
Limit-Deterministic Büchi Automata for

Probabilistic Model Checking

Technische Universität München

Javier Esparza Jan Křetínský

Salomon SickertStefan Jaax

PROBABILISTIC MODEL CHECKING

• Markov Decision Process (MDP) .

At each state, a scheduler chooses a
probability distribution, and then the
next state is chosen stochastically
according to the distribution.

• For a fixed scheduler:

MDP → Markov chain

PROBABILISTIC MODEL CHECKING

• Qualitative Model Checking:

• Input: MDP, LTL formula

• Does the formula hold for all
schedulers with probability 1?

• Quantitative Model Checking:

• Input: MDP, LTL formula, threshold c

• Does the formula hold for all
schedulers with probability at least c?

PROBABILISTIC MODEL CHECKING

• Qualitative Model Checking:

• Input: MDP, LTL formula

• Does the formula hold for all
schedulers with probability 1?

• Quantitative Model Checking:

• Input: MDP, LTL formula, threshold c

• Does the formula hold for all
schedulers with probability at least c?

LIMIT-DETERMINISTIC
BÜCHI AUTOMATA

Initial
Component

Accepting
Component

(possibly)
non-deterministic

deterministic

“Jumps”

AUTOMATA-BASED
MODEL CHECKING

Kripke struct. LTL

Nondet. BüchiProduct

Yes/No

Vardi , Wolper
middle 80s

Emptiness check

QUALITATIVE
PROB. MODEL CHECKING

MDP

Limit-det. Büchi

LTL

Nondet. Büchi

Product

Prob=1?
Yes/No

Vardi and Wolper
Courcoubetis, and
Yannakakis [95]

Vardi and Wolper
Courcoubetis, and
Yannakakis [95]

QUALITATIVE
PROB. MODEL CHECKING

MDP

Limit-det. Büchi

LTL

Nondet. Büchi

Product

Prob=1?
Yes/No

• Double exponential complexity in
the formula, optimal.

• At the time: not applicable to the
quantitative case. Vardi and Wolper

Courcoubetis, and
Yannakakis [95]

Vardi and Wolper
Courcoubetis, and
Yannakakis [95]

Safra [89]

MDP

Det. Rabin

LTL

Nondet. Büchi

Product

P≥0,7?
Yes/No

QUANTITATIVE
PROB. MODEL CHECKING

Safra [89]

MDP

Det. Rabin

LTL

Nondet. Büchi

Product

P≥0,7?
Yes/No

QUANTITATIVE
PROB. MODEL CHECKING

• Also double exponential complexity
in the formula.

• Solves both the qualitative and
quantitative case.

Safra [89]

MDP

Det. Rabin

LTL

Nondet. Büchi

Product

P≥0,7?
Yes/No

QUANTITATIVE
PROB. MODEL CHECKING

• In practice large automata
• Hard to implement efficiently
• Rise of “safraless” approaches:

• Acacia, ltl3dra, Rabinizer, …

• Also double exponential complexity
in the formula.

• Solves both the qualitative and
quantitative case.

QUANTITATIVE PROB. MODEL
CHECKING

Our
Construction

MDP

Limit-det. Büchi

LTL

Product

P≥0.7?
Yes/No

QUANTITATIVE PROB. MODEL
CHECKING

Our
Construction

MDP

Limit-det. Büchi

LTL

Product

P≥0.7?
Yes/No

• Optimal: 22O(n)

• Simpler construction
• Smaller automata
• Same MC algorithm as for

det. automata

QUANTITATIVE PROB. MODEL
CHECKING

Our
Construction

MDP

Limit-det. Büchi

LTL

Product

P≥0.7?
Yes/No

• Optimal: 22O(n)

• Simpler construction
• Smaller automata
• Same MC algorithm as for

det. automata

LIMIT-DETERMINISM

Initial
Component

Accepting
Component

non-deterministic deterministic

“Jumps”

LIMIT-DETERMINISM

Initial
Component

Accepting
Component

non-deterministic deterministic

“Jumps”

In our construction:

deterministic

Every runs „uses“ nondeterminism at most once

PRELIMINARIES

• Linear Temporal Logic in Negation Normal Form

PRELIMINARIES

• Linear Temporal Logic in Negation Normal Form

• Monotonicity of NNF:
if 푤 satisfies 휑	

푤 satisfies all the subformulas of 휑 satisfied by 푤,
and perhaps more

then 푤 satisfies 휑

PRELIMINARIES

• Linear Temporal Logic in Negation Normal Form

Only liveness operator.

