Boundedness and Coverability for Pushdown Vector Addition Systems

Grégoire Sutre

LaBRI, CNRS \& University of Bordeaux, France ACTS, CMI, Chennai - February 2017

Based on joint works with J. Leroux, M. Praveen and P. Totzke.

Table of Contents

(1) Pushdown Vector Addition Systems
(2) Boundedness for Pushdown VAS
(3) Coverability for 1-dim Pushdown VAS

4 Conclusion

Table of Contents

(1) Pushdown Vector Addition Systems
(2) Boundedness for Pushdown VAS
(3) Coverability for 1-dim Pushdown VAS

4 Conclusion

Vector Addition Systems

Definition

A VAS is a finite set of vectors $\boldsymbol{a} \in \mathbb{Z}^{d}$. For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{d}$ it has a step

$$
\boldsymbol{u} \xrightarrow{\boldsymbol{a}} \boldsymbol{v} \text { if } \quad \boldsymbol{v}=\boldsymbol{u}+\boldsymbol{a} .
$$

Vector Addition Systems

Definition

A VAS is a finite set of vectors $\boldsymbol{a} \in \mathbb{Z}^{d}$. For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{d}$ it has a step

$$
\boldsymbol{u} \xrightarrow{\boldsymbol{a}} \boldsymbol{v} \text { if } \boldsymbol{v}=\boldsymbol{u}+\boldsymbol{a} .
$$

Equivalent to Petri nets
Many decidable verification questions

- Reachability: does $\boldsymbol{u} \xrightarrow{*} \boldsymbol{v}$?
- Coverability: does there exist $\boldsymbol{v}^{\prime} \geq \boldsymbol{v}$ such that $\boldsymbol{u} \xrightarrow{*} \boldsymbol{v}^{\prime}$?
- Boundedness: is $\{\boldsymbol{v} \mid \boldsymbol{u} \xrightarrow{*} \boldsymbol{v}\}$ finite ?

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

$$
\operatorname{push}(A),\binom{-1}{0} \quad \operatorname{pop}(A),\binom{2}{0}
$$

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

$$
\operatorname{push}(A),\binom{-1}{0} \quad \operatorname{pop}(A),\binom{2}{0}
$$

$p, \perp,\binom{2}{1}$

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

$$
p, \perp,\binom{2}{1} \longrightarrow p, A A \perp,\binom{0}{1}
$$

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

$$
\operatorname{push}(A),\binom{-1}{0} \quad \operatorname{pop}(A),\binom{2}{0}
$$

$$
p, \perp,\binom{2}{1} \longrightarrow p, A A \perp,\binom{0}{1} \longrightarrow q, A A \perp,\binom{0}{0}
$$

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

$$
\operatorname{push}(A),\binom{-1}{0} \quad \operatorname{pop}(A),\binom{2}{0}
$$

$$
p, \perp,\binom{2}{1} \longrightarrow p, A A \perp,\binom{0}{1} \longrightarrow q, A A \perp,\binom{0}{0} \longrightarrow \longrightarrow, \perp,\binom{4}{0}
$$

Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.
They can for example model recursive programs with variables over \mathbb{N}.

1: $x \leftarrow n$
2: procedure DoubleX
3: if $(\star \wedge x>0)$ then
4: $\quad x \leftarrow(x-1)$
5: DoubleX
6: end if
7: $\quad x \leftarrow(x+2)$
8: end procedure

Pushdown Vector Addition Systems — Definition

Definition

A pushdown VAS is a triple $\langle Q, \Gamma, \Delta\rangle$ where

- Q : finite set of states
- 「: finite stack alphabet
- $\Delta \subseteq Q \times\left(0 \mathrm{p} \times \mathbb{Z}^{d}\right) \times Q$: finite set of transitions, with

$$
\mathrm{Op}=\{\operatorname{nop}\} \cup\{\operatorname{push}(\gamma), \operatorname{pop}(\gamma) \mid \gamma \in \Gamma\}
$$

