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PROBABILISTIC MODEL CHECKING

• Markov Decision Process (MDP) .

At each state, a scheduler chooses a 
probability distribution, and then the 
next state is chosen stochastically 
according to the distribution.

• For a fixed scheduler: 

MDP → Markov chain



PROBABILISTIC MODEL CHECKING

• Qualitative Model Checking:

• Input: MDP, LTL formula

• Does the formula hold for all 
schedulers with probability 1?

• Quantitative Model Checking:

• Input: MDP, LTL formula, threshold c

• Does the formula hold for all 
schedulers with probability at least c?
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Limit-det. Büchi

LTL

Nondet. Büchi

Product
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Yes/No

• Double exponential complexity in 
the formula, optimal.

• At the time: not applicable to the 
quantitative case. Vardi and Wolper

Courcoubetis, and
Yannakakis [95]
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MDP

Det. Rabin

LTL

Nondet. Büchi

Product

P≥0,7?
Yes/No

QUANTITATIVE
PROB. MODEL CHECKING

• In practice large automata
• Hard to implement efficiently
• Rise of “safraless” approaches:

• Acacia, ltl3dra, Rabinizer, …

• Also double exponential complexity 
in the formula.

• Solves both the qualitative and 
quantitative case.
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Initial 
Component

Accepting  
Component

non-deterministic deterministic

“Jumps”

In our construction:

deterministic

Every runs „uses“ nondeterminism at most once
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• Linear Temporal Logic in Negation Normal Form

Only liveness operator.

• Monotonicity of NNF:
if ݓ satisfies ߮	

ᇱݓ satisfies all the subformulas of ߮ satisfied by ݓ,   
and perhaps more 
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FIRST STEP: A DETERMINISTIC 
„TRACKING“ AUTOMATON

The formula ݂ܽ(߮, (ߥ (“߮ after ߥ”)  is defined by:

࣐
ߥ

(ࣇ,࣐)ࢌࢇ
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SUBFORMULAS-ࡳ

• Fix a formula ߮ and a word .ݓ
Let ߰ࡳ be a subformula-ࡳ of ߮.

• Informally: while reading the word ,ݓ the set of
ܩ -subformulas that hold cannot decrease, and
eventually stabilizes to a set Trueܩs(ݓ,߮).
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SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state ߰ we add a jump for every set ऑ of
subformulas-ࡳ of ߰.

• „Meaning“ of a ऑ-jump at state ߰: The automaton „guesses“
that the rest of the word satisfies

1. ऑ (every formula of ऑ), and
2. ऑ ⇒ ߰

even if no other subformula-ܩ of ߰	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.
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SECOND STEP: JUMPING

• ݓ ⊨ ߮ iff the automaton can make a right guess.
• Right guess before suffix wᇱ 	→			wᇱ⊨ ߰		 → ݓ		 ⊨ ߮
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and 2.

• „Meaning“ of the ऑ -jump at state ߰ : The automaton
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SECOND STEP: JUMPING

• ݓ ⊨ ߮ iff the automaton can guess correctly.
• If the correct guess is made at suffix wᇱ then			wᇱ⊨ ߰	

which implies ݓ	 ⊨ ߮ (tracking!)
• If ݓ ⊨ ߮	then ′ݓ ⊨ Trueݏܩ ߮,ݓ for some suffix ′ݓ

and so the jump before ′ݓ that chooses
ऑ ≔ Trueݏܩ ߮,ݓ 	 satisfies 1. and 2.

• „Meaning“ of the ऑ -jump at state ߰ : The automaton
„guesses“ that the rest of the run satisfies

1. ऑ (every formula of ऑ), and

2. ऑ ⇒ ߰
even if no other subformula-ܩ of ߰	 ever becomes true.



A DBA THAT CHECKS  1. & 2.

• Since DBAs are closed under intersection, it

suffices to construct two DBAs for 1. and 2.
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ऑ = ࡳ	} ܽ ∨ ܾࡲ 	}

Reduces to checking ݀ࢄ

• „ऑ ⇒ ߰ holds even if no other subformula-ࡳ of ߰	

ever becomes true”

• Since the formula is free, use-ࡳ the tracking automaton.

• Reduces to checking the free-ࡳ formula
߰[		ऑ \ tt   ,  ऑഥ\ff		]	
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ऑ = ,		ܾࡳ	} ࡲࡳ ܽ ∧ ܾࡳ ∨ ܿࡳࡲ 	}

reduces to checking ܾࡳ ∧ ܽࡲࡳ ≡ ܾ)ࡳ		 ∧ (ܽࡲ

• „ऑ holds even if no other ࡳ -subformula of ߰	 ever

becomes true”

• So we need DBAs for formulas ߩࡳ where ߩ is  .free-ࡳ

• Reduces to checking a formula ߩࡳ where ߩ is .free-ࡳ
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UPPER BOUND ON LDBA SIZE
• Theorem: Every formula obtained by „tracking ߮“ is a 

positive boolean combination of subformulas of ߮.
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௕
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௖
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• Corollary: for a formula of length ݊ there are at most
2ଶ೙ „tracking formulas” up to equivalence, even if we 
leave temporal operators uninterpreted.

ܽࡲ ∧ ܽࡲ ∨ ܾࡳ =௉ ܽࡲ	 ܽࡲ ∨ ܽࡳ ≠௉ 	ܽࡲ	
• This allows us to derive an upper bound on the size

of the LDBA
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Part Size

Initial Component 22n

G-Monitor 22n+1

Accepting Component 22O(n)

Total 22O(n)

UPPER BOUND ON LDBA SIZE
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CONCLUSION

• We have presented a translation from LTL to LDBA that

• uses formulas as states

• is modular

• optimizations of any module helps to reduce state space!

• yields in practice small ω-automata 

• is usable for quantitative prob. model checking without changing the algorithm.

• can be also used as intermediate step to synthesis.

• Website: https://www7.in.tum.de/~sickert/projects/ltl2ldba/

https://www7.in.tum.de/~sickert/projects/ltl2ldba/