• Monotonicity of NNF:
if 푤 satisfies 휑	

푤 satisfies all the subformulas of 휑 satisfied by 푤,
and perhaps more

then 푤 satisfies 휑

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt

푎 ff

푎

푎

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt

푎 ff

푎

푎
	푿푎

푎, 푎

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt푭푎

푎

푎

푎 ff

푎

푎
	푿푎

푎, 푎

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt푭푎

푎

푎

푎 ff

푎

푎

푭푏 ∧
푿푿푎

푏

푏
푭푏 ∧
푿푎

	푿푎
푎, 푎

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

The formula 푎푓(휑, 휈) (“휑 after 휈”) is defined by:

흋
휈

풂풇(흋,흂)

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt

• The automaton „tracks“ the
property that must hold now for
the original property to hold at
the beginning

• Formulas with 퐹,푋,푈: ✔

• Formulas with 퐺: not good
enough.

푭푎

푎

푎

푎 ff

푎

푎

푭푏 ∧
푿푿푎

푏

푏
푭푏 ∧
푿푎

	푿푎
푎, 푎

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

• The automaton „tracks“ the
property that must hold now for
the original property to hold at
the beginning

• Formulas with 푭,푿,푼: ✔

• Formulas with 퐺: not good
enough.

tt푭푎

푎

푎

푎 ff

푎

푎

푭푏 ∧
푿푿푎

푏

푏
푭푏 ∧
푿푎

	푿푎
푎, 푎

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

• The automaton „tracks“ the
property that must hold now for
the original property to hold at
the beginning

• Formulas with 푭,푿,푼: ✔

• Formulas with 푮: not good
enough.

tt푭푎

푎

푎

푎 ff

푎

푎

푭푏 ∧
푿푿푎

푏

푏
푭푏 ∧
푿푎

	푿푎
푎, 푎

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

• The automaton „tracks“ the
property that must hold now for
the original property to hold at
the beginning

• Formulas with 푭,푿,푼: ✔

• Formulas with 푮: not good
enough.

	푮푭푎

푎푎,

tt푭푎

푎

푎

푎 ff

푎

푎

푭푏 ∧
푿푿푎

푏

푏
푭푏 ∧
푿푎

	푿푎
푎, 푎

푮-SUBFORMULAS

• Fix a formula 휑 and a word 푤.
Let 푮휓 be a 푮-subformula of 휑.

푮-SUBFORMULAS

• Fix a formula 휑 and a word 푤.
Let 푮휓 be a 푮-subformula of 휑.

cb a ba b c c …
푤

푮-SUBFORMULAS

• Fix a formula 휑 and a word 푤.
Let 푮휓 be a 푮-subformula of 휑.

푮휓
cb a ba b c c …

푤

푮-SUBFORMULAS

• Fix a formula 휑 and a word 푤.
Let 푮휓 be a 푮-subformula of 휑.

푮휓 푮휓 푮휓 푮휓 푮휓 푮휓 푮휓 …
cb a ba b c c …

푤

푮-SUBFORMULAS

• Fix a formula 휑 and a word 푤.
Let 푮휓 be a 푮-subformula of 휑.

푮휓

푮ρ

cb a ba b c c …
푤

푮휓 푮휓 푮휓 푮휓 푮휓 푮휓 …

푮-SUBFORMULAS

• Fix a formula 휑 and a word 푤.
Let 푮휓 be a 푮-subformula of 휑.

푮휓

푮ρ 푮ρ 푮ρ 푮ρ 푮ρ …

cb a ba b c c …
푤

푮휓 푮휓 푮휓 푮휓 푮휓 푮휓 …

푮-SUBFORMULAS

• Fix a formula 휑 and a word 푤.
Let 푮휓 be a 푮-subformula of 휑.