Configurations: $(q, \sigma, \boldsymbol{v})$ with $q \in Q, \sigma \in \Gamma^{*}$ and $\boldsymbol{v} \in \mathbb{N}^{d}$ Steps: as expected

- Reachability: does $(p, \varepsilon, \boldsymbol{u}) \xrightarrow{*}(q, \varepsilon, \boldsymbol{v})$?
- Coverability: does there exist $\boldsymbol{v}^{\prime} \geq \boldsymbol{v}$ with $(p, \varepsilon, \boldsymbol{u}) \xrightarrow{*}\left(q, \varepsilon, \boldsymbol{v}^{\prime}\right)$?
- Boundedness: is $\{(q, \sigma, \boldsymbol{v}) \mid(p, \varepsilon, \boldsymbol{u}) \xrightarrow{*}(q, \sigma, \boldsymbol{v})\}$ finite ?

Pushdown Vector Addition Systems - Motivations

\Rightarrow Richer model for the verification of concurrent systems

- Multi-threaded recursive programs
- One recursive server + unboundedly many finite-state clients

Pushdown Vector Addition Systems - Motivations

\Rightarrow Richer model for the verification of concurrent systems

- Multi-threaded recursive programs
- One recursive server + unboundedly many finite-state clients
\Rightarrow Is the model too powerful?

Brief State of the Art

	Boundedness	Coverability	Reachability
VAS	ExPSPACE-c 1,2	ExpSPACE-c 1,2	Decidable 3,4,5
+ full counter	Decidable 7	Decidable 6	
+ stack	Decidable 9	TowER-h 8	
1-VAS + stack	ExpTimE-e 11	Decidable 10	$?$

[1] Lipton 1976
[2] Rackoff 1978
[3] Mayr 1981
[4] Kosaraju 1982
[5] Leroux, Schmitz 2015
[6] Reinhardt 2008
[7] Finkel, Sangnier 2010
[8] Lazić 2012
[9] Leroux, Praveen, S. 2014
[10] Leroux, S., Totzke 2015
[11] Leroux, S., Totzke 2015

Brief State of the Art

	Boundedness	Coverability	Reachability
VAS	ExPSPACE-c 1,2	ExpSPACE-c 1,2	Decidable 3,4,5
+ full counter	Decidable 7	Decidable 6	
+ stack	Decidable 9	TowER-h 8	
1-VAS + stack	ExpTime-e 11	Decidable 10	$?$

Subclasses of pushdown VAS with decidable reachability

- Multiset pushdown systems [Sen, Viswanathan 2006]
- VAS \cap CFL of finite index [Atig, Ganty 2011]

Related decidable models with counters and recursion

- $\operatorname{BPA}(\mathbb{Z})$ [Bouajjani, Habermehl, Mayr 2003]

Table of Contents

(1) Pushdown Vector Addition Systems

(2) Boundedness for Pushdown VAS

(3) Coverability for 1-dim Pushdown VAS

4 Conclusion

Reachability Tree of a Pushdown VAS

\leftrightharpoons Exhaustive and enumerative forward exploration from $\left(q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }}\right)$
\Rightarrow Potentially infinite, need to truncate

Reduced Reachability Tree for VAS [Karp, Miller 1969]

\Rightarrow The reduced reachability tree is finite
\Rightarrow It contains enough information to decide boundedness
\Rightarrow Crucial ingredient: the strict order $<$ is a simulation relation

Tentative Simulation-Based Truncation for Pushdown VAS

Truncation Rule

$$
\begin{aligned}
& q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }} \\
& \therefore \sum_{q, \sigma, v} \\
& q, \sigma, \boldsymbol{v} \\
& \sum \\
& q^{\prime}, \sigma^{\prime}, \mathbf{v}^{\prime} \\
& \text { if } q=q^{\prime}, \boldsymbol{v} \leq \boldsymbol{v}^{\prime} \text { and } \sigma \leq_{\text {prefix }} \sigma^{\prime}
\end{aligned}
$$

\Rightarrow No loss of information to decide boundedness
But...

