Automata, Logic and Algebra for (Finite) Word Transductions

Emmanuel Filiot

Université libre de Bruxelles \& FNRS

ACTS 2017, Chennai

Trinity for Regular Languages

Trinity for Regular Languages

Finite monoids

Objective of the talk

Automata models for transductions

Automata for transductions: transducers

Automata for transductions: transducers

$$
a a b a a \quad \mapsto \quad a a a a
$$

Automata for transductions: transducers

$$
\begin{aligned}
\text { aabaa } & \mapsto \text { aaaa } \\
\text { aaba } & \mapsto \text { undefined }
\end{aligned}
$$

Automata for transductions: transducers

$$
\begin{aligned}
a a b a a & \mapsto a a a a \\
a a b a & \mapsto \text { undefined } \\
\operatorname{dom}\left(f_{d e l}\right) & =\text { 'even number of } a
\end{aligned}
$$

Non-determinism

In general, transducers define binary relations in $\Sigma^{*} \times \Sigma^{*}$

realizes $\{(u, v) \mid v$ is a subword of $u\}$

Sequential vs Non-deterministic functional

Non-deterministic transducers may define functions:

for all $\sigma \in \Sigma$

Sequential vs Non-deterministic functional

Non-deterministic transducers may define functions:

for all $\sigma \in \Sigma$
babaa \mapsto ababa

Sequential vs Non-deterministic functional

Non-deterministic transducers may define functions:

$$
\begin{aligned}
\text { babaa } & \mapsto a b a b a \\
u \sigma & \mapsto \sigma u \quad|u| \geq 1
\end{aligned}
$$

input-determinism (aka sequential) $<$ non-determinism \cap functions

Determinizability

$$
- \text { white space }
$$

Determinizability

$_=$white space

$$
\backsim a a_{\boxed{-}} a_{\llcorner-} \longmapsto \quad-a a_{\llcorner } a
$$

Determinizability

$_=$white space

Is non-determinism needed ?

Determinizability

$_=$white space

$$
\left\llcorner a a_{\text {பธธ }} a_{\llcorner ธ} \mapsto \quad-a a_{\llcorner } a\right.
$$

Is non-determinism needed ? No.

Two-way transducers

input $\quad \vdash$| \mathbf{A} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$\quad t \quad r \quad e \quad s \quad s \quad e \quad d r$

output

Two-way transducers

output

Two-way transducers

output

Two-way transducers

output

Two-way transducers

output

Two-way transducers

input $\quad \vdash \quad s \quad t \quad r \quad e \quad s \quad$| | s | e | d | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{A} | | | | |

output

Two-way transducers

Two-way transducers

Two-way transducers

input	\vdash	S	t	r	e	S	S	e	d

output

Two-way transducers

output

Two-way transducers

output

$$
\begin{array}{llllllll}
d & e & s & s & e & r & t & s
\end{array}
$$

one-way < two-way
© decidable equivalence problem (Culik, Karhumaki, 87).
© closed under composition \circ (Chytil, Jakl, 77)

Landscape of Transducer Classes

Landscape of Transducer Classes

		NFT	\subset	2NFT
		\cup		\cup
SFTs	\subset	FT	\subset	$2 \mathrm{DFT}=2 \mathrm{FT}$
	PTime			expre
			decidable	
	Chof7			
sequential	WK95	rational	FGRS13	regular
transductions	CartonP	ansductio		transductions

Landscape of Transducer Classes

Landscape of Transducer Classes

Landscape of Transducer Classes

Other recent results

Transducers with registers

- deterministic one-way
- equivalent to 2DFT if copyless updates (Alur, Cerny, 10)
- decidable equivalence problem (F., Reynier) ~ HDT0L

Other recent results

Transducers with registers

- deterministic one-way
- equivalent to 2DFT if copyless updates (Alur, Cerny, 10)
- decidable equivalence problem (F., Reynier) ~ HDT0L
- regular expressions to register transducer, implemented in DReX (Alur, D'Antoni, Raghothaman, 2015)
- register minimization for a subclass (Baschenis, Gauwin, Muscholl, Puppis, 16)

Other recent results

Transducers with registers

- deterministic one-way
- equivalent to 2DFT if copyless updates (Alur, Cerny, 10)
- decidable equivalence problem (F., Reynier) ~ HDT0L
- regular expressions to register transducer, implemented in DReX (Alur, D'Antoni, Raghothaman, 2015)
- register minimization for a subclass (Baschenis, Gauwin, Muscholl, Puppis, 16)

Two-way to one-way transducers

- decidable, but non-elementary complexity in (FGRS13)
- elementary complexity first obtained for subclasses (sweeping) by (BGMP15)
- recently for the full class (BGMP17)

Logic for transductions

(Courcelle) MSO Transformations

"interpreting the output structure in the input structure"

