End-Semester Exam (ToC)

23/11/2016
(Let w^{R} denote the reverse of a word w. That is, if $w=a_{1} a_{2} \ldots a_{n}$, then $w^{R}=a_{n} \ldots a_{1}$.)

1. [3 marks] Consider the context-free grammar G_{1} given below:

$$
S \rightarrow a S b|a S b b| a a S b|a S| S b \mid \epsilon
$$

Is $L\left(G_{1}\right)$ regular ? If yes, give the minimal DFA. If not, argue using Myhil-Nerode theorem or pumping lemma.
2. [6 marks] Consider the context-free grammar given by G_{2} below.

$$
\begin{aligned}
& S \rightarrow a S|b A| a B \\
& A \rightarrow a S \mid b B \\
& B \rightarrow b S|a A| b A \mid \epsilon
\end{aligned}
$$

Is $L\left(G_{2}\right)$ regular? If yes, give the minimal DFA. If not, argue using Myhil-Nerode theorem or pumping lemma.
3. [9 marks] For each of the following languages, state whether it is context-free or not. Justify your answers.
(a) $\left\{x y x^{R} y^{R} \mid x, y \in\{a, b\}^{*}\right\}$
(b) $\left\{x y y^{R} x^{R} \mid x, y \in\{a, b\}^{*}\right\}$
(c) $\left\{x x^{R} x \mid x \in\{a, b\}^{*}\right\}$

The Intersection-non-emptiness problem of context-free grammars is given below.

Problem:	Intersection-Non-emptiness
Input:	$G_{1}, G_{2}:$ two context-free grammars
Question:	Is $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset$?

4. [4 marks] Show that Intersection-Non-emptiness is undecidable by a reduction from Post's correspondence problem.

For a language $L \subseteq \Sigma^{*}$, let REv-CLosure $(L)=\left\{w \mid w \in L\right.$ or $\left.w^{\mathrm{R}} \in L\right\}$. Consider the following problem.

Problem:	Reverse-closedness
Input:	a Turing Machine description $\langle M\rangle$
Question:	Is $L(M)=$ REV-CLOSURE $(L(M)) ?$

5. [5 marks] Prove that Reverse-closedness is undecidable by a reduction from the halting problem for Turing machines.
6. [5 marks] Is the set $\{\langle M\rangle \mid L(M)=\operatorname{REV}-\operatorname{CLOSURE}(L(M))\}$ recursively enumerable? Is it co-recursively enumerable? Justify.