• Informally: while reading the word 푤, the set of
퐺 -subformulas that hold cannot decrease, and
eventually stabilizes to a set True퐺s(푤,휑).

푮휓

푮ρ

cb a ba b c c …
푤

푮휓 푮휓 푮휓 푮휓 푮휓 푮휓 …
푮ρ 푮ρ 푮ρ 푮ρ …

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state 휓 we add a jump for every set 퓖 of
푮-subformulas of 휓.

• „Meaning“ of a 퓖-jump at state 휓: The automaton „guesses“
that the rest of the word satisfies

1. 퓖 (every formula of 퓖), and
2. 퓖 ⇒ 휓

even if no other 퐺-subformula of 휓	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state 휓 we add a jump for every set 퓖 of
푮-subformulas of 휓.

• „Meaning“ of a 퓖-jump at state 휓: The automaton „guesses“
that the rest of the word satisfies

1. 퓖 (every formula of 퓖), and
2. 퓖 ⇒ 휓

even if no other 퐺-subformula of 휓	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state 휓 we add a jump for every set 퓖 of
푮-subformulas of 휓.

• „Meaning“ of a 퓖-jump at state 휓: The automaton „guesses“
that the rest of the word satisfies

1. 퓖 (every formula of 퓖), and
2. 퓖 ⇒ 휓

even if no other 퐺-subformula of 휓	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state 휓 we add a jump for every set 퓖 of
푮-subformulas of 휓.

• „Meaning“ of a 퓖-jump at state 휓: The automaton „guesses“
that the rest of the word satisfies

1. 퓖 (every formula of 퓖), and
퓖 ⇒ 휓

even if no other 퐺-subformula of 휓	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state 휓 we add a jump for every set 퓖 of
푮-subformulas of 휓.

• „Meaning“ of a 퓖-jump at state 휓: The automaton „guesses“
that the rest of the word satisfies

1. 퓖 (every formula of 퓖), and
2. 퓖 ⇒ 휓

even if no other 퐺-subformula of 휓	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state 휓 we add a jump for every set 퓖 of
푮-subformulas of 휓.

• „Meaning“ of a 퓖-jump at state 휓: The automaton „guesses“
that the rest of the word satisfies

1. 퓖 (every formula of 퓖), and
2. 퓖 ⇒ 휓

even if no other 퐺-subformula of 휓	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state 휓 we add a jump for every set 퓖 of
푮-subformulas of 휓.

• „Meaning“ of a 퓖-jump at state 휓: The automaton „guesses“
that the rest of the word satisfies

1. 퓖 (every formula of 퓖), and
2. 퓖 ⇒ 휓

even if no other 퐺-subformula of 휓	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING

• 푤 ⊨ 휑 iff the automaton can make a right guess.
• Right guess before suffix w 	→			w ⊨ 휓		 → 		푤 ⊨ 휑

(tracking!)
• 푤 ⊨ 휑			 → 			푤′ ⊨ True퐺푠 푤,휑 for some suffix 푤′

→	 jump before 푤′ with 퓖 ≔ True퐺푠 푤,휑 	 satisfies 1.
and 2.

• „Meaning“ of the 퓖 -jump at state 휓 : The automaton
„guesses“ that the rest of the run satisfies

1. 퓖 (every formula of 퓖), and

2. 퓖 ⇒ 휓
even if no other 퐺-subformula of 휓	 ever becomes true.

SECOND STEP: JUMPING

• 푤 ⊨ 휑 iff the automaton can guess correctly.
• Right guess before suffix w 	→			w ⊨ 휓		 → 		푤 ⊨ 휑

(tracking!)
• 푤 ⊨ 휑			 → 			푤′ ⊨ True퐺푠 푤,휑 for some suffix 푤′

→	 jump before 푤′ with 퓖 ≔ True퐺푠 푤,휑 	 satisfies 1.
and 2.

• „Meaning“ of the 퓖 -jump at state 휓 : The automaton
„guesses“ that the rest of the run satisfies

1. 퓖 (every formula of 퓖), and

2. 퓖 ⇒ 휓
even if no other 퐺-subformula of 휓	 ever becomes true.

