QUIZ - 4

Theory of Computation

10/11/2016

- 1. [3 marks] A word w is said to be cyclic if there exist $u, v \in \Sigma^* \setminus \{\epsilon\}$ such that uv = w = vu. Design a Turing machine that accepts an input if and only if it is cyclic.
- 2. [6 marks] Consider the following languages. (Here, $\langle M \rangle$ denotes the description of a Turing machine M.)

 $L_1 = \{ \langle M \rangle \mid M \text{ halts on input } \langle M \rangle \}$ $L_2 = \{ \langle M \rangle \mid M \text{ accepts input } \langle M \rangle \}$

Justify your answers to the following questions.

- (a) Is L_1 recursive? Is it recursively enumerable? Is it co-recursively enumerable?
- (b) Is L_2 recursive? Is it recursively enumerable? Is it co-recursively enumerable?
- (c) Is $(L_1)^c \cup L_2$ recursive? Is it recursively enumerable? Is it co-recursively enumerable?
- (d) Is $L_1 \cup (L_2)^c$ recursive? Is it recursively enumerable? Is it co-recursively enumerable?
- 3. [5 marks] The language-finiteness problem for context-free grammars is given below.

LANG-FINITE		FENESS
	Input :	A context-free grammar G
	Question:	Is $L(G)$ finite?

Is LANG-FINITENESS decidable? Justify.