Problem Set 4

Theory of Computation

September 3, 2017

Do. Or do not. There is no try
Problem 4. For a fixed $L \subset \Sigma^{*}$, consider a function

$$
\begin{gathered}
f: \Sigma^{*} \rightarrow \Sigma^{*} \\
f: X \mapsto L \cdot X \cup\{\epsilon\}
\end{gathered}
$$

Let $L_{0}=\{\epsilon\}$ and we define $L_{i+1}=f\left(L_{i}\right)$. We call \tilde{L} a minimal fixed point of f if $f(\tilde{L})=\tilde{L}$, and for all $L^{\prime \prime}$ such that $f\left(L^{\prime \prime}\right)=L^{\prime \prime}, \tilde{L} \subset L^{\prime \prime}$. Let L^{\prime} be the minimal fixed point of f. Show the following:

1. There exists a unique minimal fixed-point of f for all $L \subset \Sigma^{*}$
2. Give an example of a language L such that $L_{k}=L^{\prime}$.
3. Give an example of a language L such that $L_{k} \neq L^{\prime}$ for all $k \in \mathbb{N}$.
4. If L is regular, L^{\prime} is regular
5. If L is not regular, still L^{\prime} can be regular by giving an example

Problem 5. Let $\Sigma=\{a, b\}$. Suppose h is a homomorphism from the alphabet $\Sigma \rightarrow \Sigma^{*}$, and L is some language in Σ^{*}, and $h(L)$ is regular. Prove or disprove that L is always regular.

Problem 6. Give an example of a language whose NFA requires n states, whereas any DFA accepting the same language would require $\Omega\left(2^{n}\right)$ states. Conclude that NFAs are exponentially succinct than DFAs.

Problem 1. Construct the Nerode Automata for $L=\left(a^{*}+b\right) a b^{*}$.
Problem 2. Write a regular expression for the language accepted by the DFA given:

Problem 3. We call $k \in \mathbb{N}$ a period of a language $L \subset\{a\}^{*}$ (language over a unary alphabet) if $a^{n} \in L$ implies $a^{n+k} \in L$ for large enough n. For $L \subset\{a\}^{*}$, prove that the following are equivalent:

1. L is regular
2. L can be represented as a finite union of languages of the form

$$
L_{a, d}=\left\{a^{n}: n=a+k d, k \in \mathbb{N}\right\}
$$

3. $\exists!t \in \mathbb{N}$ such that k is a period of L if and only if it is an integral multiple of t.

Problem 7. Prove or disprove the regularity of the following languages:

1. $B B-8=\left\{0^{k} u 0^{k} \mid k \in \mathbb{N}, u \in\{0,1\}^{*}\right\}$
2. $K-2 S O=\left\{a^{i} b^{j} c^{k} \mid\right.$ if $i=1$ then $\left.j=k\right\}$
3. $R 2-D 2=\left\{a^{n^{2}} \mid n \in \mathbb{N}\right\}$
4. $C-3 P O=\left\{a^{p} \mid p\right.$ is prime $\}$

Rogue one. Suppose L is a regular language, and a function $f: \mathbb{N} \rightarrow \mathbb{N}$, we define the language $L_{f}=\{x| | y \mid=f(|x|), x \cdot y \in L\}$. Let $g(x)=2^{|x|}$, and $h(x)=|x|^{2}$ be two functions. Prove or disprove the regularity of the languages L_{g} and L_{h}.

