
- 1. Prove whether or not the following languages are regular:
 - (a) $L_1 = \{www \mid w \in \{a, b\}^*\}$
 - (b) $L_2 = \{a^{2^n} \mid n \ge 0\}$
 - (c) $L_3 = \{w \in \{0,1\}^* \mid w \text{ has equal occurrences of } 01 \text{ and } 10 \text{ as substrings } \}.$
 - (d) $|w|_a |w|_b \le 8$
 - (e) $\{a^{p-1} \mid p \text{ is prime}\}$
 - (f) $\{ucv \mid u, v \in \{0, 1\}^*\}$
- 2. (a) Give 2 non-regular languages $L_1, L_2 \subseteq \{0,1\}^*$ for which L_1L_2 is regular.
 - (b) If L_1L_2 is regular, is L_2L_1 regular?
 - (c) Is L_1 regular, given L_2 , L_1L_2 , L_2L_1 are regular?
 - (d) If L^2 is regular, is L regular?
- 3. Construct nerode automata for $L = (a^* + b)ab^*$
- 4. Find the minimum state DFA for the following DFA:

- 5. Is the language $L = \{w \mid w = uv = vu \text{ for some } u, v \in \Sigma^* \setminus \{\epsilon\} \}$ regular? If yes, provide the Nerode automaton and a proof of non-regularity otherwise.
- 6. For a language $L \subseteq \Sigma^*$, define $LOG(L) = \{u \in \Sigma^* \mid \exists u \text{ s.t. } |v| = 2^{|u|} \text{ and } uv \in L\}$. Show that if L is regular, so is LOG(L).