SECOND STEP: JUMPING

• 푤 ⊨ 휑 iff the automaton can guess correctly.
• If the correct guess is made at suffix w then			w ⊨ 휓	

which implies 	푤 ⊨ 휑 (tracking!)
• 푤 ⊨ 휑			 → 			푤′ ⊨ True퐺푠 푤,휑 for some suffix 푤′

→	 jump before 푤′ with 퓖 ≔ True퐺푠 푤,휑 	 satisfies 1.
and 2.

• „Meaning“ of the 퓖 -jump at state 휓 : The automaton
„guesses“ that the rest of the run satisfies

1. 퓖 (every formula of 퓖), and

2. 퓖 ⇒ 휓
even if no other 퐺-subformula of 휓	 ever becomes true.

SECOND STEP: JUMPING

• 푤 ⊨ 휑 iff the automaton can guess correctly.
• If the correct guess is made at suffix w then			w ⊨ 휓	

which implies 	푤 ⊨ 휑 (tracking!)
• If 푤 ⊨ 휑	then 푤′ ⊨ True퐺푠 푤,휑 for some suffix 푤′

and so the jump before 푤′ that chooses
퓖 ≔ True퐺푠 푤,휑 	 satisfies 1. and 2.

• „Meaning“ of the 퓖 -jump at state 휓 : The automaton
„guesses“ that the rest of the run satisfies

1. 퓖 (every formula of 퓖), and

2. 퓖 ⇒ 휓
even if no other 퐺-subformula of 휓	 ever becomes true.

A DBA THAT CHECKS 1. & 2.

• Since DBAs are closed under intersection, it

suffices to construct two DBAs for 1. and 2.

CHECKING 2.
• „퓖 ⇒ 휓 holds even if no other 푮-subformula of 휓	

ever becomes true”

CHECKING 2.

• Example: 휓 = 푮 푎 ∨ 푭푏 ∧	(푮푐 ∨ 푿푑)

퓖 = {	푮 푎 ∨ 푭푏 	}

Reduces to checking 푿푑

• „퓖 ⇒ 휓 holds even if no other 푮-subformula of 휓	

ever becomes true”

CHECKING 2.

• Example: 휓 = 푮 푎 ∨ 푭푏 ∧	(푮푐 ∨ 푿푑)

퓖 = {	푮 푎 ∨ 푭푏 	}

Reduces to checking 푿푑

• „퓖 ⇒ 휓 holds even if no other 푮-subformula of 휓	

ever becomes true”

• Reduces to checking the 푮-free formula
휓[퓖 \ tt , 퓖\ff]	

CHECKING 2.

• Example: 휓 = 푮 푎 ∨ 푭푏 ∧	(푮푐 ∨ 푿푑)

퓖 = {	푮 푎 ∨ 푭푏 	}

Reduces to checking 푿푑

• „퓖 ⇒ 휓 holds even if no other 푮-subformula of 휓	

ever becomes true”

• Since the formula is 푮-free, use the tracking automaton.

• Reduces to checking the 푮-free formula
휓[퓖 \ tt , 퓖\ff]	

CHECKING 1.

• „퓖 holds even if no other 푮 -subformula of 휓	 ever

becomes true”

CHECKING 1.

• Example: 휓 = 	푭푐	 ∧ 푮푭 푎 ∧ (푮푏 ∨ 푭푮푐)

퓖 = {	푮푏		, 푮푭 푎 ∧ 푮푏 ∨ 푭푮푐 	}

reduces to checking 푮푏 ∧ 푮푭푎 ≡ 		푮(푏 ∧ 푭푎)

• „퓖 holds even if no other 푮 -subformula of 휓	 ever

becomes true”

CHECKING 1.

• Example: 휓 = 	푭푐	 ∧ 푮푭 푎 ∧ (푮푏 ∨ 푭푮푐)

퓖 = {	푮푏		, 푮푭 푎 ∧ 푮푏 ∨ 푭푮푐 	}

reduces to checking 푮푏 ∧ 푮푭푎 ≡ 		푮(푏 ∧ 푭푎)

• „퓖 holds even if no other 푮 -subformula of 휓	 ever

becomes true”

• Reduces to checking a formula 푮휌 where 휌 is 푮-free.

