
The Power

of Well-Structured

Transition Systems

Sylvain Schmitz & Philippe Schnoebelen

LSV, CNRS & ENS Cachan

CMI, Chennai, Feb. 19, 2014

Based on CONCUR 2013 invited paper, see my web page for pdf

THE PROBLEM WITH WSTS

I Well-structured transition systems (WSTS) are a family of
infinite-state models supporting generic verification algorithms
based on well-quasi-ordering (WQO) theory.

I WSTS invented in 1987, developed and popularized in
1996–2005 by Abdulla & Jonsson, Finkel & Schnoebelen, etc.
First used with Petri nets (or VAS) extensions, channel systems,
counter machines, integral automata, etc.

I Still thriving today, with several new WSTS models (based on
wqos on graphs, etc.), or applications (deciding data logics,
modal logics, etc.) appearing every year

I Main question not answered during all these developments: what
is the complexity of WSTS verification? Related question: what
is the expressive power of these WSTS models?

2/24

THE PROBLEM WITH WSTS

I Well-structured transition systems (WSTS) are a family of
infinite-state models supporting generic verification algorithms
based on well-quasi-ordering (WQO) theory.

I WSTS invented in 1987, developed and popularized in
1996–2005 by Abdulla & Jonsson, Finkel & Schnoebelen, etc.
First used with Petri nets (or VAS) extensions, channel systems,
counter machines, integral automata, etc.

I Still thriving today, with several new WSTS models (based on
wqos on graphs, etc.), or applications (deciding data logics,
modal logics, etc.) appearing every year

I Main question not answered during all these developments: what
is the complexity of WSTS verification? Related question: what
is the expressive power of these WSTS models?

2/24

SOME RECENT DEVELOPMENTS (2008—)

Exact complexity determined for verification problems on Petri net
extensions, lossy channel systems, timed-arc Petri nets, etc.

More generally, we have been developing a set of theoretical tools for
the complexity analysis of algorithms that rely on WQO-theory:
– Length-function theorems to bound the length of bad sequences
– Robust encodings of Hardy computations in WSTS
– Ordinal-recursive complexity classes with catalog of complete
problems

These tools borrow from proof theory, WQO and ordinals theory,
combinatorics à la Ramsey, . . . but repackaging was required

3/24

SOME RECENT DEVELOPMENTS (2008—)

Exact complexity determined for verification problems on Petri net
extensions, lossy channel systems, timed-arc Petri nets, etc.

More generally, we have been developing a set of theoretical tools for
the complexity analysis of algorithms that rely on WQO-theory:
– Length-function theorems to bound the length of bad sequences
– Robust encodings of Hardy computations in WSTS
– Ordinal-recursive complexity classes with catalog of complete
problems

These tools borrow from proof theory, WQO and ordinals theory,
combinatorics à la Ramsey, . . . but repackaging was required

3/24

SOME RECENT DEVELOPMENTS (2008—)

Exact complexity determined for verification problems on Petri net
extensions, lossy channel systems, timed-arc Petri nets, etc.

More generally, we have been developing a set of theoretical tools for
the complexity analysis of algorithms that rely on WQO-theory:
– Length-function theorems to bound the length of bad sequences
– Robust encodings of Hardy computations in WSTS
– Ordinal-recursive complexity classes with catalog of complete
problems

These tools borrow from proof theory, WQO and ordinals theory,
combinatorics à la Ramsey, . . . but repackaging was required

3/24

OUTLINE OF THE TALK

I Part 1: Basics of WSTS. Recalling the basic definition, with
broadcast protocols as an example

I Part 2: Verifying WSTS. Two simple verification algorithms,
deciding Termination and Coverability

I Part 3: Bounding Running Time. By bounding the length of
controlled bad sequences

I Part 4: Proving (Matching) Lower Bounds. By weakly
computing ordinal-recursive functions

Technical details mostly avoided, see CONCUR paper for more.
Also, see our lecture notes “Algorithmic Aspects of WQO Theory”.

4/24

Part 1

Basics of WSTS

5/24

WHAT ARE WSTS?

Def. A WSTS is an ordered TS S= (S,→,6) that is monotonic and
such that (S,6) is a well-quasi-ordering (a wqo, more later).