Tentative Simulation-Based Truncation for Pushdown VAS

Truncation Rule

$$
q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }}
$$

\Rightarrow No loss of information to decide boundedness
But...
The reduced reachability tree may be infinite!

Reduced Reachability Tree for Pushdown VAS

Truncation Rule

$$
\begin{aligned}
& q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }}
\end{aligned}
$$

$$
\begin{aligned}
& \left({ }_{-}, \ldots, \rho\right) \underbrace{\gtrless^{\prime}}_{\substack{ \\
q^{\prime}, \sigma^{\prime}, \boldsymbol{v}^{\prime}}} \\
& \text { if }\left\{\begin{array}{l}
q=q^{\prime} \text { and } v \leq \boldsymbol{v}^{\prime} \\
\sigma \leq \text { suffix } \rho \text { for all } \rho
\end{array}\right.
\end{aligned}
$$

\Rightarrow The reduced reachability tree is finite
\Rightarrow It contains enough information to decide boundedness

Finiteness of the Reduced Reachability Tree

Proposition

The reduced reachability tree of a pushdown VAS is finite.
Proof. By contradiction, assume that it is infinite.
The tree is finitely branching. So, by König's Lemma, there is an infinite branch

$$
\left(q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }}\right) \rightarrow\left(q_{1}, \sigma_{1}, \boldsymbol{v}_{1}\right) \rightarrow\left(q_{2}, \sigma_{2}, \boldsymbol{v}_{2}\right) \cdots
$$

Finiteness of the Reduced Reachability Tree

Proposition

The reduced reachability tree of a pushdown VAS is finite.
Proof. By contradiction, assume that it is infinite.
The tree is finitely branching. So, by König's Lemma, there is an infinite branch

$$
\left(q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }}\right) \rightarrow\left(q_{1}, \sigma_{1}, \boldsymbol{v}_{1}\right) \rightarrow\left(q_{2}, \sigma_{2}, \boldsymbol{v}_{2}\right) \cdots
$$

Finiteness of the Reduced Reachability Tree

Proposition

The reduced reachability tree of a pushdown VAS is finite.
Proof. By contradiction, assume that it is infinite.
The tree is finitely branching. So, by König's Lemma, there is an infinite branch

$$
\left(q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }}\right) \rightarrow\left(q_{1}, \sigma_{1}, \boldsymbol{v}_{1}\right) \rightarrow\left(q_{2}, \sigma_{2}, \boldsymbol{v}_{2}\right) \cdots
$$

Finiteness of the Reduced Reachability Tree

Proposition

The reduced reachability tree of a pushdown VAS is finite.
Proof. By contradiction, assume that it is infinite.
The tree is finitely branching. So, by König's Lemma, there is an infinite branch

$$
\left(q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }}\right) \rightarrow\left(q_{1}, \sigma_{1}, \boldsymbol{v}_{1}\right) \rightarrow\left(q_{2}, \sigma_{2}, \boldsymbol{v}_{2}\right) \cdots
$$

Finiteness of the Reduced Reachability Tree

Proposition

The reduced reachability tree of a pushdown VAS is finite.
Proof. By contradiction, assume that it is infinite.
The tree is finitely branching. So, by König's Lemma, there is an infinite branch

$$
\left(q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }}\right) \rightarrow\left(q_{1}, \sigma_{1}, \boldsymbol{v}_{1}\right) \rightarrow\left(q_{2}, \sigma_{2}, \boldsymbol{v}_{2}\right) \cdots
$$

Finiteness of the Reduced Reachability Tree

Proposition

The reduced reachability tree of a pushdown VAS is finite.
Proof. By contradiction, assume that it is infinite.
The tree is finitely branching. So, by König's Lemma, there is an infinite branch

$$
\left(q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }}\right) \rightarrow\left(q_{1}, \sigma_{1}, \boldsymbol{v}_{1}\right) \rightarrow\left(q_{2}, \sigma_{2}, \boldsymbol{v}_{2}\right) \cdots
$$