CHECKING 1.

• Example: 휓 = 	푭푐	 ∧ 푮푭 푎 ∧ (푮푏 ∨ 푭푮푐)

퓖 = {	푮푏		, 푮푭 푎 ∧ 푮푏 ∨ 푭푮푐 	}

reduces to checking 푮푏 ∧ 푮푭푎 ≡ 		푮(푏 ∧ 푭푎)

• „퓖 holds even if no other 푮 -subformula of 휓	 ever

becomes true”

• So we need DBAs for formulas 푮휌 where 휌 is 푮-free.

• Reduces to checking a formula 푮휌 where 휌 is 푮-free.

Tracking
automaton for 휑

…

Accepting
component

for 퓖

Accepting
component

for 퓖

ϵ

ϵ

휓휑

Tracking
automaton for 휑

Tracking automaton for
휓	[퓖 	\	퐭퐭 , 퓖 \	퐟퐟]	

…

ϵ

휓

×
Automaton for

푮	휌, where 휌 is G-free

Accepting
component

for 퓖

ϵ

휑

푮(푎 ∨ 푭푏)
∧	

(푮푐 ∨ 푿푑)

Guess
퓖 = {푮(푎 ∨ 푭푏)}

푮(푎 ∨ 푭푏)
∧	

(푮푐 ∨ 푿푑) ϵ

Tracking
automaton

for 푿푑

X

Automaton
for 푮(푎 ∨ 푭푏)

Guess
퓖 = {푮(푎 ∨ 푭푏)}

푮(푎 ∨ 푭푏)
∧	

(푮푐 ∨ 푿푑) ϵ

Tracking
automaton

for 푿푑

X

Automaton
for 푮(푎 ∨ 푭푏)

Guess
퓖 = {푮(푎 ∨ 푭푏)}

푮(푎 ∨ 푭푏)
∧	

(푮푐 ∨ 푿푑)

tt

푑

ff

푑 푑

	푿푑
푑,푑

ϵ

Tracking
automaton

for 푿푑

X

Automaton
for 푮(푎 ∨ 푭푏)

Guess
퓖 = {푮(푎 ∨ 푭푏)}

푮(푎 ∨ 푭푏)
∧	

(푮푐 ∨ 푿푑)

?

tt

푑

ff

푑 푑

	푿푑
푑,푑

ϵ

A DBA FOR 푮(푎 ∨ 푭푏)

ac b c

푮(푎 ∨ 푭푏)

A DBA FOR 푮(푎 ∨ 푭푏)

ac b c

푮(푎 ∨ 푭푏)

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

ac b c

푮(푎 ∨ 푭푏)

푭푏 푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

tt

A DBA FOR 푮(푎 ∨ 푭푏)

ac b c

푮(푎 ∨ 푭푏)

푭푏 푭푏

tt

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

tt

A DBA FOR 푮(푎 ∨ 푭푏)

ac b c

푮(푎 ∨ 푭푏)

푭푏 푭푏

tt

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

tt

tt

A DBA FOR 푮(푎 ∨ 푭푏)

ac b c

푮(푎 ∨ 푭푏)

푭푏 푭푏

tt

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

tt

tt

푭푏

A DBA FOR 푮(푎 ∨ 푭푏)

ac b c

푮(푎 ∨ 푭푏)

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏 푭푏 ∧ (푎 ∨ 푭푏)
≡ 푭푏

푭푏푭푏 풂 ∨ 푭푏

A DBA FOR 푮(푎 ∨ 푭푏)

