## Theory of Computation

Mid-semester Exam — 21/09/2016

Maximum marks: 30. Duration: 3 hours. All questions carry 5 marks.

## **Rational Expressions**

1. Give a rational expression for the language recognized by the following automaton.



## Squares and Roots

Let  $L \subseteq \Sigma^*$  be a language. We define the languages root(L) and square(L) as follows:

$$\operatorname{root}(L) = \{w \mid ww \in L\}$$
$$\operatorname{square}(L) = \{ww \mid w \in L\}$$

- 2. Suppose L is regular. Should root(L) be necessarily regular? Justify.
- 3. Suppose L is regular. Should square(L) be necessarily regular? Justify.

## Subwords - upward and downward closures

Let  $u, v \in \Sigma^*$  be two words. We say that u is a subword of v, denoted  $u \leq v$ , if u can be obtained from v by deleting some of its letters. That is,  $u \leq v$  if 1) u is of the form  $a_1a_2...a_n$ ,  $a_i \in \Sigma$ ,  $n \geq 0$  and 2) v is of the form  $x_0a_1x_1a_2x_2...x_{n-1}a_nx_n$  where  $x_i \in \Sigma^*$  for each  $0 \leq i \leq n$ .

Let  $L \subseteq \Sigma^*$  be a language. The downward closure of L (denoted  $\downarrow L$ ), and upward closure of L (denoted  $\uparrow L$ ) are languages defined as follows:

$$\downarrow L = \{u \mid \exists v \in L, u \preceq v\}$$
$$\uparrow L = \{v \mid \exists u \in L, u \preceq v\}$$

- 4. Suppose L is regular. Is  $\downarrow L$  necessarily regular? Justify.
- 5. Suppose L is regular. Is  $\uparrow L$  necessarily regular? Justify.
- 6. Suppose L is regular. Is  $\downarrow$ (square( $\uparrow L$ )) necessarily regular? Justify.