"I always have a quotation for everything – it saves original thinking." – Dorothy L. Sayers

1. Convert the following automata to rational expressions:

- 2. Convert the following rational expressions to automata:
 - (a) $(a+c)^*(b(b+c)^*a(a+c)^*)^*$
 - (b) $a^*(b(a^*ba^*)^*b)^*$
- 3. Give rational expressions for the following languages over $\Sigma = \{0, 1\}$:
 - (a) $\{w \mid w \text{ begins with a } 0 \text{ and ends with a } 1\}$
 - (b) $\{w \mid w \text{ contains at least three } 1s\}$
 - (c) $\{w \mid w \text{ has length at least } 5\}$
 - (d) $\{w \mid w \text{ does not contain consecutive 1s}\}$
- 4. Prove the following identities of rational expressions. e, e_1, e_2 are rational expressions over $\Sigma = \{a, b\}$
 - (a) $(e^*)^* = e^*$
 - (b) $(e_1 + e_2)^* = (e_1^* e_2^*)^*$
- 5. Given a regular language L, prove that the following languages are also regular:
 - (a) $min(L) = \{w \mid w \text{ is in } L, \text{ but no proper prefix of } w \text{ is in } L\}$
 - (b) $max(L) = \{w \mid w \text{ is in } L, \text{ but } \forall x \neq \epsilon, wx \notin L\}$
- 6. (a) Given a finite automaton A on the alphabet Σ and a word $w \in \Sigma^*$, give an algorithm to check if $w \in \mathcal{L}(A)$? How much time does your algorithm take?
 - (b) Given a finite automaton A with k states, give an algorithm to check if $\mathcal{L}(A) = \emptyset$. How much time does your algorithm take?
 - (c) Show that if an NFA with k states accepts some word of length k or more, then it accepts infinitely many words.
 - (d) Show that if an NFA with k states accepts infinitely many words, then it accepts a word of length between k and 2k, i.e. w s.t. $k \leq |w| < 2k$.
 - (e) Given a finite automaton A with k states, give an algorithm to check if $\mathcal{L}(A)$ is finite? How much time does your algorithm take?