Finiteness of the Reduced Reachability Tree

Proposition

The reduced reachability tree of a pushdown VAS is finite.
Proof. By contradiction, assume that it is infinite.
The tree is finitely branching. So, by König's Lemma, there is an infinite branch

$$
\left(q_{\text {init }}, \varepsilon, \boldsymbol{v}_{\text {init }}\right) \rightarrow\left(q_{1}, \sigma_{1}, \boldsymbol{v}_{1}\right) \rightarrow\left(q_{2}, \sigma_{2}, \boldsymbol{v}_{2}\right) \cdots
$$

RRT-based Algorithm for Pushdown VAS Boundedness

Proposition

A pushdown VAS is unbounded iff its reduced reachability tree contains

$$
\underbrace{(q, \sigma, \boldsymbol{v}) M_{M}\left(q, \sigma^{\prime}, \boldsymbol{v}^{\prime}\right)}_{\sigma \text { remains a suffix }}
$$

such that $\boldsymbol{v} \leq \boldsymbol{v}^{\prime}$ and $\sigma \leq_{\text {suffix }} \sigma^{\prime}$, and at least one of these inequalities is strict.

Theorem ([Leroux, Praveen, S. 2014])
Boundedness is decidable for pushdown VAS.

Worst-Case Complexity of the Algorithm

How big can the reduced reachability tree be?

Worst-Case Complexity of the Algorithm

How big can the reduced reachability tree be?

Theorem ([Leroux, Praveen, S. 2014])
The reduced reachability tree of a pushdown VAS has at most an hyper-Ackermannian number of nodes, and this bound is tight.

Table of Contents

(1) Pushdown Vector Addition Systems

(2) Boundedness for Pushdown VAS
(3) Coverability for 1-dim Pushdown VAS

4 Conclusion

Coverability versus Reachability in Pushdown VAS

Observation ([Lazić 2012])

Reachability in dimension d reduces to Coverability in dimension $d+1$.
Proof. Budget construction. Use the stack to test the budget for zero. Add a new counter B and two new stack symbols $A, \$$.

$\left(q_{\text {init }}^{\mathcal{A}}, \varepsilon, \mathbf{0}\right) \xrightarrow{*}\left(q_{\text {final }}^{\mathcal{A}}, \varepsilon, \mathbf{0}\right) \quad$ iff $\quad\left(q_{\text {init }}^{\mathcal{A}^{\prime}}, \varepsilon, \mathbf{0}, 0\right) \xrightarrow{*}\left(q_{\text {final }}^{\mathcal{A}^{\prime}}, \varepsilon,{ }_{-},{ }_{-}\right)$

Coverability versus Reachability in Pushdown VAS

Observation ([Lazić 2012])
Reachability in dimension d reduces to Coverability in dimension $d+1$.

$$
\operatorname{Reach}(0) \sqsubseteq \operatorname{Cover}(1) \sqsubseteq \operatorname{Reach}(1) \sqsubseteq \operatorname{Cover}(2) \sqsubseteq \cdots
$$

Coverability versus Reachability in Pushdown VAS

Observation ([Lazić 2012])
Reachability in dimension d reduces to Coverability in dimension $d+1$.

Theorem ([Leroux, S., Totzke 2015])
Coverability for 1-dimensional pushdown VAS is decidable.

Another Perspective

The coverability problem for d-dimensional pushdown VAS can be rephrased as follows.

Input:

- a VAS $\boldsymbol{A} \subseteq \mathbb{Z}^{d}$
- a context-free language $L \in \boldsymbol{A}^{*}$
- vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{d}$

Output: whether there exist $\boldsymbol{a}_{\mathbf{1}} \boldsymbol{a}_{\mathbf{2}} \ldots \boldsymbol{a}_{\boldsymbol{k}} \in L$ and $\boldsymbol{v}^{\prime} \in \mathbb{N}^{d}$ such that

$$
\boldsymbol{u} \xrightarrow{a_{1}} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{k}} \boldsymbol{v}^{\prime} \quad \text { and } \quad \boldsymbol{v}^{\prime} \geq \boldsymbol{v}
$$

Grammar-Controlled Vector Addition Systems

A context-free grammar is a triple $G=(V, A, R)$ where

- V : nonterminal symbols (variables)
- A : terminal symbols
- R : production rules $X \vdash \alpha$ where $X \in V$ and $\alpha \in(V \cup A)^{*}$

Definition (1-dimensional GVAS)

A GVAS is a context-free grammar $G=(V, A, R)$ such that $A \subseteq \mathbb{Z}$.

