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PROBABILISTIC MODEL CHECKING

• Markov Decision Process (MDP) .

At each state, a scheduler chooses a 
probability distribution, and then the 
next state is chosen stochastically 
according to the distribution.

• For a fixed scheduler: 

MDP → Markov chain



PROBABILISTIC MODEL CHECKING

• Qualitative Model Checking:

• Input: MDP, LTL formula

• Does the formula hold for all 
schedulers with probability 1?

• Quantitative Model Checking:

• Input: MDP, LTL formula, threshold c

• Does the formula hold for all 
schedulers with probability at least c?
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QUALITATIVE
PROB. MODEL CHECKING

MDP

Limit-det. Büchi

LTL

Nondet. Büchi

Product

Prob=1?
Yes/No

• Double exponential complexity in 
the formula, optimal.

• At the time: not applicable to the 
quantitative case. Vardi and Wolper

Courcoubetis, and
Yannakakis [95]
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MDP

Det. Rabin

LTL

Nondet. Büchi

Product

P≥0,7?
Yes/No

QUANTITATIVE
PROB. MODEL CHECKING

• In practice large automata
• Hard to implement efficiently
• Rise of “safraless” approaches:

• Acacia, ltl3dra, Rabinizer, …

• Also double exponential complexity 
in the formula.

• Solves both the qualitative and 
quantitative case.
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Initial 
Component

Accepting  
Component

non-deterministic deterministic

“Jumps”

In our construction:

deterministic

Every runs „uses“ nondeterminism at most once
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• Linear Temporal Logic in Negation Normal Form

Only liveness operator.

• Monotonicity of NNF:
if 푤 satisfies 휑	

푤 satisfies all the subformulas of 휑 satisfied by 푤,   
and perhaps more 

then 푤 satisfies 휑
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FIRST STEP: A DETERMINISTIC 
„TRACKING“ AUTOMATON

The formula 푎푓(휑, 휈) (“휑 after 휈”)  is defined by:

흋
휈

풂풇(흋,흂)
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푮-SUBFORMULAS

• Fix a formula 휑 and a word 푤.
Let 푮휓 be a 푮-subformula of 휑.

• Informally: while reading the word 푤, the set of
퐺 -subformulas that hold cannot decrease, and
eventually stabilizes to a set True퐺s(푤,휑).

푮휓

푮ρ

cb a ba b c c …
푤

푮휓 푮휓 푮휓 푮휓 푮휓 푮휓 …
푮ρ 푮ρ 푮ρ 푮ρ …



SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to the accepting component.

• From each state 휓 we add a jump for every set 퓖 of
푮-subformulas of 휓.

• „Meaning“ of a 퓖-jump at state 휓: The automaton „guesses“
that the rest of the word satisfies

1. 퓖 (every formula of 퓖), and
2. 퓖 ⇒ 휓

even if no other 퐺-subformula of 휓	 ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.
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SECOND STEP: JUMPING
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and 2.
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SECOND STEP: JUMPING

• 푤 ⊨ 휑 iff the automaton can guess correctly.
• If the correct guess is made at suffix w then			w ⊨ 휓	

which implies 	푤 ⊨ 휑 (tracking!)
• If 푤 ⊨ 휑	then 푤′ ⊨ True퐺푠 푤,휑 for some suffix 푤′

and so the jump before 푤′ that chooses
퓖 ≔ True퐺푠 푤,휑 	 satisfies 1. and 2.

• „Meaning“ of the 퓖 -jump at state 휓 : The automaton
„guesses“ that the rest of the run satisfies

1. 퓖 (every formula of 퓖), and

2. 퓖 ⇒ 휓
even if no other 퐺-subformula of 휓	 ever becomes true.



A DBA THAT CHECKS  1. & 2.

• Since DBAs are closed under intersection, it

suffices to construct two DBAs for 1. and 2.
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• Example: 휓 = 푮 푎 ∨ 푭푏 ∧	(푮푐 ∨ 푿푑)

퓖 = {	푮 푎 ∨ 푭푏 	}

Reduces to checking 푿푑

• „퓖 ⇒ 휓 holds even if no other 푮-subformula of 휓	

ever becomes true”

• Since the formula is 푮-free, use the tracking automaton.

• Reduces to checking the 푮-free formula
휓[		퓖 \ tt   ,  퓖\ff		]	
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CHECKING 1.

• Example: 휓 = 	푭푐	 ∧ 푮푭 푎 ∧ (푮푏 ∨ 푭푮푐)

퓖 = {	푮푏		, 푮푭 푎 ∧ 푮푏 ∨ 푭푮푐 	}

reduces to checking 푮푏 ∧ 푮푭푎 ≡ 		푮(푏 ∧ 푭푎)

• „퓖 holds even if no other 푮 -subformula of 휓	 ever

becomes true”

• So we need DBAs for formulas 푮휌 where 휌 is 푮-free. 

• Reduces to checking a formula 푮휌 where 휌 is 푮-free.
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UPPER BOUND ON LDBA SIZE
• Theorem: Every formula obtained by „tracking 휑“ is a 

positive boolean combination of subformulas of 휑.

푐 ∨ 푿푮(푎 ∨ 푭푏) → 푮 푎 ∨ 푭푏 → 푮 푎 ∨ 푭푏 ∧ 푭푏	

• Corollary: for a formula of length 푛 there are at most
2 „tracking formulas” up to equivalence, even if we 
leave temporal operators uninterpreted.

푭푎 ∧ 푭푎 ∨ 푮푏 = 	푭푎 푭푎 ∨ 푮푎 ≠ 	푭푎	
• This allows us to derive an upper bound on the size

of the LDBA
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Part Size

Initial Component 22n

G-Monitor 22n+1

Accepting Component 22O(n)

Total 22O(n)

UPPER BOUND ON LDBA SIZE
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CONCLUSION

• We have presented a translation from LTL to LDBA that

• uses formulas as states

• is modular

• optimizations of any module helps to reduce state space!

• yields in practice small ω-automata 

• is usable for quantitative prob. model checking without changing the algorithm.

• can be also used as intermediate step to synthesis.

• Website: https://www7.in.tum.de/~sickert/projects/ltl2ldba/

https://www7.in.tum.de/~sickert/projects/ltl2ldba/

