End-Semester Exam (ToC) $\frac{23/11/2016}{23}$

(Let w^R denote the reverse of a word w. That is, if $w = a_1 a_2 \dots a_n$, then $w^R = a_n \dots a_1$.)

1. [3 marks] Consider the context-free grammar G_1 given below:

 $S \rightarrow aSb \ | \ aSbb \ | \ aaSb \ | \ aS \ | \ bb \ | \ \epsilon$

Is $L(G_1)$ regular? If yes, give the *minimal* DFA. If not, argue using Myhil-Nerode theorem or pumping lemma.

2. [6 marks] Consider the context-free grammar given by G_2 below.

Is $L(G_2)$ regular? If yes, give the *minimal* DFA. If not, argue using Myhil-Nerode theorem or pumping lemma.

- 3. [9 marks] For each of the following languages, state whether it is context-free or not. Justify your answers.
 - (a) $\{xyx^Ry^R \mid x, y \in \{a, b\}^*\}$
 - (b) $\{xyy^Rx^R \mid x, y \in \{a, b\}^*\}$
 - (c) $\{xx^Rx \mid x \in \{a, b\}^*\}$

The Intersection-non-emptiness problem of context-free grammars is given below.

Problem:	Intersection-Non-emptiness
Input:	G_1, G_2 : two context-free grammars
Question:	Is $L(G_1) \cap L(G_2) \neq \emptyset$?

4. **[4 marks]** Show that Intersection-Non-emptiness is undecidable by a reduction from Post's correspondence problem.

For a language $L \subseteq \Sigma^*$, let REV-CLOSURE $(L) = \{w \mid w \in L \text{ or } w^{\mathbb{R}} \in L\}$. Consider the following problem.

Problem:	Reverse-closedness
Input:	a Turing Machine description $\langle M \rangle$
Question:	Is $L(M) = \text{REV-CLOSURE}(L(M))$?

- 5. **[5 marks]** Prove that Reverse-closedness is undecidable by a reduction from the halting problem for Turing machines.
- 6. [5 marks] Is the set $\{\langle M \rangle \mid L(M) = \text{REV-CLOSURE}(L(M))\}$ recursively enumerable? Is it co-recursively enumerable? Justify.