Every GVAS can be transformed into an equivalent one where

- all variables $X \in V$ are productive
- $A=\{-1,0,1\}$

Summaries for Coverability

A GVAS is a context-free grammar $G=(V, A, R)$ such that $A \subseteq \mathbb{Z}$.

Notations:

$$
\begin{aligned}
L_{X} & =\left\{a_{1} \cdots a_{k} \in A^{*} \mid X \xrightarrow{*} a_{1} \cdots a_{k}\right\} \\
c \xrightarrow{X} d & \Leftrightarrow c \xrightarrow{a_{1}} \cdots \xrightarrow{a_{k}} d \text { for some } a_{1} \cdots a_{k} \in L_{X}
\end{aligned}
$$

Definition (Summary of a Variable)

$$
\text { Summary }_{X}(c)=\sup \{d \mid c \xrightarrow{x} d\}
$$

Coverability:

Example: Weak Computation of Multiplication by Two

$$
\begin{gathered}
S \vdash-1 S 11 \mid \varepsilon \\
L_{S}=\left\{(-1)^{n}(11)^{n} \mid n \in \mathbb{N}\right\}
\end{gathered}
$$

For every $c, d \in \mathbb{N}$,

$$
\begin{aligned}
c \xrightarrow{S} d & \Longleftrightarrow \exists n \in \mathbb{N}: c \xrightarrow{(-1)^{n}(11)^{n}} d \\
& \Longleftrightarrow \exists n \leq c: c \xrightarrow{(-1)^{n}} c-n \xrightarrow{(11)^{n}} c+n=d \\
& \Longleftrightarrow c \leq d \leq 2 c
\end{aligned}
$$

Summary $_{S}(c)=2 c$

Example: Weak Computation of Ackermann Functions

$$
A_{m}(n)= \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

Example: Weak Computation of Ackermann Functions

$$
\begin{aligned}
A_{m}(n)= \begin{cases}n+1 & \text { if } m=0 \\
A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases} & \begin{array}{l}
A_{0}(n)=n+1 \\
A_{1}(n)=n+2 \\
A_{2}(n)=2 n+3
\end{array} \\
& A_{3}(n)=2^{n+3}-3
\end{aligned}
$$

Example: Weak Computation of Ackermann Functions

$$
\begin{aligned}
& A_{m}(n)= \begin{cases}n+1 & \text { if } m=0 \\
A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases} \\
& \downarrow \\
& X_{0} \vdash 1 \\
& X_{1} \vdash-1 X_{1} X_{0} \mid 1 X_{0} \\
& X_{2} \vdash-1 X_{2} X_{1} \mid 1 X_{1} \\
& X_{m} \vdash-1 X_{m} X_{m-1} \mid 1 X_{m-1} \\
& \vdots
\end{aligned}
$$

$$
\begin{aligned}
& A_{0}(n)=n+1 \\
& A_{1}(n)=n+2 \\
& A_{2}(n)=2 n+3 \\
& A_{3}(n)=2^{n+3}-3
\end{aligned}
$$

