"I always have a quotation for everything - it saves original thinking." - Dorothy L. Sayers

1. Convert the following automata to rational expressions:

2. Convert the following rational expressions to automata:
(a) $(a+c)^{*}\left(b(b+c)^{*} a(a+c)^{*}\right)^{*}$
(b) $a^{*}\left(b\left(a^{*} b a^{*}\right)^{*} b\right)^{*}$
3. Give rational expressions for the following languages over $\Sigma=\{0,1\}$:
(a) $\{w \mid w$ begins with a 0 and ends with a 1$\}$
(b) $\{w \mid w$ contains at least three 1 s$\}$
(c) $\{w \mid w$ has length at least 5$\}$
(d) $\{w \mid w$ does not contain consecutive 1 s$\}$
4. Prove the following identities of rational expressions. e, e_{1}, e_{2} are rational expressions over $\Sigma=\{a, b\}$
(a) $\left(e^{*}\right)^{*}=e^{*}$
(b) $\left(e_{1}+e_{2}\right)^{*}=\left(e_{1}^{*} e_{2}^{*}\right)^{*}$
5. Given a regular language L, prove that the following languages are also regular:
(a) $\min (L)=\{w \mid w$ is in L, but no proper prefix of w is in $L\}$
(b) $\max (L)=\{w \mid w$ is in L, but $\forall x \neq \epsilon, w x \notin L\}$
6. (a) Given a finite automaton A on the alphabet Σ and a word $w \in \Sigma^{*}$, give an algorithm to check if $w \in \mathcal{L}(A)$? How much time does your algorithm take?
(b) Given a finite automaton A with k states, give an algorithm to check if $\mathcal{L}(A)=\emptyset$. How much time does your algorithm take?
(c) Show that if an NFA with k states accepts some word of length k or more, then it accepts infinitely many words.
(d) Show that if an NFA with k states accepts infinitely many words, then it accepts a word of length between k and $2 k$, i.e. w s.t. $k \leq|w|<2 k$.
(e) Given a finite automaton A with k states, give an algorithm to check if $\mathcal{L}(A)$ is finite? How much time does your algorithm take?
