{n} \mid a_{1} \cdots a_{n} \in L\right\}
$$

(b) stutter, where for a language L,

$$
\operatorname{stutter}(L)=\left\{a_{1}^{m_{1}} \cdots a_{n}^{m_{n}} \mid a_{1} \cdots a_{n} \in L, m_{1}, \ldots, m_{n}>0\right\}
$$

4. Show by giving an example that, if A is an NFA that recognizes language L, swapping the accept and non-accept states in A doesn't necessarily yield an NFA that recognizes the complement of L.