- output predicates defined by MSO[S] formulas interpreted over the input structure

(Courcelle) MSO Transformations

"interpreting the output structure in the input structure"

- output predicates defined by MSO[S] formulas interpreted over the input structure

(Courcelle) MSO Transformations

"interpreting the output structure in the input structure"

- output predicates defined by MSO[S] formulas interpreted over the input structure

(Courcelle) MSO Transformations

"interpreting the output structure in the input structure"

- output predicates defined by MSO[S] formulas interpreted over the input structure

(Courcelle) MSO Transformations

"interpreting the output structure in the input structure"

- output predicates defined by MSO[S] formulas interpreted over the input structure

(Courcelle) MSO Transformations

"interpreting the output structure in the input structure"

- output predicates defined by MSO[S] formulas interpreted over the input structure

- input structure can be copied a fixed number of times:
$u \mapsto u u$, or $u \mapsto u$.mirror (u).

Büchi Theorems for Word Transductions

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
Theorem (Engelfriet, Hoogeboom, 01)
f is 2FT-definable iff f is MSO-definable.

Büchi Theorems for Word Transductions

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
Theorem (Engelfriet, Hoogeboom, 01)
f is 2FT-definable iff f is MSO-definable.
Consequence Equivalence is decidable for MSO-transducers.

Büchi Theorems for Word Transductions

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
Theorem (Engelfriet, Hoogeboom, 01)
f is 2FT-definable iff f is MSO-definable.
Consequence Equivalence is decidable for MSO-transducers.
Theorem (Bojanczyk 14, F. 15)
f is (1)FT-definable iff f is order-preserving MSO-definable.
Order-preserving MSO: $\phi_{S}^{i, j}(x, y) \models x \preceq y$.

First-order transductions

Replace MSO by FO formulas.
Results

- equivalent to aperiodic transducers with registers (F., Trivedi, Krishna S., 14)
- and to aperiodic 2DFT (Carton, Dartois, 15) (Dartois, Jecker, Reynier, 16)

Algebraic characterizations of transductions

Myhill-Nerode congruence for

- $u \sim_{L} v$ if: for all $w \in \Sigma^{*}, u w \in L$ iff $v w \in L$
- u and v have the same "effect" on continuations w
- Myhill-Nerode's Thm: L is regular iff Σ^{*} / \sim_{L} is finite
- canonical (and minimal) deterministic automaton for L, Σ^{*} / \sim_{L} as set of states

Myhill-Nerode congruence for

- $u \sim_{L} v$ if: for all $w \in \Sigma^{*}, u w \in L$ iff $v w \in L$
- u and v have the same "effect" on continuations w
- Myhill-Nerode's Thm: L is regular iff Σ^{*} / \sim_{L} is finite
- canonical (and minimal) deterministic automaton for L, Σ^{*} / \sim_{L} as set of states

Goal
Extend Myhill-Nerode's theorem to classes of transductions

Sequential transductions (Choffrut)

Refinement of the MN congruence.
Two ideas

1. produce asap: $F(u)=L C P\{f(u w) \mid u w \in \operatorname{dom}(f)\}$

Sequential transductions (Choffrut)

Refinement of the MN congruence.
Two ideas

1. produce asap: $F(u)=L C P\{f(u w) \mid u w \in \operatorname{dom}(f)\}$
2. $u \sim_{f} v$ if

$$
\begin{array}{ll}
2.1 u \sim_{\operatorname{dom}(f)} v \\
2.2 & F(u)^{-1} f(u w)=F(v)^{-1} f(v w)
\end{array} \quad \forall w \in u^{-1} \operatorname{dom}(f)
$$

" u and v have the same effect on continuations w w.r.t. domain membership and produced outputs"

Sequential transductions (Choffrut)

Refinement of the MN congruence.
Two ideas

1. produce asap: $F(u)=L C P\{f(u w) \mid u w \in \operatorname{dom}(f)\}$
2. $u \sim_{f} v$ if

$$
\begin{array}{ll}
2.1 u \sim_{\operatorname{dom}(f)} v \\
2.2 & F(u)^{-1} f(u w)=F(v)^{-1} f(v w)
\end{array} \quad \forall w \in u^{-1} \operatorname{dom}(f)
$$

" u and v have the same effect on continuations w w.r.t. domain membership and produced outputs"
Theorem (Choffrut)

$$
f \text { is sequential iff } \sim_{f} \text { has finite index }
$$

\sim_{f} is a right congruence \rightsquigarrow canonical and minimal transducer !

$$
\text { Transitions: }[u] \xrightarrow{\sigma \mid F(u)^{-1} F(u \sigma)}[u \sigma]
$$

