- You shall receive feedback on the problems only if:
 - 1. You submit to Ekanshdeep by 2359 hrs on Friday, November 22, 2019, and
 - 2. Submit each problem in a separate sheet with your name on each sheet. This is essential because the TAs divide correction duties by problem.
- 1. Given two CFGs G_1 and G_2 , show that it is undecidable to check whether $L(G_1) \cap L(G_2) \neq \phi$ by giving a reduction from Post's Correspondence Problem (PCP).
- 2. Give a queue automaton which accepts the following language:

$$L = \{ w \# w^R \mid w \in \{a, b\}^* \}$$

- 3. In class it was stated that PCP is undecidable. Below is a list of steps by which you can prove this theorem. Follow along and fill in the missing details:
 - (a) We introduce Modified PCP as the following problem:
 Given (w₁, v₁), ..., (w_n, v_n), do there exist indices i₂, ..., i_k such that w₁w_{i2}...w_{ik} = v₁v_{i2}...v_{ik} (note the fixed first index).

Reduce MPCP to PCP (Hint: In a given instance of MPCP, what would happen if you added a new symbol to the beginning of w_1 and v_1 and viewed it as an instance of PCP? Will this work? If not, what other similar modifications can you make on the strings?)

- (b) The next step is to reduce halting problem to MPCP. Given an instance of halting problem (M, w), we will construct an instance of MPCP (A, B) which has a solution iff M halts on w.
 - The idea is we will simulate partial computations of M on w in our strings. We begin with the initial tape (note the use of MPCP for this), and ensure that the A-string is always one step behind in computation than the B-string.
 - Once the computation halts, we will allow the A-string to "catch up" and match the B-string; so the MPCP will have a solution iff M halts on w. Hint: Let us represent turing machine configurations as uqv, $u, v \in \Sigma^*, q \in Q$, and separate successive configurations by # in the string. In the instance of MPCP, let $w_1 = \#$ and $v_1 = \#q_0 w$. Also note that successive turing machine configurations

Please refer to *Hopcroft, Motwani, Ullman* for a complete proof of undecidability of PCP.

change only near the head—the rest of the tape remains unchanged.