Limit-Deterministic Büchi Automata for Probabilistic Model Checking

Javier Esparza Jan Křetínský

Stefan Jaax Salomon Sickert

Technische Universität München

PROBABILISTIC MODEL CHECKING

• Markov Decision Process (MDP) .

At each state, a scheduler chooses a probability distribution, and then the next state is chosen stochastically according to the distribution.

• For a fixed scheduler:

 $MDP \rightarrow Markov$ chain

PROBABILISTIC MODEL CHECKING

- Qualitative Model Checking:
 - Input: MDP, LTL formula
 - Does the formula hold for all schedulers with probability 1?

PROBABILISTIC MODEL CHECKING

- Qualitative Model Checking:
 - Input: MDP, LTL formula
 - Does the formula hold for all schedulers with probability 1?
- Quantitative Model Checking:
 - Input: MDP, LTL formula, threshold c
 - Does the formula hold for all schedulers with probability at least c?

LIMIT-DETERMINISTIC BÜCHI AUTOMATA

non-deterministic

AUTOMATA-BASED MODEL CHECKING

QUALITATIVE PROB. MODEL CHECKING

QUALITATIVE PROB. MODEL CHECKING

QUANTITATIVE PROB. MODEL CHECKING

QUANTITATIVE PROB. MODEL CHECKING

QUANTITATIVE PROB. MODEL CHECKING

QUANTITATIVE PROB. MODEL CHECKING

QUANTITATIVE PROB. MODEL CHECKING

QUANTITATIVE PROB. MODEL CHECKING

LIMIT-DETERMINISM

non-deterministic

deterministic

LIMIT-DETERMINISM

In our construction:

Every runs "uses" nondeterminism at most once

PRELIMINARIES

• Linear Temporal Logic in Negation Normal Form $\varphi ::= \mathbf{tt} | \mathbf{ff} | a | \neg a | \varphi \land \varphi | \varphi \lor \varphi | \mathbf{F} \varphi | \varphi \mathbf{U} \varphi | \mathbf{X} \varphi | \mathbf{G} \varphi$

PRELIMINARIES

Linear Temporal Logic in Negation Normal Form

 $\varphi ::= \mathbf{tt} \mid \mathbf{ff} \mid a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{F}\varphi \mid \varphi \mathbf{U}\varphi \mid \mathbf{X}\varphi \mid \mathbf{G}\varphi$

- Monotonicity of NNF:
 - if w satisfies φ

w' satisfies all the subformulas of φ satisfied by w, and perhaps more

then w' satisfies φ

PRELIMINARIES

Linear Temporal Logic in Negation Normal Form

 $\varphi ::= \mathbf{tt} \mid \mathbf{ff} \mid a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{F}\varphi \mid \varphi \mathbf{U}\varphi \mid \mathbf{X}\varphi \mid \mathbf{G}\varphi$

Only liveness operator.

- Monotonicity of NNF:
 - if w satisfies φ

w' satisfies all the subformulas of φ satisfied by w, and perhaps more

then w' satisfies φ

The formula $af(\varphi, \nu)$ (" φ after ν ") is defined by:

 $\begin{array}{ll} af(\mathbf{tt},\nu) \ = \mathbf{tt} & af(\varphi \wedge \psi,\nu) = af(\varphi,\nu) \wedge af(\psi,\nu) \\ af(\mathbf{ff},\nu) \ = \mathbf{ff} & af(\varphi \vee \psi,\nu) = af(\varphi,\nu) \vee af(\psi,\nu) \\ af(a,\nu) \ = \begin{cases} \mathbf{tt} \ if \ a \in \nu & af(\mathbf{X}\varphi,\nu) \ = \varphi \\ \mathbf{ff} \ if \ a \notin \nu & af(\mathbf{G}\varphi,\nu) \ = af(\varphi,\nu) \wedge \mathbf{G}\varphi \\ af(\neg a,\nu) = \begin{cases} \mathbf{ff} \ if \ a \in \nu & af(\mathbf{F}\varphi,\nu) \ = af(\varphi,\nu) \vee \mathbf{F}\varphi \\ \mathbf{tt} \ if \ a \notin \nu & af(\varphi\mathbf{U}\psi,\nu) \ = af(\psi,\nu) \vee (af(\varphi,\nu) \wedge \varphi\mathbf{U}\psi) \end{cases}$

 The automaton "tracks" the property that must hold now for the original property to hold at the beginning

- The automaton "tracks" the property that must hold now for the original property to hold at the beginning
- Formulas with F, X, U:

- The automaton "tracks" the property that must hold now for the original property to hold at the beginning
- Formulas with F, X, U:
- Formulas with *G*: not good enough.

