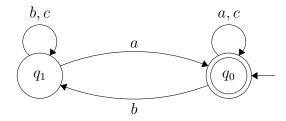
Problem Set 2

Theory of Computation

August 11, 2017

For the problem set is long and full of errors...

Problem 1. Construct NFAs over the alphabet $\Sigma = \{a, b\}$ for the following languages and formally prove that the NFA accepts exactly the language defined.


(1) $\mathcal{L}_1 = \{ w \mid w \text{ starts and ends with the same letter} \}$

(2) $\mathcal{L}_2 = \{ w \mid w \text{ contains the substring aabb} \}$

(3) $\mathcal{L}_3 = \{a, ab, abbab, bbbbb, aababa, bababaa\} \cup \{w \mid |w| > 8 \text{ and is even}\}$

Try to convert the NFAs obtained for each of the above languages into DFAs.

Problem 2. Consider the following automaton over the alphabet $\{a, c, b\}$. Is it a DFA?

Try to identify the language it accepts, and formally prove the same.

Problem 3. Do there exist two languages (over a non-empty alphabet) \mathcal{L}_1 and \mathcal{L}_2 such that $\mathcal{L}_1 \subset \mathcal{L}_2$ and \mathcal{L}_2 is regular but \mathcal{L}_1 is not? Can you show that for every language, there exists a regular (language) subset and a regular (language) superset of it?

Problem 4. If all words of size $\leq n$ are accepted by a complete DFA containing exactly n states, then what can you say about the language accepted by such a DFA? Does the answer remain the same for NFAs?

Problem 5. Construct an NFA that verifies addition of binary numbers. Suppose the problem is to add the numbers six and seven. then,

$$0110 + 0111 - - - 1101$$

We shall encode this as a string on the alphabet

$$\Sigma = \left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

where the first two rows represent the numbers to be added and the third row represents the sum. For instance, the above summation can be represented as:

$$\begin{bmatrix} 0\\0\\1\end{bmatrix} \begin{bmatrix} 1\\1\\1\end{bmatrix} \begin{bmatrix} 1\\1\\0\end{bmatrix} \begin{bmatrix} 0\\1\\1\end{bmatrix}$$

Construct an NFA that takes a string on the alphabet $\Sigma = M_{3\times 1}(\{0,1\})$ (the set of three cross one matrices with zeros and ones as entries), and accepts the string if it represents a valid instance of addition.

How would you modify your automaton if the input was in decimal?

And now your problem set has ended.