"Machines take me by surprise with great frequency." - Alan Turing

1. Given below is a list of operations on two languages L_{1}, L_{2}. For each of them, comment if regular languages are closed under the operation.
(a)

$$
L_{1} \backslash\left|L_{2}\right|=\left\{w\left|\exists x, w x \in L_{1}, \exists u \in L_{2},|u|=|x|\right\}\right.
$$

(b)

$$
\operatorname{alt}\left(L_{1}, L_{2}\right)=\left\{\operatorname{alt}(w, x)| | w\left|=|x|, w \in L_{1}, x \in L_{2}\right\}\right.
$$

where, for two words of equal length $w=a_{1} a_{2} \ldots a_{n}$ and $x=b_{1} b_{2} \ldots b_{n}$

$$
\operatorname{alt}(w, x)=a_{1} b_{1} a_{2} b_{2} \ldots a_{n} b_{n}
$$

(c) We saw the shuffle operator in Problem Set 2. We shall now add an additional constraint to it. Recall

$$
\operatorname{shuffle}\left(L_{1}, L_{2}\right)=\left\{w \in \operatorname{shuffle}(u, v) \mid u \in L_{1}, v \in L_{2}\right\}
$$

where, for two words u_{n}, v_{n}

$$
\operatorname{shuffle}(u, v)=\left\{u_{1} v_{1} \ldots u_{n} v_{n} \mid u=u_{1} \ldots u_{n}, v=v_{1} \ldots v_{n}, u_{i}, v_{i} \in \Sigma^{*}\right\}
$$

Adding our additional constraint, we get

$$
\text { shuffle_equals }\left(L_{1}, L_{2}\right)=\left\{w \in \operatorname{shuffle}(u, v)\left|u \in L_{1}, v \in L_{2},|u|=|v|\right\}\right.
$$

2. A homomorphism $h: \Sigma^{*} \rightarrow \Gamma^{*}$ is injective when

$$
\forall u, v \in \Sigma^{*}, h(u)=h(v) \Rightarrow u=v
$$

i.e. no two words in Σ^{*} have the same image in Γ^{*} under h.

Construct an algorithm to check if a given homomorphism h is injective.
3. Consider the following operations that can be performed on a finite automaton $A=\left(Q, \Sigma, \Delta, Q_{0}, F\right)$:

- The trim of A is defined as:

$$
\operatorname{trim}(A)=\left(\hat{Q}, \Sigma, \hat{\Delta}, \hat{Q}_{0}, \hat{F}\right)
$$

where

$$
\begin{gathered}
\hat{Q}=\left\{q \in Q \mid \exists \text { a path } q_{0} \rightsquigarrow q \rightsquigarrow q_{f}, q_{0} \in Q_{0}, q_{f} \in F\right\} \\
\hat{\Delta}=\Delta \cap(\hat{Q} \times \Sigma \times \hat{Q}) \\
\hat{Q}_{0}=Q_{0} \cap \hat{Q} \\
\hat{F}=F \cap \hat{Q}
\end{gathered}
$$

i.e. we remove states that cannot be part of an accepting path.

- The reverse of A is defined as:

$$
\begin{gathered}
\operatorname{rev}(A)=\left(Q, \Sigma, \Delta, F,\left\{q_{0}\right\}\right) \\
\left(q, a, q^{\prime}\right) \in \Delta \Longleftrightarrow \delta\left(q^{\prime}, a\right)=q
\end{gathered}
$$

- $\operatorname{det}(A)$ is defined to be the output of the subset construction algorithm on A. Of course if A is a DFA, then $A=\operatorname{det}(A)$.

Given a regular language L and a finite automaton $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L, show that the following procedure:

$$
A \xrightarrow{\text { trim }} A_{1} \xrightarrow{\text { rev }} A_{2} \xrightarrow{\text { det }} A_{3} \xrightarrow{\text { trim }} A_{4} \xrightarrow{\text { rev }} A_{5} \xrightarrow{\text { det }} A_{6} \xrightarrow{\text { trim }} A_{7}=B
$$

results in B being the minimal DFA that accepts L.
4. L be the set of binary representations of prime numbers (leading zeroes allowed). Is L regular? Prove your assertion.