Example: Weak Computation of Ackermann Functions

$$
\left.\begin{array}{l}
A_{m}(n)= \begin{cases}n+1 & \text { if } m=0 \\
A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases} \\
\vdots
\end{array}\right\} \begin{aligned}
& x_{0} \vdash 1 \\
& X_{1} \vdash-\mathbf{1} X_{1} X_{0} \mid 1 X_{0} \\
& X_{2} \vdash-\mathbf{1} X_{2} X_{1} \mid 1 X_{1} \\
& \vdots \\
& X_{m} \vdash-1 X_{m} X_{m-1} \mid 1 X_{m-1}
\end{aligned}
$$

$$
\begin{aligned}
& A_{0}(n)=n+1 \\
& A_{1}(n)=n+2 \\
& A_{2}(n)=2 n+3 \\
& A_{3}(n)=2^{n+3}-3
\end{aligned}
$$

$$
\begin{aligned}
X_{m} & \xlongequal{*}-1^{n} X_{m} X_{m-1}^{n} \\
& \Longrightarrow-1^{n} 1 X_{m-1}^{n+1} \\
& \nRightarrow \cdots
\end{aligned}
$$

$A_{m}=$ Summary $_{X_{m}}$

Flow Trees

Certificates for Summary $S_{S}(c) \geq d$? Annotated parse trees!

Flow Trees

Certificates for Summary $S_{S}(c) \geq d$? Annotated parse trees!

$$
x_{1}
$$

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $S_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $S_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $S_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $S_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $S_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $S_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $S_{S}(c) \geq d$? Annotated parse trees!

Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees

Certificates for Summary $_{S}(c) \geq d$? Annotated parse trees!

Flow Conditions

(1) Nodes satisfy

Summary $_{X}(I N) \geq$ OUT
(2) Labeling of neighboring nodes is consistent
Summary $\left._{X_{1}}(5) \geq 3\right)$

Flow Trees ... can be arbitrarily large!

Certificates for Summary ${ }_{S}(c) \geq d$? Annotated parse trees!

Flow Conditions

(1) Nodes satisfy

Summary $_{X}(I N) \geq$ OUT
(2) Labeling of neighboring nodes is consistent
Summary $\left._{X_{1}}(5) \geq 3\right)$

Truncating and Collapsing Flow Trees

Truncating and Collapsing Flow Trees

Truncating and Collapsing Flow Trees

$\sum u$	$\sum v$	a, a^{\prime}	b, b^{\prime}
≤ 0	≤ 0	$a \geq a^{\prime}$	$b \leq b^{\prime}$

Replace a^{\prime} by a and b^{\prime} by b and then collapse.

Truncating and Collapsing Flow Trees

$\sum u$	$\sum v$	a, a^{\prime}	b, b^{\prime}
>0	≥ 0	$a<a^{\prime}$	$b \geq b^{\prime}$

Truncate at $a^{\prime} X b^{\prime}$ since we can iterate.

Truncating and Collapsing Flow Trees

$\sum u$	$\sum v$	a, a^{\prime}	b, b^{\prime}
>0	<0	$a<a^{\prime}$	$b<b^{\prime}$

If $\sum u+\sum v>0$ then truncate at $a^{\prime} \backslash b^{\prime}$.
If $\sum u+\sum v \leq 0$ then ?

Truncating and Collapsing Flow Trees

$\sum u$	$\sum v$	a, a^{\prime}	b, b^{\prime}
<0	>0	$a>a^{\prime}$	$b>b^{\prime}$

If $\sum u+\sum v \leq 0$ then shift by $-\sum u$ and collapse.
If $\sum u+\sum v>0$ then ?

Asymptotic Ratios

Definition (Ratio of a Variable)

$$
\text { Ratiox }=\liminf _{n \rightarrow \infty} \frac{\text { Summary }_{X}(n)}{n}
$$

Grammar for Ackermann Functions A_{m}

$$
\text { Summary }_{X_{m}}=A_{m}
$$

$$
\begin{array}{ll}
A_{0}(n)=n+1 & \text { Ratio }_{X_{0}}=1 \\
A_{1}(n)=n+2 & \text { Ratio }_{X_{1}}=1 \\
A_{2}(n)=2 n+3 & \text { Ratio }_{X_{2}}=2 \\
A_{3}(n)=2^{n+3}-3 & \text { Ratio }_{X_{3}}=\infty
\end{array}
$$

Pruning Flow Trees

Pruning Flow Trees

Pruning Flow Trees

Assume Ratiox $=\infty$. There exists n_{0} such that $\operatorname{Summary}_{X}(n) \geq 3 \cdot n$ for all $n \geq n_{0}$.

