
Limit-Deterministic Büchi Automata for

Probabilistic Model Checking

Technische Universität München

Javier Esparza Jan Křetínský

Salomon SickertStefan Jaax

PROBABILISTIC MODEL CHECKING

• Markov Decision Process (MDP) .

At each state, a scheduler chooses a
probability distribution, and then the
next state is chosen stochastically
according to the distribution.

• For a fixed scheduler:

MDP → Markov chain

PROBABILISTIC MODEL CHECKING

• Qualitative Model Checking:

• Input: MDP, LTL formula

• Does the formula hold for all
schedulers with probability 1?

• Quantitative Model Checking:

• Input: MDP, LTL formula, threshold c

• Does the formula hold for all
schedulers with probability at least c?

PROBABILISTIC MODEL CHECKING

• Qualitative Model Checking:

• Input: MDP, LTL formula

• Does the formula hold for all
schedulers with probability 1?

• Quantitative Model Checking:

• Input: MDP, LTL formula, threshold c

• Does the formula hold for all
schedulers with probability at least c?

LIMIT-DETERMINISTIC
BÜCHI AUTOMATA

Initial
Component

Accepting
Component

(possibly)
non-deterministic

deterministic

“Jumps”

AUTOMATA-BASED
MODEL CHECKING

Kripke struct. LTL

Nondet. BüchiProduct

Yes/No

Vardi , Wolper
middle 80s

Emptiness check

QUALITATIVE
PROB. MODEL CHECKING

MDP

Limit-det. Büchi

LTL

Nondet. Büchi

Product

Prob=1?
Yes/No

Vardi and Wolper
Courcoubetis, and
Yannakakis [95]

Vardi and Wolper
Courcoubetis, and
Yannakakis [95]

QUALITATIVE
PROB. MODEL CHECKING

MDP

Limit-det. Büchi

LTL

Nondet. Büchi

Product

Prob=1?
Yes/No

• Double exponential complexity in
the formula, optimal.

• At the time: not applicable to the
quantitative case. Vardi and Wolper

Courcoubetis, and
Yannakakis [95]

Vardi and Wolper
Courcoubetis, and
Yannakakis [95]

Safra [89]

MDP

Det. Rabin

LTL

Nondet. Büchi

Product

P≥0,7?
Yes/No

QUANTITATIVE
PROB. MODEL CHECKING

Safra [89]

MDP

Det. Rabin

LTL

Nondet. Büchi

Product

P≥0,7?
Yes/No

QUANTITATIVE
PROB. MODEL CHECKING

• Also double exponential complexity
in the formula.

• Solves both the qualitative and
quantitative case.

Safra [89]

MDP

Det. Rabin

LTL

Nondet. Büchi

Product

P≥0,7?
Yes/No

QUANTITATIVE
PROB. MODEL CHECKING

• In practice large automata
• Hard to implement efficiently
• Rise of “safraless” approaches:

• Acacia, ltl3dra, Rabinizer, …

• Also double exponential complexity
in the formula.

• Solves both the qualitative and
quantitative case.

QUANTITATIVE PROB. MODEL
CHECKING

Our
Construction

MDP

Limit-det. Büchi

LTL

Product

P≥0.7?
Yes/No

QUANTITATIVE PROB. MODEL
CHECKING

Our
Construction

MDP

Limit-det. Büchi

LTL

Product

P≥0.7?
Yes/No

• Optimal: 22O(n)

• Simpler construction
• Smaller automata
• Same MC algorithm as for

det. automata

QUANTITATIVE PROB. MODEL
CHECKING

Our
Construction

MDP

Limit-det. Büchi

LTL

Product

P≥0.7?
Yes/No

• Optimal: 22O(n)

• Simpler construction
• Smaller automata
• Same MC algorithm as for

det. automata

LIMIT-DETERMINISM

Initial
Component

Accepting
Component

non-deterministic deterministic

“Jumps”

LIMIT-DETERMINISM

Initial
Component

Accepting
Component

non-deterministic deterministic

“Jumps”

In our construction:

deterministic

Every runs „uses“ nondeterminism at most once

PRELIMINARIES

• Linear Temporal Logic in Negation Normal Form

PRELIMINARIES

• Linear Temporal Logic in Negation Normal Form

• Monotonicity of NNF:
if ݓ satisfies ߮	

ᇱݓ satisfies all the subformulas of ߮ satisfied by ݓ,
and perhaps more

then ᇱݓ satisfies ߮

PRELIMINARIES

• Linear Temporal Logic in Negation Normal Form

Only liveness operator.