- The automaton "tracks" the property that must hold now for the original property to hold at the beginning
- Formulas with F, X, U:
- Formulas with *G*: not good enough.

• Fix a formula φ and a word w. Let $G\psi$ be a G-subformula of φ .

• Informally: while reading the word w, the set of G-subformulas that hold cannot decrease, and eventually stabilizes to a set $TrueGs(w, \varphi)$.
• We modify the tracking automaton so that at any moment it can nondeterministically jump to the accepting component.

- We modify the tracking automaton so that at any moment it can nondeterministically jump to the accepting component.
- From each state ψ we add a jump for every set G of G-subformulas of ψ .

- We modify the tracking automaton so that at any moment it can nondeterministically jump to the accepting component.
- From each state ψ we add a jump for every set G of G-subformulas of ψ .
- "Meaning" of a G-jump at state ψ : The automaton "guesses" that the rest of the word satisfies

- We modify the tracking automaton so that at any moment it can nondeterministically jump to the accepting component.
- From each state ψ we add a jump for every set G of G-subformulas of ψ .
- "Meaning" of a G-jump at state ψ : The automaton "guesses" that the rest of the word satisfies
 - 1. **G** (every formula of **G**), and

- We modify the tracking automaton so that at any moment it can nondeterministically jump to the accepting component.
- From each state ψ we add a jump for every set G of G-subformulas of ψ .
- "Meaning" of a G-jump at state ψ : The automaton "guesses" that the rest of the word satisfies
 - 1. **G** (every formula of **G**), and
 - 2. $\boldsymbol{\mathcal{G}} \Rightarrow \boldsymbol{\psi}$

- We modify the tracking automaton so that at any moment it can nondeterministically jump to the accepting component.
- From each state ψ we add a jump for every set G of G-subformulas of ψ .
- "Meaning" of a G-jump at state ψ : The automaton "guesses" that the rest of the word satisfies
 - 1. **G** (every formula of **G**), and
 - 2. $\boldsymbol{\mathcal{G}} \Rightarrow \boldsymbol{\psi}$

even if no other G-subformula of ψ ever becomes true.

- We modify the tracking automaton so that at any moment it can nondeterministically jump to the accepting component.
- From each state ψ we add a jump for every set G of G-subformulas of ψ .
- "Meaning" of a G-jump at state ψ : The automaton "guesses" that the rest of the word satisfies
 - 1. **G** (every formula of **G**), and
 - 2. $\boldsymbol{\mathcal{G}} \Rightarrow \boldsymbol{\psi}$

even if no other G-subformula of ψ ever becomes true.

• After the jump, the task of the accepting component is to "check that the guess is correct", i.e., accept iff the guess is correct.

- "Meaning" of the G-jump at state ψ : The automaton "guesses" that the rest of the run satisfies
 - 1. **G** (every formula of G), and
 - 2. $\boldsymbol{\mathcal{G}} \Rightarrow \boldsymbol{\psi}$

even if no other G-subformula of ψ ever becomes true.

- "Meaning" of the G-jump at state ψ : The automaton "guesses" that the rest of the run satisfies
 - 1. **G** (every formula of **G**), and
 - 2. $\boldsymbol{\mathcal{G}} \Rightarrow \boldsymbol{\psi}$

even if no other G-subformula of ψ ever becomes true.

• $w \models \varphi$ iff the automaton can guess correctly.

- "Meaning" of the G-jump at state ψ : The automaton "guesses" that the rest of the run satisfies
 - 1. **G** (every formula of G), and

2. $\boldsymbol{\mathcal{G}} \Rightarrow \boldsymbol{\psi}$

even if no other G-subformula of ψ ever becomes true.

- $w \models \varphi$ iff the automaton can guess correctly.
 - If the correct guess is made at suffix w' then $w' \vDash \psi$ which implies $w \vDash \varphi$ (tracking!)

- "Meaning" of the G-jump at state ψ : The automaton "guesses" that the rest of the run satisfies
 - 1. **G** (every formula of G), and

2. $\boldsymbol{\mathcal{G}} \Rightarrow \boldsymbol{\psi}$

even if no other G-subformula of ψ ever becomes true.