Rational transductions are almost sequential

- $f_{s w}: u \sigma \mapsto \sigma u$ is not sequential
- but sequential modulo look-ahead information $\mathcal{I}=\{a, b, \epsilon\}$.
abbaaaabbbbab

Rational transductions are almost sequential

- $f_{s w}: u \sigma \mapsto \sigma u$ is not sequential
- but sequential modulo look-ahead information $\mathcal{I}=\{a, b, \epsilon\}$.
abbaaaabbbba ${ }^{\epsilon}$

Rational transductions are almost sequential

- $f_{s w}: u \sigma \mapsto \sigma u$ is not sequential
- but sequential modulo look-ahead information $\mathcal{I}=\{a, b, \epsilon\}$.
abbaa aabbbbab $\stackrel{b}{b}$

Rational transductions are almost sequential

- $f_{s w}: u \sigma \mapsto \sigma u$ is not sequential
- but sequential modulo look-ahead information $\mathcal{I}=\{a, b, \epsilon\}$.
$a b b a a a a b b b b \stackrel{b}{b}{ }^{b} b$

Rational transductions are almost sequential

- $f_{s w}: u \sigma \mapsto \sigma u$ is not sequential
- but sequential modulo look-ahead information $\mathcal{I}=\{a, b, \epsilon\}$.
$a b b a a a a b b b b \stackrel{b}{b}{ }^{b} b$

Rational transductions are almost sequential

- $f_{s w}: u \sigma \mapsto \sigma u$ is not sequential
- but sequential modulo look-ahead information $\mathcal{I}=\{a, b, \epsilon\}$.
$a b b a a a a b b b b \stackrel{b}{b}{ }^{b} b$

Rational transductions are almost sequential

- $f_{s w}: u \sigma \mapsto \sigma u$ is not sequential
- but sequential modulo look-ahead information $\mathcal{I}=\{a, b, \epsilon\}$.
$\begin{array}{llllllllllll}b & b & b & b & b & b & b & b & b & b & b & b \\ a & b & b & a & a & a & a & b & b & b & b & a \\ b\end{array}$

Rational transductions are almost sequential

- $f_{s w}: u \sigma \mapsto \sigma u$ is not sequential
- but sequential modulo look-ahead information $\mathcal{I}=\{a, b, \epsilon\}$.

Rational transductions are almost sequential

- $f_{s w}: u \sigma \mapsto \sigma u$ is not sequential
- but sequential modulo look-ahead information $\mathcal{I}=\{a, b, \epsilon\}$.
$\begin{array}{lllllllll}b \\ a & b & b & b & b & b & b & b & b \\ a & b & b & b & b & b \\ a & b & b & b & b\end{array}$

- look-ahead information: $\mathcal{L}: \Sigma^{*} \rightarrow \mathcal{I}$
- $f[\mathcal{L}]: f$ with input words extended with look-ahead information

Results

Theorem (Elgot, Mezei, 65)
f is rational iff $f[\mathcal{L}]$ is sequential, for some finite look-ahead information \mathcal{L} computable by a right sequential transducer. Original statement: $R A T=S E Q \circ$ RightSEQ.

Results

Theorem (Elgot, Mezei, 65)
f is rational iff $f[\mathcal{L}]$ is sequential, for some finite look-ahead information \mathcal{L} computable by a right sequential transducer.

Original statement: $R A T=S E Q \circ$ RightSEQ.
Reutenauer, Schützenberger, 91

- canonical look-ahead given by a congruence \equiv_{f}
- identify suffixes with a 'bounded' effect on the transduction of prefixes
- characterization of rational transductions
- f is rational
- \equiv_{f} has finite index and $f\left[\equiv_{f}\right]$ is sequential
- \equiv_{f} and $\sim_{f\left[\equiv_{f}\right]}$ have finite index.

Definability problems

Rational Transductions

Given f defined by T, is it definable by some \mathcal{C}-transducer ?

- sufficient conditions on \mathcal{C} to get decidability (F., Gauwin, Lhote, LICS'16)
- includes aperiodic congruences: decidable FO-definability
- even PSpace-c (F., Gauwin, Lhote, FSTTCS'16)

Regular Transductions

- existence of a canonical transducer if origin is taken into account (Bojanczyk, ICALP'14)