• Monotonicity of NNF:
if ݓ satisfies ߮	

ᇱݓ satisfies all the subformulas of ߮ satisfied by ݓ,
and perhaps more

then ᇱݓ satisfies ߮

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt

ܽ ff

ܽ

ܽ

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt

ܽ ff

ܽ

ܽ
ܽࢄ	

ܽ, ܽ

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

ttܽࡲ

ܽ

ܽ

ܽ ff

ܽ

ܽ
ܽࢄ	

ܽ, ܽ

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

ttܽࡲ

ܽ

ܽ

ܽ ff

ܽ

ܽ

ܾࡲ ∧
ܽࢄࢄ

ܾ

ܾ
ܾࡲ ∧
ܽࢄ

ܽࢄ	
ܽ, ܽ

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

The formula ݂ܽ(߮, (ߥ (“߮ after ߥ”) is defined by:

࣐
ߥ

(ࣇ,࣐)ࢌࢇ

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt

• The automaton „tracks“ the
property that must hold now for
the original property to hold at
the beginning

• Formulas with ܨ,ܺ,ܷ: ✔

• Formulas with not good :ܩ
enough.

ܽࡲ

ܽ

ܽ

ܽ ff

ܽ

ܽ

ܾࡲ ∧
ܽࢄࢄ

ܾ

ܾ
ܾࡲ ∧
ܽࢄ

ܽࢄ	
ܽ, ܽ

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

• The automaton „tracks“ the
property that must hold now for
the original property to hold at
the beginning

• Formulas with ࢁ,ࢄ,ࡲ: ✔

• Formulas with not good :ܩ
enough.

ttܽࡲ

ܽ

ܽ

ܽ ff

ܽ

ܽ

ܾࡲ ∧
ܽࢄࢄ

ܾ

ܾ
ܾࡲ ∧
ܽࢄ

ܽࢄ	
ܽ, ܽ

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

• The automaton „tracks“ the
property that must hold now for
the original property to hold at
the beginning

• Formulas with ࢁ,ࢄ,ࡲ: ✔

• Formulas with not good :ࡳ
enough.

ttܽࡲ

ܽ

ܽ

ܽ ff

ܽ

ܽ

ܾࡲ ∧
ܽࢄࢄ

ܾ

ܾ
ܾࡲ ∧
ܽࢄ

ܽࢄ	
ܽ, ܽ

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

• The automaton „tracks“ the
property that must hold now for
the original property to hold at
the beginning

• Formulas with ࢁ,ࢄ,ࡲ: ✔

• Formulas with not good :ࡳ
enough.

ܽࡲࡳ	

ܽܽ,

ttܽࡲ

ܽ

ܽ

ܽ ff

ܽ

ܽ

ܾࡲ ∧
ܽࢄࢄ

ܾ

ܾ
ܾࡲ ∧
ܽࢄ

ܽࢄ	
ܽ, ܽ

SUBFORMULAS-ࡳ

• Fix a formula ߮ and a word .ݓ
Let ߰ࡳ be a subformula-ࡳ of ߮.

SUBFORMULAS-ࡳ

• Fix a formula ߮ and a word .ݓ
Let ߰ࡳ be a subformula-ࡳ of ߮.

cb a ba b c c …
ݓ

SUBFORMULAS-ࡳ

• Fix a formula ߮ and a word .ݓ
Let ߰ࡳ be a subformula-ࡳ of ߮.

߰ࡳ
cb a ba b c c …

ݓ

SUBFORMULAS-ࡳ

• Fix a formula ߮ and a word .ݓ
Let ߰ࡳ be a subformula-ࡳ of ߮.

߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ …
cb a ba b c c …

ݓ

SUBFORMULAS-ࡳ

• Fix a formula ߮ and a word .ݓ
Let ߰ࡳ be a subformula-ࡳ of ߮.

߰ࡳ

ρࡳ

cb a ba b c c …
ݓ

߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ …

SUBFORMULAS-ࡳ

• Fix a formula ߮ and a word .ݓ
Let ߰ࡳ be a subformula-ࡳ of ߮.

