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Overview

Probability is a useful way to model uncertainty

Rich theory of probabilistic systems

Markov chains, Markov Decision Processes (MDPs)

Quantitative analysis

Fixed point computations, graph theoretic analysis

Statistical methods

Add time, costs?

Distributed probabilistic models?

State explosion due to parallel components

Factorize global probabilities via local transitions

Synchronizations through actions: MDPs unavoidable



Resource constrained processes

A process is a collection of tasks

Assembling a car, approving a loan application

Tasks have logical, temporal dependencies

Some tasks may be independent of each other

Tasks are allocated to resources

Items of machinery, desk staff

Heterogenous resources — the slow immigration counter

Cases: Multiple instances of a task

Can process in parallel, but contention for resources

Arrival pattern



An individual case

Loan application



The full story

Causality and concurrency — like a Petri net

Derive probabilities from past history



The full story . . .



Resource constrained cases



Towards a formal model

Tasks and resources are agents

Agents interact

Task-task causal dependency

Allocation of task to a resource

Each interaction can have a duration and a cost

Typical question

C cases arrive at λ cases per second.

Do at least x% complete within time t, with probability at
least p?



Probabilistic asynchronous automata

Local components {1, 2, . . . , n}, with local states Si

For u = {i , j , k, . . .}, Su = Si × Sj × Sk × · · ·

Set of distributed actions A

Each action a involves subset of agents: loc(a) ⊆ {1, 2, . . . , n}

Transition relations: ∆a ⊆ Sloc(a) × Sloc(a)

With each a event e = (u, v), associate a cost χ(e) and a
delay δ(e)

For simplicity, delay is a fixed quantity

Assign a probability distribution across all a-events
(u, v1), (u, v2), . . . , (u, vk) from same source state u



Succinctness advantage

Two players each toss a fair coin

If the outcome is the same, they toss again

If the outcomes are different, the one who tosses Heads wins



Succinctness advantage . . .

What if there were k players?

k parallel probabilistic moves generate 2k global moves



Distributed model for coin toss

Decompose into local components

Coin tosses are local actions, deciding a winner is
synchronized action



Resolving non-determinism

What is the probability of observing ab?



Distributed Markov Chains

Structural restriction on state spaces, transitions

Agent i in local state si always interacts with a fixed set of
partners

Previous example violates this

Each run is a Mazurkiewicz trace

Fix a canonical maximal step interleaving (Foata normal form)

Each finite trace has a probability derived from underlying
events

Combine to form a Markov chain

Though restricted, can model distributed protocols like leader
election



Distributed Probabilistic Systems

Alternatively, work with schedulers

Traditional MDP analysis analyzes best-case or worst-case
behaviour across all possible schedulers

In applications such as business processes, schedulers are
typically simple

Round-robin

Priority based

. . .

Fix such a scheduling strategy and analyze



Defining schedulers

At each global state u, some set of actions en(u) is enabled

A subset of actions is schedulable if the participating agents
are pairwise disjoint

Without delays on events, can define a global scheduler and
execute maximal steps

With delays, steps end at different time points

Scheduler should make decision at each relevant time point
respecting concurrency



Snapshots

A snapshot (s,U,X ) is a global state with information about
events in progress

s is a global state

U is a set of actions currently in progrews

X has an entry (a, e, t) for each a ∈ U, where

e is the event probabilistically chosen for a

t is the time left for e to complete—recall that e has
associated delay δ(e)

Events in X can be sorted by finishing time

Choose the subset Y that will finish earliest, say in time t ′

Update (s,U,X ) accordingly

Reduce time for all unfinished events in X by t ′



Schedulers and snapshots

Scheduler has to choose a subset of en(s) at each snapshot
(s,U,X )

Choice should respect concurrency

State is updated only when an event completes
Actions in progress, U, must continue to be scheduled

Demand that scheduler chooses a subset of en(s) that
includes all of U

Claim

Under such a scheduler, a distributed probabilistic system describes
a Markov Chain



Analysis

Typical question

C cases arrive at λ cases per second.

Do at least x% complete within time t, with probability at
least p?

Statistical model checking

Simulate system and check fraction of runs that meet the
requirement

Statistical probabilistic ratio test (SPRT) determines number
of simulations required to validate property within a desired
confidence bound



Experiments

The loan processing example

Fixed time bound Fixed number of cases



Extensions

Stochastic delays

Analysis based on cost and time

Structural reduction rules (a la negotiations)

More sophisticated analysis of schedulers

. . .



References

Distributed Markov Chains
R Saha, J Esparza, S K Jha, M Mukund and P S Thiagarajan
Proc. VMCAI 2015, Springer LNCS 8931 (2015) 117–134.

Time-bounded Statistical Analysis of Resource-constrained
Business Processes with Distributed Probabilistic Systems
R Saha, M Mukund and R P J C Bose
Proc. SETTA 2016, Springer LNCS 9984 (2016) 297–314


