Problem Set 4

Theory of Computation

September 3, 2017

Do. Or do not. There is no try

Problem 4. For a fixed $L \subset \Sigma^*$, consider a function

 $f: \Sigma^* \to \Sigma^*$

 $f: X \mapsto L \cdot X \cup \{\epsilon\}$

Let $L_0 = \{\epsilon\}$ and we define $L_{i+1} = f(L_i)$. We call \tilde{L} a minimal fixed point of f if $f(\tilde{L}) = \tilde{L}$, and for all L'' such that f(L'') = L'', $\tilde{L} \subset L''$. Let L' be the minimal fixed point of f. Show the following:

- 1. There exists a unique minimal fixed-point of f for all $L \subset \Sigma^*$
- 2. Give an example of a language L such that $L_k = L'$.
- 3. Give an example of a language L such that $L_k \neq L'$ for all $k \in \mathbb{N}$.
- 4. If L is regular, L' is regular
- 5. If L is not regular, still L' can be regular by giving an example

Problem 5. Let $\Sigma = \{a, b\}$. Suppose h is a homomorphism from the alphabet $\Sigma \to \Sigma^*$, and L is some language in Σ^* , and h(L) is regular. Prove or disprove that L is always regular.

Problem 6. Give an example of a language whose NFA requires n states, whereas any DFA accepting the same language would require $\Omega(2^n)$ states. Conclude that NFAs are exponentially succinct than DFAs.

Problem 1. Construct the Nerode Automata for $L = (a^* + b)ab^*$.

Problem 2. Write a regular expression for the language accepted by the DFA given:

Problem 3. We call $k \in \mathbb{N}$ a period of a language $L \subset \{a\}^*$ (language over a unary alphabet) if $a^n \in L$ implies $a^{n+k} \in L$ for large enough n. For $L \subset \{a\}^*$, prove that the following are equivalent:

- 1. L is regular
- 2. L can be represented as a finite union of languages of the form

$$L_{a,d} = \{a^n : n = a + kd, k \in \mathbb{N}\}$$

3. $\exists ! t \in \mathbb{N}$ such that k is a period of L if and only if it is an integral multiple of t.

Problem 7. Prove or disprove the regularity of the following languages:

- 1. $BB-8 = \{0^k u 0^k \mid k \in \mathbb{N}, u \in \{0, 1\}^*\}$
- 2. $K-2SO = \{a^i b^j c^k | if i = 1 then j = k\}$
- 3. $R2\text{-}D2 = \{a^{n^2} \mid n \in \mathbb{N}\}$
- 4. $C-3PO = \{a^p \mid p \text{ is prime }\}$

Rogue one. Suppose L is a regular language, and a function $f : \mathbb{N} \to \mathbb{N}$, we define the language $L_f = \{x \mid |y| = f(|x|), x \cdot y \in L\}$. Let $g(x) = 2^{|x|}$, and $h(x) = |x|^2$ be two functions. Prove or disprove the regularity of the languages L_g and L_h .

May the force be with you.