߰ࡳ

ρࡳ ρࡳ ρࡳ ρࡳ ρࡳ …

cb a ba b c c …
ݓ

߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ …

SUBFORMULAS-ࡳ

• Fix a formula ߮ and a word .ݓ
Let ߰ࡳ be a subformula-ࡳ of ߮.

• Informally: while reading the word ,ݓ the set of
ܩ -subformulas that hold cannot decrease, and
eventually stabilizes to a set Trueܩs(ݓ,߮).

߰ࡳ

ρࡳ

cb a ba b c c …
ݓ

߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ ߰ࡳ …
ρࡳ ρࡳ ρࡳ ρࡳ …

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state ߰ we add a jump for every set ऑ of
subformulas-ࡳ of ߰.

• „Meaning“ of a ऑ-jump at state ߰: The automaton „guesses“
that the rest of the word satisfies

1. ऑ (every formula of ऑ), and
2. ऑ ⇒ ߰

even if no other subformula-ܩ of ߰	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state ߰ we add a jump for every set ऑ of
subformulas-ࡳ of ߰.

• „Meaning“ of a ऑ-jump at state ߰: The automaton „guesses“
that the rest of the word satisfies

1. ऑ (every formula of ऑ), and
2. ऑ ⇒ ߰

even if no other subformula-ܩ of ߰	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state ߰ we add a jump for every set ऑ of
subformulas-ࡳ of ߰.

• „Meaning“ of a ऑ-jump at state ߰: The automaton „guesses“
that the rest of the word satisfies

1. ऑ (every formula of ऑ), and
2. ऑ ⇒ ߰

even if no other subformula-ܩ of ߰	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state ߰ we add a jump for every set ऑ of
subformulas-ࡳ of ߰.

• „Meaning“ of a ऑ-jump at state ߰: The automaton „guesses“
that the rest of the word satisfies

1. ऑ (every formula of ऑ), and
ऑ ⇒ ߰

even if no other subformula-ܩ of ߰	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state ߰ we add a jump for every set ऑ of
subformulas-ࡳ of ߰.

• „Meaning“ of a ऑ-jump at state ߰: The automaton „guesses“
that the rest of the word satisfies

1. ऑ (every formula of ऑ), and
2. ऑ ⇒ ߰

even if no other subformula-ܩ of ߰	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state ߰ we add a jump for every set ऑ of
subformulas-ࡳ of ߰.

• „Meaning“ of a ऑ-jump at state ߰: The automaton „guesses“
that the rest of the word satisfies

1. ऑ (every formula of ऑ), and
2. ऑ ⇒ ߰

even if no other subformula-ܩ of ߰	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state ߰ we add a jump for every set ऑ of
subformulas-ࡳ of ߰.

• „Meaning“ of a ऑ-jump at state ߰: The automaton „guesses“
that the rest of the word satisfies

1. ऑ (every formula of ऑ), and
2. ऑ ⇒ ߰

even if no other subformula-ܩ of ߰	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING

• ݓ ⊨ ߮ iff the automaton can make a right guess.
• Right guess before suffix wᇱ 	→			wᇱ⊨ ߰		 → ݓ		 ⊨ ߮

(tracking!)
• ݓ ⊨ ߮			 → ′ݓ			 ⊨ Trueݏܩ ߮,ݓ for some suffix ′ݓ

→	 jump before ′ݓ with ऑ ≔ Trueݏܩ ߮,ݓ 	 satisfies 1.
and 2.

• „Meaning“ of the ऑ -jump at state ߰ : The automaton
„guesses“ that the rest of the run satisfies

1. ऑ (every formula of ऑ), and

2. ऑ ⇒ ߰
even if no other subformula-ܩ of ߰	 ever becomes true.

SECOND STEP: JUMPING

• ݓ ⊨ ߮ iff the automaton can guess correctly.
• Right guess before suffix wᇱ 	→			wᇱ⊨ ߰		 → ݓ		 ⊨ ߮

(tracking!)
• ݓ ⊨ ߮			 → ′ݓ			 ⊨ Trueݏܩ ߮,ݓ for some suffix ′ݓ

→	 jump before ′ݓ with ऑ ≔ Trueݏܩ ߮,ݓ 	 satisfies 1.
and 2.

