- You shall receive feedback on the problems only if:
 - 1. You submit to Ekanshdeep by 2359 hrs on Thursday, November 7, 2019, and
 - 2. Submit each problem in a separate sheet with your name on each sheet. This is essential because the TAs divide correction duties by problem.
- This problem set should take you approximately an hour to solve. This is the pace that will be expected in the quizzes.

1. Show that neither the set

 $TOTAL = \{M \mid M \text{ halts on all inputs}\}\$

nor its complement is r.e.

- 2. A linear bounded automaton (LBA) is exactly like a one-tape Turing machine, except that the input string $x \in \Sigma^*$ is enclosed in left and right endmarkers \vdash and \dashv which may not be overwritten, and the machine is constrained never to move left of the \vdash nor right of the \dashv . It may read and write all it wants between the endmarkers.
 - (a) Give rigorous formal definition of deterministic linearly bounded automata including a definition of configurations and acceptance. Your definition should begin as follows:
 "A deterministic linearly bounded automaton (LBA) is a 9-tuple

$$M = (Q, \Sigma, \Gamma, \vdash, \dashv, \delta, s, t, r),$$

where Q is a finite set of *states*, ... "

- (b) Let M be a linear bounded automaton with state set Q of size k and tape alphabet Γ of size m. How many possible configurations are there on input x, |x| = n?
- (c) Argue that the halting problem for deterministic linear bounded automata is decidable.
- (d) Prove by diagonalization that there exists a recursive set that is not accepted by any LBA.