Pruning Flow Trees

Assume Ratiox $=\infty$. There exists n_{0} such that $\operatorname{Summary}_{X}(n) \geq 3 \cdot n$ for all $n \geq n_{0}$.

$$
a \xrightarrow{u^{n}} a+n \quad \xrightarrow{X} \quad n^{\prime} \geq 3 a+3 n \quad \xrightarrow{v^{n}} \quad 3 a+n \geq n
$$

Pruning Flow Trees

Assume Ratiox $=\infty$. There exists n_{0} such that $\operatorname{Summary}_{X}(n) \geq 3 \cdot n$ for all $n \geq n_{0}$.

$$
a \xrightarrow{u^{n}} a+n \quad \xrightarrow{x} \quad n^{\prime} \geq 3 a+3 n \quad \xrightarrow{v^{n}} \quad 3 a+n \geq n
$$

Hence, Summary $X_{X}(a)=\infty$.

Small Certificates

Definition

A certificate is a partial flow tree such that, for every leaf $c X d$,

- either Ratio $<\infty$, or
- Ratiox $=\infty$ and there is an ancestor $c^{\prime} X d^{\prime}$ with $c^{\prime}<c$.

Proposition

Summary $_{S}(c) \geq d$ iff there is a certificate with root $c \sqrt{S} d$ of at most exponential height and exponential input/output labels.

Small Certificates

Definition

A certificate is a partial flow tree such that, for every leaf $c X d$,

- either Ratio $<\infty$, or
- Ratio $x=\infty$ and there is an ancestor $c^{\prime} X d^{\prime}$ with $c^{\prime}<c$.

Proposition

Summary $_{S}(c) \geq d$ iff there is a certificate with root $c \sqrt{S} d$ of at most exponential height and exponential input/output labels.

Guess-and-check algorithm
Need to check that an annotated partial parse tree is a certificate

Small Certificates and Decision Procedure

Definition

A certificate is a partial flow tree such that, for every leaf $c X d$,

- either Ratiox $<\infty$, or
- Ratio $=\infty$ and there is an ancestor $c^{\prime} X d^{\prime}$ with $c^{\prime}<c$.

Proposition

The question whether Ratiox $=\infty$ is decidable. If Ratio $x<\infty$, then Summary $_{X}$ is computable.

Guess-and-check algorithm
Need to check that an annotated partial parse tree is a certificate

Table of Contents

(1) Pushdown Vector Addition Systems

(2) Boundedness for Pushdown VAS
(3) Coverability for 1-dim Pushdown VAS

4 Conclusion

Summary

\Rightarrow Extension of the reduced reachability tree from VAS to pushdown VAS

- In fact to pushdown well-structured transition systems
\Rightarrow Boundedness and termination are decidable for pushdown VAS
- Hyper-Ackermannian $\left(F_{\omega^{\omega}}\right)$ worst-case running time
- Tight bounds on the reachability set when it is finite
\Rightarrow Coverability is decidable for 1-dim pushdown VAS
(Counter-)boundedness for 1-dim pushdown VAS is solvable in exponential time

Open Problems

\Rightarrow Complexity of the boundedness problem for pushdown VAS

- Lower bound: tower of exponentials $\left(F_{3}\right)$ from [Lazić 2012]
- Upper bound: hyper-Ackermann $\left(F_{\omega^{\omega}}\right)$
\Rightarrow Decidability of coverability / reachability for pushdown VAS
- Reachability open even in dimension 1
\Rightarrow Complexity of boundedness and coverability for 1-dim pushdown VAS
- Both are NP-hard by reduction from SubsetSum
- Boundedness is in ExpTime and Coverability is (?) in ExpSpace