• „Meaning“ of the ऑ -jump at state ߰ : The automaton
„guesses“ that the rest of the run satisfies

1. ऑ (every formula of ऑ), and

2. ऑ ⇒ ߰
even if no other subformula-ܩ of ߰	 ever becomes true.

SECOND STEP: JUMPING

• ݓ ⊨ ߮ iff the automaton can guess correctly.
• If the correct guess is made at suffix wᇱ then			wᇱ⊨ ߰	

which implies ݓ	 ⊨ ߮ (tracking!)
• ݓ ⊨ ߮			 → ′ݓ			 ⊨ Trueݏܩ ߮,ݓ for some suffix ′ݓ

→	 jump before ′ݓ with ऑ ≔ Trueݏܩ ߮,ݓ 	 satisfies 1.
and 2.

• „Meaning“ of the ऑ -jump at state ߰ : The automaton
„guesses“ that the rest of the run satisfies

1. ऑ (every formula of ऑ), and

2. ऑ ⇒ ߰
even if no other subformula-ܩ of ߰	 ever becomes true.

SECOND STEP: JUMPING

• ݓ ⊨ ߮ iff the automaton can guess correctly.
• If the correct guess is made at suffix wᇱ then			wᇱ⊨ ߰	

which implies ݓ	 ⊨ ߮ (tracking!)
• If ݓ ⊨ ߮	then ′ݓ ⊨ Trueݏܩ ߮,ݓ for some suffix ′ݓ

and so the jump before ′ݓ that chooses
ऑ ≔ Trueݏܩ ߮,ݓ 	 satisfies 1. and 2.

• „Meaning“ of the ऑ -jump at state ߰ : The automaton
„guesses“ that the rest of the run satisfies

1. ऑ (every formula of ऑ), and

2. ऑ ⇒ ߰
even if no other subformula-ܩ of ߰	 ever becomes true.

A DBA THAT CHECKS 1. & 2.

• Since DBAs are closed under intersection, it

suffices to construct two DBAs for 1. and 2.

CHECKING 2.
• „ऑ ⇒ ߰ holds even if no other subformula-ࡳ of ߰	

ever becomes true”

CHECKING 2.

• Example: ߰ = ࡳ ܽ ∨ ܾࡲ ܿࡳ)	∧ ∨ (݀ࢄ

ऑ = ࡳ	} ܽ ∨ ܾࡲ 	}

Reduces to checking ݀ࢄ

• „ऑ ⇒ ߰ holds even if no other subformula-ࡳ of ߰	

ever becomes true”

CHECKING 2.

• Example: ߰ = ࡳ ܽ ∨ ܾࡲ ܿࡳ)	∧ ∨ (݀ࢄ

ऑ = ࡳ	} ܽ ∨ ܾࡲ 	}

Reduces to checking ݀ࢄ

• „ऑ ⇒ ߰ holds even if no other subformula-ࡳ of ߰	

ever becomes true”

• Reduces to checking the free-ࡳ formula
߰[ऑ \ tt , ऑഥ\ff]	

CHECKING 2.

• Example: ߰ = ࡳ ܽ ∨ ܾࡲ ܿࡳ)	∧ ∨ (݀ࢄ

ऑ = ࡳ	} ܽ ∨ ܾࡲ 	}

Reduces to checking ݀ࢄ

• „ऑ ⇒ ߰ holds even if no other subformula-ࡳ of ߰	

ever becomes true”

• Since the formula is free, use-ࡳ the tracking automaton.

• Reduces to checking the free-ࡳ formula
߰[ऑ \ tt , ऑഥ\ff]	

CHECKING 1.

• „ऑ holds even if no other ࡳ -subformula of ߰	 ever

becomes true”

CHECKING 1.

• Example: ߰ = 	ܿࡲ	 ∧ ࡲࡳ ܽ ∧ ܾࡳ) ∨ (ܿࡳࡲ

ऑ = ,		ܾࡳ	} ࡲࡳ ܽ ∧ ܾࡳ ∨ ܿࡳࡲ 	}

reduces to checking ܾࡳ ∧ ܽࡲࡳ ≡ ܾ)ࡳ		 ∧ (ܽࡲ

• „ऑ holds even if no other ࡳ -subformula of ߰	 ever

becomes true”

CHECKING 1.

