Theory of Computation

Mid-semester Exam — 21/09/2016
Maximum marks: 30. Duration: 3 hours. All questions carry 5 marks.

Rational Expressions

1. Give a rational expression for the language recognized by the following automaton.

Squares and Roots

Let $L \subseteq \Sigma^{*}$ be a language. We define the languages $\operatorname{root}(L)$ and square (L) as follows:

$$
\begin{gathered}
\operatorname{root}(L)=\{w \mid w w \in L\} \\
\text { square }(L)=\{w w \mid w \in L\}
\end{gathered}
$$

2. Suppose L is regular. Should $\operatorname{root}(L)$ be necessarily regular? Justify.
3. Suppose L is regular. Should square (L) be necessarily regular? Justify.

Subwords - upward and downward closures

Let $u, v \in \Sigma^{*}$ be two words. We say that u is a subword of v, denoted $u \preceq v$, if u can be obtained from v by deleting some of its letters. That is, $u \preceq v$ if 1) u is of the form $a_{1} a_{2} \ldots a_{n}, a_{i} \in \Sigma$, $n \geq 0$ and 2) v is of the form $x_{0} a_{1} x_{1} a_{2} x_{2} \ldots x_{n-1} a_{n} x_{n}$ where $x_{i} \in \Sigma^{*}$ for each $0 \leq i \leq n$.

Let $L \subseteq \Sigma^{*}$ be a language. The downward closure of L (denoted $\downarrow L$), and upward closure of L (denoted $\uparrow L$) are languages defined as follows:

$$
\begin{aligned}
\downarrow L & =\{u \mid \exists v \in L, u \preceq v\} \\
\uparrow L & =\{v \mid \exists u \in L, u \preceq v\}
\end{aligned}
$$

4. Suppose L is regular. Is $\downarrow L$ necessarily regular? Justify.
5. Suppose L is regular. Is $\uparrow L$ necessarily regular? Justify.
6. Suppose L is regular. Is \downarrow (square $(\uparrow L)$) necessarily regular? Justify.
