"It is in middles that extremes clash, where ambiguity restlessly rules." - John Updike

- 1. Given below is a list of production rules of context free grammars. Identify the language accepted by them.
 - (a) $S \to aSa \mid aBa$ $B \to bB \mid b$
 - (b) $S \to TU$ $T \to 0T1 \mid \epsilon$ $U \to 1U0 \mid \epsilon$
 - (c) $A \rightarrow BAB \mid B \mid \epsilon$ $B \rightarrow 00 \mid \epsilon$
- 2. Come up with context free grammars for the following languages:
 - (a) $\{w \in \{0,1\}^* \mid |w|_1 = 2 |w|_0\}$
 - (b) $\{0^i 1^j 2^k \mid i \neq j \text{ or } j \neq k\}$
 - (c) $\{w\#x\mid w^R \text{ is a substring of } x, \text{where } w,\, x\in\{a,b\}^*\}$
 - (d) $\{a,b\}^*$ palindromes

Bonus . $\{t_1 \# t_2 \# \dots \# t_k \mid \forall i, t_i \in \{a, b\}^*, t_i \neq t_j, \text{ for some } i \neq j\}$

- 3. Formally prove the correctness of your answers for 1(b) and 2(a).
- 4. (a) Find a context-free grammar that generates the language accepted by the following finite automaton:

- (b) Given any finite automaton A, can you give a context free grammar G such that $\mathcal{L}(G) = \mathcal{L}(A)$?
- 5. A right linear grammar is a context-free grammar in which every production has at most one non-terminal on the right hand side, and this non-terminal appears at the right end of the production; i.e., every production rule is of the form $A \to a_1 \dots a_k B$ or $A \to a_1 \dots a_k$. Show that right linear grammars generate precisely the class of regular languages.
- 6. Identify which of the following grammars are ambiguous. Can you come up with an unambiguous grammar for them? If not, try to argue why not.
 - (a) $A \rightarrow A + A \mid A A \mid a$

(b) Statement \to if Condition then Statement else Statement | if Condition then Statement | atomic

Condition \rightarrow atomic

This is the typical evaluation of if-then-else statements in programming. atomic denotes statements that are simply executed, and do not include if-then-else within them. If this notation is uncomfortable, just consider the grammar with one non-terminal S, and $\Sigma = \{i, t, e, a\}$, defined as:

$$S \rightarrow iatSeS \mid iatS \mid a$$

(c) The grammar you constructed for 2(b).