• Example: ߰ = 	ܿࡲ	 ∧ ࡲࡳ ܽ ∧ ܾࡳ) ∨ (ܿࡳࡲ

ऑ = ,		ܾࡳ	} ࡲࡳ ܽ ∧ ܾࡳ ∨ ܿࡳࡲ 	}

reduces to checking ܾࡳ ∧ ܽࡲࡳ ≡ ܾ)ࡳ		 ∧ (ܽࡲ

• „ऑ holds even if no other ࡳ -subformula of ߰	 ever

becomes true”

• Reduces to checking a formula ߩࡳ where ߩ is .free-ࡳ

CHECKING 1.

• Example: ߰ = 	ܿࡲ	 ∧ ࡲࡳ ܽ ∧ ܾࡳ) ∨ (ܿࡳࡲ

ऑ = ,		ܾࡳ	} ࡲࡳ ܽ ∧ ܾࡳ ∨ ܿࡳࡲ 	}

reduces to checking ܾࡳ ∧ ܽࡲࡳ ≡ ܾ)ࡳ		 ∧ (ܽࡲ

• „ऑ holds even if no other ࡳ -subformula of ߰	 ever

becomes true”

• So we need DBAs for formulas ߩࡳ where ߩ is .free-ࡳ

• Reduces to checking a formula ߩࡳ where ߩ is .free-ࡳ

Tracking
automaton for ߮

…

Accepting
component

for ऑ௡

Accepting
component

for ऑଵ

ϵ

ϵ

߰߮

Tracking
automaton for ߮

Tracking automaton for
߰	[ऑଵ	\	ܜܜ , ऑଵ\	܎܎]	

…

ϵ

߰

×
Automaton for

where ,ߩ	ࡳ ߩ is G-free

Accepting
component

for ऑ௡

ϵ

߮

ܽ)ࡳ ∨ (ܾࡲ
∧	

ܿࡳ) ∨ (݀ࢄ

Guess
ऑ = ܽ)ࡳ} ∨ {(ܾࡲ

ܽ)ࡳ ∨ (ܾࡲ
∧	

ܿࡳ) ∨ (݀ࢄ ϵ

Tracking
automaton

for ݀ࢄ

X

Automaton
for ܽ)ࡳ ∨ (ܾࡲ

Guess
ऑ = ܽ)ࡳ} ∨ {(ܾࡲ

ܽ)ࡳ ∨ (ܾࡲ
∧	

ܿࡳ) ∨ (݀ࢄ ϵ

Tracking
automaton

for ݀ࢄ

X

Automaton
for ܽ)ࡳ ∨ (ܾࡲ

Guess
ऑ = ܽ)ࡳ} ∨ {(ܾࡲ

ܽ)ࡳ ∨ (ܾࡲ
∧	

ܿࡳ) ∨ (݀ࢄ

tt

݀

ff

݀ ݀

݀ࢄ	
݀,݀

ϵ

Tracking
automaton

for ݀ࢄ

X

Automaton
for ܽ)ࡳ ∨ (ܾࡲ

Guess
ऑ = ܽ)ࡳ} ∨ {(ܾࡲ

ܽ)ࡳ ∨ (ܾࡲ
∧	

ܿࡳ) ∨ (݀ࢄ

?

