1. Prove whether or not the follwoing languages are regular:
(a) $L_{1}=\left\{w w w \mid w \in\{a, b\}^{*}\right\}$
(b) $L_{2}=\left\{a^{2^{n}} \mid n \geq 0\right\}$
(c) $L_{3}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has equal occurrences of 01 and 10 as substrings $\}$.
(d) $|w|_{a}-|w|_{b} \leq 8$
(e) $\left\{a^{p-1} \mid \mathrm{p}\right.$ is prime $\}$
(f) $\left\{u c v \mid u, v \in\{0,1\}^{*}\right\}$
2. (a) Give 2 non-regular languages $L_{1}, L_{2} \subseteq\{0,1\}^{*}$ for which $L_{1} L_{2}$ is regular.
(b) If $L_{1} L_{2}$ is regular, is $L_{2} L_{1}$ regular?
(c) Is L_{1} regular, given $L_{2}, L_{1} L_{2}, L_{2} L_{1}$ are regular?
(d) If L^{2} is regular, is L regular?
3. Construct nerode automata for $L=\left(a^{*}+b\right) a b^{*}$
4. Find the minimum state DFA for the following DFA:

5. Is the language $L=\left\{w \mid w=u v=v u\right.$ for some $\left.u, v \in \Sigma^{*} \backslash\{\epsilon\}\right\}$ regular? If yes, provide the Nerode automaton and a proof of non-regularity otherwise.
6. For a language $L \subseteq \Sigma^{*}$, define $L O G(L)=\left\{u \in \Sigma^{*} \mid \exists u\right.$ s.t. $|v|=2^{|u|}$ and $\left.u v \in L\right\}$. Show that if L is regular, so is $\operatorname{LOG}(L)$.