Recall:
– transition system (TS): S= (S,→) with steps e.g. “s→ s ′”
– ordered TS: S= (S,→,6) with smaller and larger states, e.g. s6 t
– monotonic TS: ordered TS with(
s1→ s2 and s1 6 t1

)
implies ∃t2 ∈ S :

(
t1→ t2 and s2 6 t2

)
,

i.e., “larger states simulate smaller states”.

Equivalently: 6 is a wqo and a simulation.

NB. Starting from any t0 > s0, a run s0→ s1→ ·· · → sn can be
simulated “from above” with some t0→ t1→ ·· · → tn

6/24

WHAT ARE WSTS?

Def. A WSTS is an ordered TS S= (S,→,6) that is monotonic and
such that (S,6) is a well-quasi-ordering (a wqo, more later).

Recall:
– transition system (TS): S= (S,→) with steps e.g. “s→ s ′”
– ordered TS: S= (S,→,6) with smaller and larger states, e.g. s6 t
– monotonic TS: ordered TS with(
s1→ s2 and s1 6 t1

)
implies ∃t2 ∈ S :

(
t1→ t2 and s2 6 t2

)
,

i.e., “larger states simulate smaller states”.

Equivalently: 6 is a wqo and a simulation.

NB. Starting from any t0 > s0, a run s0→ s1→ ·· · → sn can be
simulated “from above” with some t0→ t1→ ·· · → tn

6/24

WELL-QUASI-ORDERING (WQO)

Now what was meant by “(S,6) is wqo”?

Def1. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains
an increasing pair: xi 6 xj for some i < j.

Def2. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains
an infinite increasing subsequence: xn0 6 xn1 6 xn2 6 . . .

NB. These definitions are equivalent (not trivially).

Example. (Dickson’s Lemma) (Nk,6×) is a wqo, with
a= (a1, . . . ,ak)6× b= (b1, . . . ,bk)

def⇔ a1 6 b1∧ · · ·∧ak 6 bk

Other important/useful wqos: words with the subword relation
(Higman’s Lemma), trees (also multisets) ordered by embedding
(Kruskal’s Theorem), and graphs with minors (Robertson &
Seymour’s Graph Minor Theorem).

7/24

WELL-QUASI-ORDERING (WQO)

Now what was meant by “(S,6) is wqo”?

Def1. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains
an increasing pair: xi 6 xj for some i < j.

Def2. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains
an infinite increasing subsequence: xn0 6 xn1 6 xn2 6 . . .

NB. These definitions are equivalent (not trivially).

Example. (Dickson’s Lemma) (Nk,6×) is a wqo, with
a= (a1, . . . ,ak)6× b= (b1, . . . ,bk)

def⇔ a1 6 b1∧ · · ·∧ak 6 bk

Other important/useful wqos: words with the subword relation
(Higman’s Lemma), trees (also multisets) ordered by embedding
(Kruskal’s Theorem), and graphs with minors (Robertson &
Seymour’s Graph Minor Theorem).

7/24

WELL-QUASI-ORDERING (WQO)

Now what was meant by “(S,6) is wqo”?

Def1. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains
an increasing pair: xi 6 xj for some i < j.

Def2. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains
an infinite increasing subsequence: xn0 6 xn1 6 xn2 6 . . .

NB. These definitions are equivalent (not trivially).

Example. (Dickson’s Lemma) (Nk,6×) is a wqo, with
a= (a1, . . . ,ak)6× b= (b1, . . . ,bk)

def⇔ a1 6 b1∧ · · ·∧ak 6 bk

Other important/useful wqos: words with the subword relation
(Higman’s Lemma), trees (also multisets) ordered by embedding
(Kruskal’s Theorem), and graphs with minors (Robertson &
Seymour’s Graph Minor Theorem).

7/24

WELL-QUASI-ORDERING (WQO)

Now what was meant by “(S,6) is wqo”?

Def1. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains
an increasing pair: xi 6 xj for some i < j.

Def2. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains
an infinite increasing subsequence: xn0 6 xn1 6 xn2 6 . . .

NB. These definitions are equivalent (not trivially).

Example. (Dickson’s Lemma) (Nk,6×) is a wqo, with
a= (a1, . . . ,ak)6× b= (b1, . . . ,bk)

def⇔ a1 6 b1∧ · · ·∧ak 6 bk

Other important/useful wqos: words with the subword relation
(Higman’s Lemma), trees (also multisets) ordered by embedding
(Kruskal’s Theorem), and graphs with minors (Robertson &
Seymour’s Graph Minor Theorem).

