Distributed Probabilistic Systems

Madhavan Mukund

Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Joint work with
Javier Esparza, R Jagadish Chandra Bose, Sumit Kumar Jha, Ratul Saha and P S Thiagarajan
ACTS 2017, CMI, 30 January 2017

Overview

- Probability is a useful way to model uncertainty
- Rich theory of probabilistic systems
- Markov chains, Markov Decision Processes (MDPs)
- Quantitative analysis
- Fixed point computations, graph theoretic analysis
- Statistical methods
- Add time, costs?
- Distributed probabilistic models?
- State explosion due to parallel components
- Factorize global probabilities via local transitions
- Synchronizations through actions: MDPs unavoidable

Resource constrained processes

- A process is a collection of tasks
- Assembling a car, approving a loan application
- Tasks have logical, temporal dependencies
- Some tasks may be independent of each other
- Tasks are allocated to resources
- Items of machinery, desk staff
- Heterogenous resources - the slow immigration counter
- Cases: Multiple instances of a task
- Can process in parallel, but contention for resources
- Arrival pattern

An individual case

Loan application

The Application
 The Offer

The full story

- Causality and concurrency - like a Petri net
- Derive probabilities from past history

The full story ...

Resource constrained cases

Resources
1 \square

2 \square
3 \square ;

C

Cases

Towards a formal model

- Tasks and resources are agents
- Agents interact
- Task-task causal dependency
- Allocation of task to a resource
- Each interaction can have a duration and a cost

Typical question

- C cases arrive at λ cases per second.
- Do at least $x \%$ complete within time t, with probability at least p ?

Probabilistic asynchronous automata

- Local components $\{1,2, \ldots, n\}$, with local states S_{i}
- For $u=\{i, j, k, \ldots\}, S_{u}=S_{i} \times S_{j} \times S_{k} \times \cdots$
- Set of distributed actions A
- Each action a involves subset of agents: $\operatorname{loc}(a) \subseteq\{1,2, \ldots, n\}$
- Transition relations: $\Delta_{a} \subseteq S_{\operatorname{loc}(a)} \times S_{\operatorname{loc}(a)}$
- With each a event $e=(u, v)$, associate a cost $\chi(e)$ and a delay $\delta(e)$
- For simplicity, delay is a fixed quantity
- Assign a probability distribution across all a-events $\left(u, v_{1}\right),\left(u, v_{2}\right), \ldots,\left(u, v_{k}\right)$ from same source state u

Succinctness advantage

- Two players each toss a fair coin
- If the outcome is the same, they toss again
- If the outcomes are different, the one who tosses Heads wins

Succinctness advantage ...

- What if there were k players?

- k parallel probabilistic moves generate 2^{k} global moves

Distributed model for coin toss

- Decompose into local components
- Coin tosses are local actions, deciding a winner is synchronized action

Resolving non-determinism

What is the probability of observing $a b$?

Distributed Markov Chains

- Structural restriction on state spaces, transitions
- Agent i in local state s_{i} always interacts with a fixed set of partners
- Previous example violates this
- Each run is a Mazurkiewicz trace
- Fix a canonical maximal step interleaving (Foata normal form)
- Each finite trace has a probability derived from underlying events
- Combine to form a Markov chain
- Though restricted, can model distributed protocols like leader election

Distributed Probabilistic Systems

- Alternatively, work with schedulers
- Traditional MDP analysis analyzes best-case or worst-case behaviour across all possible schedulers
- In applications such as business processes, schedulers are typically simple
- Round-robin
- Priority based
- ...
- Fix such a scheduling strategy and analyze

Defining schedulers

- At each global state u, some set of actions en (u) is enabled
- A subset of actions is schedulable if the participating agents are pairwise disjoint
- Without delays on events, can define a global scheduler and execute maximal steps
- With delays, steps end at different time points
- Scheduler should make decision at each relevant time point respecting concurrency

Snapshots

- A snapshot (s, U, X) is a global state with information about events in progress
- s is a global state
- U is a set of actions currently in progrews
- X has an entry (a, e, t) for each $a \in U$, where
- e is the event probabilistically chosen for a
- t is the time left for e to complete-recall that e has associated delay $\delta(e)$
- Events in X can be sorted by finishing time
- Choose the subset Y that will finish earliest, say in time t^{\prime}
- Update (s, U, X) accordingly
- Reduce time for all unfinished events in X by t^{\prime}

Schedulers and snapshots

- Scheduler has to choose a subset of en(s) at each snapshot (s, U, X)
- Choice should respect concurrency
- State is updated only when an event completes
- Actions in progress, U, must continue to be scheduled
- Demand that scheduler chooses a subset of en(s) that includes all of U

Claim

Under such a scheduler, a distributed probabilistic system describes a Markov Chain

Analysis

Typical question

- C cases arrive at λ cases per second.
- Do at least $x \%$ complete within time t, with probability at least p ?
- Statistical model checking
- Simulate system and check fraction of runs that meet the requirement
- Statistical probabilistic ratio test (SPRT) determines number of simulations required to validate property within a desired confidence bound

Experiments

The loan processing example

Fixed time bound
Fixed number of cases

Extensions

- Stochastic delays
- Analysis based on cost and time
- Structural reduction rules (a la negotiations)
- More sophisticated analysis of schedulers

References

- Distributed Markov Chains R Saha, J Esparza, S K Jha, M Mukund and P S Thiagarajan Proc. VMCAI 2015, Springer LNCS 8931 (2015) 117-134.
- Time-bounded Statistical Analysis of Resource-constrained Business Processes with Distributed Probabilistic Systems R Saha, M Mukund and R P J C Bose Proc. SETTA 2016, Springer LNCS 9984 (2016) 297-314

