Problem Set 7

Theory of Computation

October 13, 2017

Some people just want to watch the Turing machine run.

Problem 1. Let L_1 and L_2 be context free languages. Show that it cannot be decided if $L_1 \cap L_2 = \emptyset$ by reducing PCP to this problem.

 \dashv

 \dashv

Problem 2. Consider the following languages :

$$L_1 = \{ \langle M \rangle : M \text{ accepts } \epsilon \}$$
$$L_2 = \{ \langle M \rangle : M \text{ rejects } \epsilon \}$$

Prove that both these languages are undecidable. (Can you use Rice's theorem to do so?)

Problem 3. A two-headed finite automaton (2DFA(2)) is a deterministic finite automaton that has two read-only bidirectional heads which can be independently controlled. The tape of the 2DFA(2) contains just the input and two delimiter symbols (\vdash, \dashv) on either side of the tape. A 2DFA(2) accepts by entering a special accept state. Formally, a 2DFA(2) is of the form $(Q, \Sigma, \delta, q_0, q_{accept}, q_{reject})$ where

$$\delta: Q \times (\Sigma \cup \{\vdash, \dashv\}) \times (\Sigma \cup \{\vdash, \dashv\}) \to Q \times \{L, R\} \times \{L, R\}$$

For example we can show that such a machine can accept $\{a^nb^n : n \in \mathbb{N}\}$. Consider the following languages:

$$L_1 = \{ \langle M, w \rangle : M \text{ is a } 2DFA(2) \text{ and } M \text{ accepts } w \}$$
$$L_2 = \{ \langle M \rangle : M \text{ is a } 2DFA(2) \text{ and } L(M) \neq \emptyset \}$$

Show that one of them is decidable and the other one is not.

 \dashv

Problem 4. *PCP is undecidable over the binary alphabet. What can you say about PCP over a unary alphabet?*

 \neg

 \dashv

Problem 5. Consider a model of computation, where we have a Turing machine but the tape associated with it is a 2-D tape. The 2-D tape corresponds to the upper right quadrant of a plane and the transition functions of the Turing machine enables the head to move left, right, up or down the tape. Show that this model is as powerful as a Turing machine.

We're the TAs you deserve, but not the one you need right now.