- $w \models \varphi$ iff the automaton can guess correctly.
 - If the correct guess is made at suffix w' then $w' \vDash \psi$ which implies $w \vDash \varphi$ (tracking!)
 - If $w \vDash \varphi$ then $w' \vDash \text{True}Gs(w, \varphi)$ for some suffix w'and so the jump before w' that chooses $G \coloneqq \text{True}Gs(w, \varphi)$ satisfies 1. and 2.

A DBA THAT CHECKS 1. & 2.

• Since DBAs are closed under intersection, it suffices to construct two DBAs for 1. and 2.

• $_{,,G} \Rightarrow \psi$ holds even if no other *G*-subformula of ψ ever becomes true"

- $,,G \Rightarrow \psi$ holds even if no other *G*-subformula of ψ ever becomes true"
- Example: $\psi = G(a \lor Fb) \land (Gc \lor Xd)$ $G = \{ G(a \lor Fb) \}$

Reduces to checking Xd

- " $_{G} \Rightarrow \psi$ holds even if no other *G*-subformula of ψ ever becomes true"
- Example: $\psi = G(a \lor Fb) \land (Gc \lor Xd)$ $G = \{ G(a \lor Fb) \}$

Reduces to checking Xd

• Reduces to checking the *G*-free formula $\psi[\ {\cal G} \setminus {\rm tt} \ , \ {\overline {\cal G}} \setminus {\rm ff} \]$

- $,,G \Rightarrow \psi$ holds even if no other *G*-subformula of ψ ever becomes true"
- Example: $\psi = G(a \lor Fb) \land (Gc \lor Xd)$ $G = \{ G(a \lor Fb) \}$

Reduces to checking Xd

- Reduces to checking the *G*-free formula $\psi[G \setminus tt, \overline{G} \setminus ff]$
- Since the formula is *G*-free, use the tracking automaton.

• "*G* holds even if no other *G*-subformula of ψ ever becomes true"

- "*G* holds even if no other *G*-subformula of ψ ever becomes true"
- Example: $\psi = Fc \wedge GF(a \wedge (Gb \vee FGc))$ $G = \{Gb, GF(a \wedge (Gb \vee FGc))\}$

reduces to checking $Gb \wedge GFa \equiv G(b \wedge Fa)$

- "*G* holds even if no other *G*-subformula of ψ ever becomes true"
- Example: $\psi = Fc \wedge GF(a \wedge (Gb \vee FGc))$ $G = \{Gb, GF(a \wedge (Gb \vee FGc))\}$

reduces to checking $Gb \wedge GFa \equiv G(b \wedge Fa)$

• Reduces to checking a formula $G\rho$ where ρ is G-free.

- "*G* holds even if no other *G*-subformula of ψ ever becomes true"
- Example: $\psi = Fc \wedge GF(a \wedge (Gb \vee FGc))$ $G = \{Gb, GF(a \wedge (Gb \vee FGc))\}$

reduces to checking $Gb \wedge GFa \equiv G(b \wedge Fa)$

- Reduces to checking a formula $G\rho$ where ρ is G-free.
- So we need DBAs for formulas $G\rho$ where ρ is G-free.

Guess $\boldsymbol{\mathcal{G}} = \{\boldsymbol{\mathcal{G}}(a \vee \boldsymbol{\mathcal{F}}b)\}$ $G(a \lor Fb)$ $\stackrel{\wedge}{(\mathbf{G} c \lor \mathbf{X} d)}$ E

a ∨ **F**b

a v **F**b

 $a \vee Fb$

a v **F**b

a v **F**b

 $a \vee Fb$

a v **F**b

 $a \vee Fb$

a v **F**b

a v **F**b

 $a \vee Fb$

a ∨ **F**b

a v **F**b

 $a \vee Fb$

DBA FOR $G(a \lor Fb)$

1.Tracking DBA for φ (abbr. $\psi \coloneqq a \lor Fb$)

- 1.Tracking DBA for φ (abbr. $\psi \coloneqq a \lor Fb$)
- 2. For every set *G* add a *G*-jump to the product
 of the automata
 checking *G* and the *G*-remainder

- 1.Tracking DBA for φ (abbr. $\psi \coloneqq a \lor Fb$)
- 2. For every set *G* add a *G*-jump to the product
 of the automata
 checking *G* and the *G*-remainder

- 1.Tracking DBA for φ (abbr. $\psi \coloneqq a \lor Fb$)
- 2. For every set *G* add a *G*-jump to the product
 of the automata
 checking *G* and the *G*-remainder

• Theorem: Every formula obtained by "tracking φ " is a positive boolean combination of subformulas of φ .