tt

݀

ff

݀ ݀

݀ࢄ	
݀,݀

ϵ

A DBA FOR ࡳ(ܽ ∨ (ܾࡲ

ac b c

ܽ)ࡳ ∨ (ܾࡲ

A DBA FOR ࡳ(ܽ ∨ (ܾࡲ

ac b c

ܽ)ࡳ ∨ (ܾࡲ

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ac b c

ܽ)ࡳ ∨ (ܾࡲ

ܾࡲ ܾࡲ

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

tt

A DBA FOR ࡳ(ܽ ∨ (ܾࡲ

ac b c

ܽ)ࡳ ∨ (ܾࡲ

ܾࡲ ܾࡲ

tt

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

tt

A DBA FOR ࡳ(ܽ ∨ (ܾࡲ

ac b c

ܽ)ࡳ ∨ (ܾࡲ

ܾࡲ ܾࡲ

tt

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

tt

tt

A DBA FOR ࡳ(ܽ ∨ (ܾࡲ

ac b c

ܽ)ࡳ ∨ (ܾࡲ

ܾࡲ ܾࡲ

tt

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

tt

tt

ܾࡲ

A DBA FOR ࡳ(ܽ ∨ (ܾࡲ

ac b c

ܽ)ࡳ ∨ (ܾࡲ

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	 ܾࡲ ∧ (ܽ ∨ (ܾࡲ
≡ ܾࡲ

ܾࡲܾࡲ ࢇ ∨ ܾࡲ

A DBA FOR ࡳ(ܽ ∨ (ܾࡲ

ܾࡲ ܾࡲ

tt

tt

tt

ܾࡲ

c a b c

ac b c

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	
ܜܜ

ac b c

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܾࡲ

ܽ	 ∨ ܾࡲ	
ܜܜ

ܾࡲ
ܽ	 ∨ ܾࡲ	

c

ac b c

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܾࡲ ܾࡲ

tt

ܽ	 ∨ ܾࡲ	
ܜܜ

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܾࡲ
ܽ	 ∨ ܾࡲ	

c a

ac b c

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܾࡲ ܾࡲ

tt

tt

tt

ܽ	 ∨ ܾࡲ	
ܜܜ

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܜܜ
ܽ	 ∨ cܾࡲ	 a

b

ac b c

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

tt

tt

ܽ	 ∨ ܾࡲ	
ܜܜ

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܜܜ
ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	
ܜܜ

c a
b

߳

ac b c

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	
ܜܜ

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܜܜ
ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	
ܜܜ

c a
b

߳

ac b c

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	
ܜܜ

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܜܜ
ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	
ܜܜ

ܽ	 ∨ ܾࡲ	

ܾࡲ

c a
b

߳

ac b c

ܽ	 ∨ ܾࡲ	
ܜܜ

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܜܜ
ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	
ܜܜ

ܾࡲ
ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܽ	 ∨ ܾࡲ	

ܾࡲ

c a
b

c

߳

DBA FOR ܩ(ܽ ∨ (ܾܨ

COMPLETE LDBA FOR ߮ = ܿ ∨ ܽ)ܩܺ ∨ (ܾܨ

1.Tracking DBA for ߮
(abbr. ߰ ≔ ܽ ∨ (ܾܨ

2. For every set ऑ add a
ऑ-jump to the product
of the automata
checking ऑ and the
ऑ –remainder

COMPLETE LDBA FOR ߮ = ܿ ∨ ܽ)ܩܺ ∨ (ܾܨ

1.Tracking DBA for ߮
(abbr. ߰ ≔ ܽ ∨ (ܾܨ

2. For every set ऑ add a
ऑ-jump to the product
of the automata
checking ऑ and the
ऑ –remainder

COMPLETE LDBA FOR ߮ = ܿ ∨ ܽ)ܩܺ ∨ (ܾܨ

1.Tracking DBA for ߮
(abbr. ߰ ≔ ܽ ∨ (ܾܨ

2. For every set ऑ add a
ऑ-jump to the product
of the automata
checking ऑ and the
ऑ –remainder

COMPLETE LDBA FOR ߮ = ܿ ∨ ܽ)ܩܺ ∨ (ܾܨ

1.Tracking DBA for ߮
(abbr. ߰ ≔ ܽ ∨ (ܾܨ

2. For every set ऑ add a
ऑ-jump to the product
of the automata
checking ऑ and the
ऑ –remainder

UPPER BOUND ON LDBA SIZE
• Theorem: Every formula obtained by „tracking ߮“ is a

positive boolean combination of subformulas of ߮.

ܿ ∨ ܽ)ࡳࢄ ∨ (ܾࡲ
௕
→ ࡳ ܽ ∨ ܾࡲ

௖
→ ࡳ ܽ ∨ ܾࡲ ∧ 	ܾࡲ

• Corollary: for a formula of length ݊ there are at most
2ଶ೙ „tracking formulas” up to equivalence, even if we
leave temporal operators uninterpreted.

ܽࡲ ∧ ܽࡲ ∨ ܾࡳ =௉ ܽࡲ	 ܽࡲ ∨ ܽࡳ ≠௉ 	ܽࡲ	
• This allows us to derive an upper bound on the size

of the LDBA

UPPER BOUND ON LDBA SIZE
• Theorem: Every formula obtained by „tracking ߮“ is a

positive boolean combination of subformulas of ߮.