Open Problems

\Rightarrow Complexity of the boundedness problem for pushdown VAS

- Lower bound: tower of exponentials $\left(F_{3}\right)$ from [Lazić 2012]
- Upper bound: hyper-Ackermann $\left(F_{\omega^{\omega}}\right)$
\Rightarrow Decidability of c Jve ability / rea :habiliv for pushdc $w n$ VAS
- Reachability open eve., in dırmen,sion $:$,
\Rightarrow Complexity of boundedness and coverability for 1-dim pushdown VAS
- Both are NP-hard by reduction from SUbSETSUM
- Boundedness is in ExpTime and Coverability is (?) in ExpSpace

Pushdown Vector Addition Systems - Semantics

The semantics of a pushdown VAS $\langle Q, \Gamma, \Delta\rangle$ is the transition system $\left\langle Q \times \Gamma^{*} \times \mathbb{N}^{d}, \rightarrow\right\rangle$ whose transition relation \rightarrow is given by

$$
\begin{gathered}
\frac{(p, \operatorname{nop}, \boldsymbol{a}, q) \in \Delta \wedge \boldsymbol{v}^{\prime}=\boldsymbol{v}+\boldsymbol{a} \geq \mathbf{0}}{(p, \sigma, \boldsymbol{v}) \rightarrow\left(q, \sigma, \boldsymbol{v}^{\prime}\right)} \\
\frac{(p, \operatorname{push}(\gamma), \boldsymbol{a}, q) \in \Delta \wedge \boldsymbol{v}^{\prime}=\boldsymbol{v}+\boldsymbol{a} \geq \mathbf{0}}{(p, \sigma, \boldsymbol{v}) \rightarrow\left(q, \gamma \cdot \sigma, \boldsymbol{v}^{\prime}\right)} \\
\frac{(p, \operatorname{pop}(\gamma), \boldsymbol{a}, q) \in \Delta \wedge \boldsymbol{v}^{\prime}=\boldsymbol{v}+\boldsymbol{a} \geq \mathbf{0}}{(p, \gamma \cdot \sigma, \boldsymbol{v}) \rightarrow\left(q, \sigma, \boldsymbol{v}^{\prime}\right)}
\end{gathered}
$$

VASs \simeq Petri nets \simeq VASSs

Additional Feature of Petri nets

Test $\mathrm{x} \geq$ cst without modifying x

Weak Computation of Ackermann Functions

$$
A_{m}(n)= \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

Weak Computation of Ackermann Functions

$$
A_{m}(n)= \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

$$
\begin{aligned}
& A_{0}(n)=n+1 \\
& A_{1}(n)=n+2 \\
& A_{2}(n)=2 n+3 \\
& A_{3}(n)=2^{n+3}-3
\end{aligned}
$$

Weak Computation of Ackermann Functions

$$
A_{m}(n)= \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

pop(0)
$\begin{array}{r}+1 \\ \Omega_{0} \\ \hline\end{array}$

Weak Computation of Ackermann Functions

$$
\begin{aligned}
& A_{m}(n)= \begin{cases}n+1 & \text { if } m=0 \\
A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases} \\
& \begin{array}{l}
\operatorname{pop}(0), \\
\operatorname{push}(0) \\
-1 \\
s_{1}
\end{array} \underbrace{+1}_{\operatorname{push}(0),+1}
\end{aligned}
$$

Weak Computation of Ackermann Functions

$$
A_{m}(n)= \begin{cases}n+1 & \text { if } m=0 \\ A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases}
$$

Weak Computation of Ackermann Functions

Weak Computation of Ackermann Functions

$$
\begin{aligned}
& A_{m}(n)= \begin{cases}n+1 & \text { if } m=0 \\
A_{m-1}^{n+1}(1) & \text { if } m>0\end{cases} \\
& \text { push(0) C- } \\
& \left(s_{0}, \mathrm{~m} \perp, n\right) \xrightarrow{*}\left(s_{0}, \perp, A_{m}(n)\right) \\
& \text { If }\left(s_{0}, \mathrm{~m} \perp, n\right) \xrightarrow{*}\left(s_{0}, \perp, n^{\prime}\right) \text { then } n^{\prime} \leq A_{m}(n)
\end{aligned}
$$