 $c \lor \mathbf{XG}(a \lor \mathbf{Fb}) \xrightarrow{b} \mathbf{G}(a \lor \mathbf{Fb}) \xrightarrow{c} \mathbf{G}(a \lor \mathbf{Fb}) \land \mathbf{Fb}$

• Theorem: Every formula obtained by "tracking φ " is a positive boolean combination of subformulas of φ .

 $c \lor \mathbf{XG}(a \lor \mathbf{Fb}) \xrightarrow{b} \mathbf{G}(a \lor \mathbf{Fb}) \xrightarrow{c} \mathbf{G}(a \lor \mathbf{Fb}) \land \mathbf{Fb}$

Corollary: for a formula of length n there are at most
 2^{2ⁿ} "tracking formulas" up to equivalence, even if we leave temporal operators uninterpreted.

 $Fa \wedge (Fa \vee Gb) =_P Fa Fa \vee Ga \neq_P Fa$

• Theorem: Every formula obtained by "tracking φ " is a positive boolean combination of subformulas of φ .

 $c \lor \mathbf{XG}(a \lor \mathbf{Fb}) \xrightarrow{b} \mathbf{G}(a \lor \mathbf{Fb}) \xrightarrow{c} \mathbf{G}(a \lor \mathbf{Fb}) \land \mathbf{Fb}$

Corollary: for a formula of length n there are at most
 2^{2ⁿ} "tracking formulas" up to equivalence, even if we leave temporal operators uninterpreted.

 $Fa \wedge (Fa \vee Gb) =_P Fa Fa \vee Ga \neq_P Fa$

 This allows us to derive an upper bound on the size of the LDBA

Part	Size
Initial Component	2 ^{2ⁿ}
G-Monitor	2 ^{2ⁿ⁺¹}
Accepting Component	2 ^{2^{O(n)}}
Total	2 ^{2^{O(n)}}

LDBA SIZE IN PRACTICE

$$LDBA \qquad Safra \qquad (spot+ltl2dstar) \\ \hline \lambda_{i=1}^{j}(\mathbf{GF}a_{i}) \implies \Lambda_{i=1}^{j}(\mathbf{GF}b_{i}) \\ \hline \lambda_{i=1}^{j}(\mathbf{GF}a_{i}) \implies \Lambda_{i=1}^{j}(\mathbf{GF}b_{i}) \\ \hline k: \Lambda_{i=1}^{k}(\mathbf{GF}a_{i} \lor \mathbf{FG}b_{i}) \\ \hline k: \Lambda_{i=1}^{k}(\mathbf{GF}a_{i} \lor \mathbf{FG}b_{i}) \\ \hline f(0,j) = (\mathbf{GF}a_{0})\mathbf{U}(\mathbf{X}^{j}b) \\ f(i+1,j) = (\mathbf{GF}a_{i+1})\mathbf{U}(\mathbf{G}f(i,j)) \\ \hline f(2,2) \qquad 46 \qquad 109 \\ \hline f(2,2) \qquad 46 \qquad 109 \\ \hline f(2,4) \qquad 92 \qquad 109 \\ \hline f(2,4) \qquad 109$$

LDBA SIZE IN PRACTICE

$$\begin{array}{c} LDBA & Safra \\ (spot+ltl2dstar) \end{array} Rabinizer \\ (spot+ltl2dstar) \end{array}$$

$$\begin{array}{c} \lambda_{i=1}^{j}(\mathbf{GF}a_{i}) \implies \Lambda_{i=1}^{j}(\mathbf{GF}b_{i}) \end{array} & \begin{array}{c} j=1 & 3 & 5 & 2 \\ j=2 & 4 & 17 & 3 \\ j=3 & 5 & 49 & 4 \\ j=4 & 6 & 129 & 5 \\ k=3 & 9 & * & 198 \end{array}$$

$$\begin{array}{c} k=2 & 5 & 4385 & 13 \\ k=3 & 9 & * & 198 \\ \hline f(0,j) = (\mathbf{GF}a_{0})\mathbf{U}(\mathbf{X}^{j}b) \end{array} & \begin{array}{c} k=2 & 5 & 5 & 5 \\ f(0,2) & 10 & 10 & 7 \\ f(0,4) & 16 & 12 & 9 \\ f(1,0) & 6 & 196 & 17 \\ f(1,2) & 28 & 109839 & 33 \\ f(1,4) & 58 & * & 70 \\ f(2,0) & 10 & 99793 & 41 \\ f(2,2) & 46 & * & 94 \\ f(2,4) & 92 & * & 139 \end{array}$$