푭푏 푭푏

tt

tt

tt

푭푏

c a b c

ac b c

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏
퐭퐭

ac b c

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푭푏

푎	 ∨ 	푭푏
퐭퐭

푭푏
푎	 ∨ 	푭푏

c

ac b c

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푭푏 푭푏

tt

푎	 ∨ 	푭푏
퐭퐭

푭푏
푎	 ∨ 	푭푏

푭푏
푎	 ∨ 	푭푏

c a

ac b c

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푭푏 푭푏

tt

tt

tt

푎	 ∨ 	푭푏
퐭퐭

푭푏
푎	 ∨ 	푭푏

푭푏
푎	 ∨ 	푭푏

퐭퐭
푎	 ∨ 	푭푏c a

b

ac b c

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

tt

tt

푎	 ∨ 	푭푏
퐭퐭

푭푏
푎	 ∨ 	푭푏

푭푏
푎	 ∨ 	푭푏

퐭퐭
푎	 ∨ 	푭푏

푎	 ∨ 	푭푏
퐭퐭

c a
b

휖

ac b c

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏
퐭퐭

푭푏
푎	 ∨ 	푭푏

푭푏
푎	 ∨ 	푭푏

퐭퐭
푎	 ∨ 	푭푏

푎	 ∨ 	푭푏
퐭퐭

c a
b

휖

ac b c

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏
퐭퐭

푭푏
푎	 ∨ 	푭푏

푭푏
푎	 ∨ 	푭푏

퐭퐭
푎	 ∨ 	푭푏

푎	 ∨ 	푭푏
퐭퐭

푎	 ∨ 	푭푏

푭푏

c a
b

휖

ac b c

푎	 ∨ 	푭푏
퐭퐭

푭푏
푎	 ∨ 	푭푏

푭푏
푎	 ∨ 	푭푏

퐭퐭
푎	 ∨ 	푭푏

푎	 ∨ 	푭푏
퐭퐭

푭푏
푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푎	 ∨ 	푭푏

푭푏

c a
b

c

휖

DBA FOR 퐺(푎 ∨ 퐹푏)

COMPLETE LDBA FOR 휑 = 푐 ∨ 푋퐺(푎 ∨ 퐹푏)

1.Tracking DBA for 휑
(abbr. 휓 ≔ 푎 ∨ 퐹푏)

2. For every set 퓖 add a
퓖-jump to the product
of the automata
checking 퓖 and the
퓖 –remainder

COMPLETE LDBA FOR 휑 = 푐 ∨ 푋퐺(푎 ∨ 퐹푏)

1.Tracking DBA for 휑
(abbr. 휓 ≔ 푎 ∨ 퐹푏)

2. For every set 퓖 add a
퓖-jump to the product
of the automata
checking 퓖 and the
퓖 –remainder

COMPLETE LDBA FOR 휑 = 푐 ∨ 푋퐺(푎 ∨ 퐹푏)

1.Tracking DBA for 휑
(abbr. 휓 ≔ 푎 ∨ 퐹푏)

2. For every set 퓖 add a
퓖-jump to the product
of the automata
checking 퓖 and the
퓖 –remainder

COMPLETE LDBA FOR 휑 = 푐 ∨ 푋퐺(푎 ∨ 퐹푏)

1.Tracking DBA for 휑
(abbr. 휓 ≔ 푎 ∨ 퐹푏)

2. For every set 퓖 add a
퓖-jump to the product
of the automata
checking 퓖 and the
퓖 –remainder

UPPER BOUND ON LDBA SIZE
• Theorem: Every formula obtained by „tracking 휑“ is a

positive boolean combination of subformulas of 휑.

푐 ∨ 푿푮(푎 ∨ 푭푏) → 푮 푎 ∨ 푭푏 → 푮 푎 ∨ 푭푏 ∧ 푭푏	

• Corollary: for a formula of length 푛 there are at most
2 „tracking formulas” up to equivalence, even if we
leave temporal operators uninterpreted.

푭푎 ∧ 푭푎 ∨ 푮푏 = 	푭푎 푭푎 ∨ 푮푎 ≠ 	푭푎	
• This allows us to derive an upper bound on the size

of the LDBA

UPPER BOUND ON LDBA SIZE
• Theorem: Every formula obtained by „tracking 휑“ is a

positive boolean combination of subformulas of 휑.