- decidable FO-definability with origin, open without

A new logic for transductions joint with Luc Dartois and Nathan Lhote

Motivations

- specify properties of transductions in a high-level formalin: a logic
- decidable model-checking

a kausduer a formula
($\mathrm{NFT}, 2 D F T, \cdots$)

$$
\llbracket T \rrbracket \subseteq \mathbb{T} \varphi \rrbracket
$$

a transduction $\Sigma^{*} \rightarrow \Sigma^{*}$ a relation $\subseteq \Sigma^{*} \times \Sigma^{*}$ (function)
EXAMPLES"there exists at least one 'a' in the output"

$$
\left\{\left(u, v_{1} a v_{2}\right) / u, v_{1}, v_{2} \in \Sigma^{*}\right\}
$$"every request is processed exactly once"

$$
\left\{\left(r_{i_{1}} \cdots r_{i_{k}}, g_{\pi\left(i_{1}\right)} \cdots g_{\pi\left(i_{k}\right)}\right) / \pi \text { permutation }\right\}
$$more generally: shuffle

$$
\left\{\left(\sigma_{1} \ldots \sigma_{n}, \sigma_{\pi(1)} \cdots \sigma_{\pi(n)}\right) / \pi \text { permutation }\right\}
$$

NON-DETERMINISTIC MSOT (NMSOT) COURCELLE
use second-order parameters x_{1}, \ldots, x_{4}
$\{(u, v) \mid v$ is a subuod of u, $\mid v /$ even $\}$

$$
\begin{array}{r}
\varphi_{\text {dom }}(X) \equiv \operatorname{even}(x) \quad \varphi_{S}(x, y, X) \leq x, y \in X \wedge x<y \\
1 \neg(\exists z \in X \cdot x<z<y)
\end{array}
$$

FROM NMSOT to NEW LOGIC

NMSOT is nor sahsfactory as a specification language

* too "operational"
* the previous examples are nor NMSOT

IDEA: SEE TRANSDUCTIONS AS SINGLE STRUCTURES WITH ORIGIN

Predicates: $\leq_{\text {in }}, \leq_{\text {our }}$, o
EXAMPLES"there exists at least one 'a' in the output"

$$
\exists^{\text {our }} x \cdot a(x)
$$shuffle

$$
\operatorname{BIJ}(\sigma) \wedge \underbrace{\bigwedge_{\sigma \in \Sigma^{\prime} \times \text { in }^{\text {our }} \cdot \sigma(x, y) \wedge}^{\sigma(x)} \rightarrow \sigma(y)}_{\operatorname{LABRRES}(\theta)}
$$

identity

$$
B I J(\theta) \wedge \angle A B P R E S(\theta) \wedge \text { ORDERPRES }(\theta)
$$

where ORDERPRES $(\sigma) \equiv \forall_{x, x^{\prime}}^{\text {in }} \forall_{y, y^{\prime}}^{\text {our }} \quad \sigma(x, y)$

$$
\begin{aligned}
& \sigma(x, y) \\
& \sigma\left(x^{\prime}, y^{\prime}\right) \\
& x \leqslant y \leqslant_{\text {in }} x^{\prime}
\end{aligned} \rightarrow y^{\prime}
$$

RESULTS

FO $\left[\leqslant s_{\text {in }}, \leqslant_{\text {out }} r, \theta\right]$ is undecidable
$\mathrm{FO}_{2}\left[\leqslant_{\text {out }}, \theta, \mathrm{MSO}_{\text {bin }}\left[\leqslant_{\text {in }}\right]\right]$ is decidable
\rightarrow capture MSOT (for functions)
\rightarrow all precious examples are definable
$\rightarrow T \neq \varphi$ decidable for $T, 2 D F T$
Reduction to a data word logic

$$
\mathrm{FO}_{2}\left[\leq, M S O_{\sin }[\leq]\right]
$$

linear-order total pre-order (data comparison)

Summary: sequential transductions

$$
\text { finiteness of } \sim_{f} \text { (Choffrut) }
$$

input-deterministic
prefix-independent MSO, ? one-way transducers

Summary: rational transductions

finiteness of \equiv_{f} and $\sim_{f\left[\equiv_{f}\right]}$ (Reutenauer, Schützenberger)

Summary: regular transductions

Other works

- $A C^{0}$ transductions (Cadilhac,Krebs,Ludwig,Paperman,15)
- variants of two-way transducers (Guillon, Choffrut, 14,15,16), (Carton, 12) (McKenzie, Schwentick, Thérien, Vollmer, 06)
- model-checking and synthesis problems for rational transductions with "similar origins" (F., Jecker, Löding, Winter, 16)
- non-determinism
- infinite words, nested words, trees

SIGLOG News 9th

Finite Words

for

Algebra for
Functions of

Transducers. Logic

$$
\begin{aligned}
& \text { and alg to words. Ned by } \\
& \text { words } \\
& \text { respectively defined }
\end{aligned}
$$

SIGLOG News 9th

Thank You.

Transducers. Log. Université fibre de Bruxelles vile Université

$$
\begin{aligned}
& \text { The robust the this we consider and a } \\
& \text { and alger words. We by one wo } \\
& \text { words to defined defy } \\
& \text { respective }
\end{aligned}
$$

 cell efnite te auto of (Mucoid, a write ${ }^{\text {a }}$