f(i

MODEL CHECKING RUNTIME PNUELI-ZUCK MUTEX PROTOCOL

		Our	· Imp. plicit	PRIS	M Symbol	1+ zer lic IscasMC explicit
	Ŧ	#Clients	\mathbf{s}		\bigvee	
(6)	$\mathbb{P}_{max=?} \begin{smallmatrix} (\mathbf{GF}p1=0 \lor \mathbf{FG}p2 \neq 0) \\ \land (\mathbf{GF}p2=0 \lor \mathbf{FG}p3 \neq 0) \\ \land (\mathbf{GF}p3=0 \lor \mathbf{FG}p1 \neq 0) \end{smallmatrix}$	4 5	$< 1 \\ 10$	$\frac{78}{1293}$	9 137	3 29
(7)	$\mathbb{P}_{max=?} \begin{smallmatrix} (\mathbf{GF}p1=0 \lor \mathbf{FG}p1 \neq 0) \\ \wedge (\mathbf{GF}p2=0 \lor \mathbf{FG}p2 \neq 0) \\ \wedge (\mathbf{GF}p3=0 \lor \mathbf{FG}p3 \neq 0) \end{smallmatrix}$	4 5	$< 1 \\ 1$	< 1 < 1	$\begin{array}{c} 61 \\ 1077 \end{array}$	2 27
(8)	$\mathbb{P}_{min=?}[\overset{(\mathbf{GF}p1\neq10\vee\mathbf{GF}p1=0\vee\mathbf{FG}p1=1}{\wedge\mathbf{GF}p1\neq0\wedge\mathbf{GF}p1=1}]$	$^{)}]$ $\frac{4}{5}$	< 1 1	$\frac{8}{145}$	8 190	$1 \\ 16$
(9)	$\mathbb{P}_{max=?} \begin{bmatrix} (\mathbf{G}p1 \neq 10 \lor \mathbf{G}p2 \neq 10 \lor \mathbf{G}p3 \neq 10) \\ \land (\mathbf{F}\mathbf{G}p1 \neq 1 \lor \mathbf{G}\mathbf{F}p2 = 1 \lor \mathbf{G}\mathbf{F}p3 = 1 \lor \mathbf{G}\mathbf{F}p3$	$egin{array}{ccc} & 4 \ 1) \ 1 & 5 \ 1) & 5 \end{array}$	5 99	-	1195 -	$\frac{8}{125}$
(10)	$\mathbb{P}_{min=?}[\begin{smallmatrix}\mathbf{FG}p1\neq 0 \lor \mathbf{FG}p2\neq 0\\ \lor \mathbf{GF}p3=0 \lor (\mathbf{FG}p1\neq 10\\ \land \mathbf{GF}p2=10 \land \mathbf{GF}p3=10) \end{smallmatrix}]$	4 5	1 24	728	$\begin{array}{c} 33\\ 486 \end{array}$	79 -
(11)	$\mathbb{P}_{min=?}[f_{0,0}] = \mathbb{P}_{min=?}[^{(\mathbf{GF}p1=10)\mathbf{U}}_{(p2=10)}]$	$\begin{bmatrix} J \\ J \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$	< 1 11	$\frac{17}{257}$	$\begin{array}{c} 40\\715\end{array}$	$2 \\ 23$
(12)	$\mathbb{P}_{max=?}[f_{0,4}] = \mathbb{P}_{max=?}[(\mathbf{GF}_{p1=10}]_{(\mathbf{XXXX}_{p2=1})}]$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$	$< 1 \\ 5$	3 20	< 12	$\begin{array}{c}1\\20\end{array}$

MODEL CHECKING RUNTIME PNUELI-ZUCK MUTEX PROTOCOL

THE NEW PICTURE

THE NEW PICTURE

THE NEW PICTURE

CONCLUSION

- We have presented a translation from LTL to LDBA that
 - uses formulas as states
 - is modular
 - optimizations of any module helps to reduce state space!
 - yields in practice small ω-automata
 - is usable for quantitative prob. model checking without changing the algorithm.
 - can be also used as intermediate step to synthesis.
- Website: <u>https://www7.in.tum.de/~sickert/projects/ltl2ldba/</u>