ܿ ∨ ܽ)ࡳࢄ ∨ (ܾࡲ
௕
→ ࡳ ܽ ∨ ܾࡲ

௖
→ ࡳ ܽ ∨ ܾࡲ ∧ 	ܾࡲ

• Corollary: for a formula of length ݊ there are at most
2ଶ೙ „tracking formulas” up to equivalence, even if we
leave temporal operators uninterpreted.

ܽࡲ ∧ ܽࡲ ∨ ܾࡳ =௉ ܽࡲ	 ܽࡲ ∨ ܽࡳ ≠௉ 	ܽࡲ	
• This allows us to derive an upper bound on the size

of the LDBA

UPPER BOUND ON LDBA SIZE
• Theorem: Every formula obtained by „tracking ߮“ is a

positive boolean combination of subformulas of ߮.

ܿ ∨ ܽ)ࡳࢄ ∨ (ܾࡲ
௕
→ ࡳ ܽ ∨ ܾࡲ

௖
→ ࡳ ܽ ∨ ܾࡲ ∧ 	ܾࡲ

• Corollary: for a formula of length ݊ there are at most
2ଶ೙ „tracking formulas” up to equivalence, even if we
leave temporal operators uninterpreted.

ܽࡲ ∧ ܽࡲ ∨ ܾࡳ =௉ ܽࡲ	 ܽࡲ ∨ ܽࡳ ≠௉ 	ܽࡲ	
• This allows us to derive an upper bound on the size

of the LDBA

Part Size

Initial Component 22n

G-Monitor 22n+1

Accepting Component 22O(n)

Total 22O(n)

UPPER BOUND ON LDBA SIZE

LDBA SIZE IN PRACTICE

LDBA Safra
(spot+ltl2dstar)

Rabinizer

LDBA SIZE IN PRACTICE

LDBA Safra
(spot+ltl2dstar)

Rabinizer

IscasMC
explicit

PRISM+
Rabinizer
symbolic

PRISM
symb

MODEL CHECKING RUNTIME
PNUELI-ZUCK MUTEX PROTOCOL

Our Imp.
explicit

#Clients

IscasMC
explicit

PRISM+
Rabinizer
symbolic

PRISM
symb

MODEL CHECKING RUNTIME
PNUELI-ZUCK MUTEX PROTOCOL

Our Imp.
explicit

#Clients

CAN LDBA BE ALSO USED FOR
CONTROLLER SYNTHESIS ?

Uncontrolled
system

Det. Parity

LTL

Nondet. Büchi

Product

Parity game

CAN LDBA BE ALSO USED FOR
CONTROLLER SYNTHESIS ?

Uncontrolled
system

Det. Parity

LTL

Nondet. Büchi

Product

Parity game

single exp.

Safra,
single exp.

CAN LDBA BE ALSO USED FOR
CONTROLLER SYNTHESIS ?

Uncontrolled
system

Limit-det. Büchi

LTL

Product

Parity game

Det. Parity

CAN LDBA BE ALSO USED FOR
CONTROLLER SYNTHESIS ?

Uncontrolled
system

Limit-det. Büchi

LTL

Product

Parity game

Det. Parity

double exp.

single exp.

CAN LDBA BE ALSO USED FOR
CONTROLLER SYNTHESIS ?

Uncontrolled
system

Limit-det. Büchi

LTL

Product

Parity game

Det. Parity

double exp.

THE NEW PICTURE

Limit-det. Büchi

LTL

Det. Parity

Nondet. Büchi Model checking

Probabilistic model
checking for MDPs

Synthesis

THE NEW PICTURE

Limit-det. Büchi

LTL

Det. Parity

Nondet. Büchi Model checking

Probabilistic model
checking for MDPs

Synthesis

Nonamb. Büchi

Probabilistic model
checking for MCs

THE NEW PICTURE

Limit-det. Büchi

LTL

Det. Parity

Nondet. Büchi Model checking

Probabilistic model
checking for MDPs

Synthesis

Nonamb. Büchi

Probabilistic model
checking for MCs

Good for Games

Synthesis

CONCLUSION

• We have presented a translation from LTL to LDBA that

• uses formulas as states

• is modular

• optimizations of any module helps to reduce state space!

• yields in practice small ω-automata

• is usable for quantitative prob. model checking without changing the algorithm.

• can be also used as intermediate step to synthesis.

• Website: https://www7.in.tum.de/~sickert/projects/ltl2ldba/

https://www7.in.tum.de/~sickert/projects/ltl2ldba/