푐 ∨ 푿푮(푎 ∨ 푭푏) → 푮 푎 ∨ 푭푏 → 푮 푎 ∨ 푭푏 ∧ 푭푏	

• Corollary: for a formula of length 푛 there are at most
2 „tracking formulas” up to equivalence, even if we
leave temporal operators uninterpreted.

푭푎 ∧ 푭푎 ∨ 푮푏 = 	푭푎 푭푎 ∨ 푮푎 ≠ 	푭푎	
• This allows us to derive an upper bound on the size

of the LDBA

UPPER BOUND ON LDBA SIZE
• Theorem: Every formula obtained by „tracking 휑“ is a

positive boolean combination of subformulas of 휑.

푐 ∨ 푿푮(푎 ∨ 푭푏) → 푮 푎 ∨ 푭푏 → 푮 푎 ∨ 푭푏 ∧ 푭푏	

• Corollary: for a formula of length 푛 there are at most
2 „tracking formulas” up to equivalence, even if we
leave temporal operators uninterpreted.

푭푎 ∧ 푭푎 ∨ 푮푏 = 	푭푎 푭푎 ∨ 푮푎 ≠ 	푭푎	
• This allows us to derive an upper bound on the size

of the LDBA

Part Size

Initial Component 22n

G-Monitor 22n+1

Accepting Component 22O(n)

Total 22O(n)

UPPER BOUND ON LDBA SIZE

LDBA SIZE IN PRACTICE

LDBA Safra
(spot+ltl2dstar)

Rabinizer

LDBA SIZE IN PRACTICE

LDBA Safra
(spot+ltl2dstar)

Rabinizer

IscasMC
explicit

PRISM+
Rabinizer
symbolic

PRISM
symb

MODEL CHECKING RUNTIME
PNUELI-ZUCK MUTEX PROTOCOL

Our Imp.
explicit

#Clients

IscasMC
explicit

PRISM+
Rabinizer
symbolic

PRISM
symb

MODEL CHECKING RUNTIME
PNUELI-ZUCK MUTEX PROTOCOL

Our Imp.
explicit

#Clients

CAN LDBA BE ALSO USED FOR
CONTROLLER SYNTHESIS ?

Uncontrolled
system

Det. Parity

LTL

Nondet. Büchi

Product

Parity game

CAN LDBA BE ALSO USED FOR
CONTROLLER SYNTHESIS ?

Uncontrolled
system

Det. Parity

LTL

Nondet. Büchi

Product

Parity game

single exp.

Safra,
single exp.

CAN LDBA BE ALSO USED FOR
CONTROLLER SYNTHESIS ?

Uncontrolled
system

Limit-det. Büchi

LTL

Product

Parity game

Det. Parity

CAN LDBA BE ALSO USED FOR
CONTROLLER SYNTHESIS ?

Uncontrolled
system

Limit-det. Büchi

LTL

Product

Parity game

Det. Parity

double exp.

single exp.

CAN LDBA BE ALSO USED FOR
CONTROLLER SYNTHESIS ?

Uncontrolled
system

Limit-det. Büchi

LTL

Product

Parity game

Det. Parity

double exp.

THE NEW PICTURE

Limit-det. Büchi

LTL

Det. Parity

Nondet. Büchi Model checking

Probabilistic model
checking for MDPs

Synthesis

THE NEW PICTURE

Limit-det. Büchi

LTL

Det. Parity

Nondet. Büchi Model checking

Probabilistic model
checking for MDPs

Synthesis

Nonamb. Büchi

Probabilistic model
checking for MCs

THE NEW PICTURE

Limit-det. Büchi

LTL

Det. Parity

Nondet. Büchi Model checking

Probabilistic model
checking for MDPs

Synthesis

Nonamb. Büchi

Probabilistic model
checking for MCs

Good for Games

Synthesis

CONCLUSION

• We have presented a translation from LTL to LDBA that

• uses formulas as states

• is modular

• optimizations of any module helps to reduce state space!

• yields in practice small ω-automata

• is usable for quantitative prob. model checking without changing the algorithm.

• can be also used as intermediate step to synthesis.

• Website: https://www7.in.tum.de/~sickert/projects/ltl2ldba/

https://www7.in.tum.de/~sickert/projects/ltl2ldba/