7/24

EXAMPLE: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and
rendez-vous.

r c

a

q ⊥
d!!

m??

d?? m!!

A configuration collects the local states of all processes. E.g.,
s= {c,r,c}, also denoted {c2,r}.

Steps: {c2,q,r} a−→ {a2,c,q,r} a−→ {a4,q,r} m−→ {c4,r,⊥} d−→ {c,q4,⊥}

We’ll see later: The above protocol does not have infinite runs

8/24

EXAMPLE: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and
rendez-vous.

r c

a

q ⊥
d!!

m??

d?? m!!

A configuration collects the local states of all processes. E.g.,
s= {c,r,c}, also denoted {c2,r}.

Steps: {c2,q,r} a−→ {a2,c,q,r} a−→ {a4,q,r} m−→ {c4,r,⊥} d−→ {c,q4,⊥}

We’ll see later: The above protocol does not have infinite runs

8/24

EXAMPLE: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and
rendez-vous.

r c

a

q ⊥
d!!

m??

d?? m!!

A configuration collects the local states of all processes. E.g.,
s= {c,r,c}, also denoted {c2,r}.

Steps: {c2,q,r} a−→ {a2,c,q,r} a−→ {a4,q,r} m−→ {c4,r,⊥} d−→ {c,q4,⊥}

We’ll see later: The above protocol does not have infinite runs

8/24

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., {c,q}⊆ {c2,r,q}

Fact. Configurations (N{r,c,a,q,⊥},⊆) is a wqo.

Proof: this is exactly (N5,6×)

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume s1 ⊆ t1 and consider all cases for a step s1→ s2

Coro. Broadcast protocols are WSTS

9/24

Part 2

Verification of WSTS

10/24

TERMINATION

Termination is the question, given a TS S= (S,→, . . .) and a state sinit,
whether S has no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS S has an infinite run from sinit iff it has a finite run from sinit
that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

⇒ one can decide Termination for a WSTS S by enumerating all finite
runs from sinit until a good sequence is found.
NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

11/24

TERMINATION

Termination is the question, given a TS S= (S,→, . . .) and a state sinit,
whether S has no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS S has an infinite run from sinit iff it has a finite run from sinit
that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

⇒ one can decide Termination for a WSTS S by enumerating all finite
runs from sinit until a good sequence is found.
NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

11/24

TERMINATION

Termination is the question, given a TS S= (S,→, . . .) and a state sinit,
whether S has no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS S has an infinite run from sinit iff it has a finite run from sinit
that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

⇒ one can decide Termination for a WSTS S by enumerating all finite
runs from sinit until a good sequence is found.
NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

11/24

COVERABILITY

Coverability is the question, given S= (S,→, . . .), a state sinit and a
target state t, whether S has a run sinit→ s1→ s2 . . .→ sn with sn > t.

This is equivalent to having a pseudorun sinit,s1, . . . ,sn with sn > t,
where a pseudorun is a sequence s0,s1, . . . such that for all i > 0,
there is a step si−1→ ti with ti > si.

Lem. [Finite Witnesses for Covering]
A WSTS S has a pseudorun sinit, . . . ,sn covering t iff it has a minimal
pseudorun from some s0 6 sinit to t that is a bad sequence in reverse.
NB. a pseudorun s0, . . . ,sn is minimal def⇔ for all 06 i < n, si is a
minimal (pseudo) predecessor of si+1.

⇒ one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and bad sequences
in reverse.

12/24

COVERABILITY

Coverability is the question, given S= (S,→, . . .), a state sinit and a
target state t, whether S has a run sinit→ s1→ s2 . . .→ sn with sn > t.

This is equivalent to having a pseudorun sinit,s1, . . . ,sn with sn > t,
where a pseudorun is a sequence s0,s1, . . . such that for all i > 0,
there is a step si−1→ ti with ti > si.

Lem. [Finite Witnesses for Covering]
A WSTS S has a pseudorun sinit, . . . ,sn covering t iff it has a minimal
pseudorun from some s0 6 sinit to t that is a bad sequence in reverse.
NB. a pseudorun s0, . . . ,sn is minimal def⇔ for all 06 i < n, si is a
minimal (pseudo) predecessor of si+1.

⇒ one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and bad sequences
in reverse.

12/24

COVERABILITY

Coverability is the question, given S= (S,→, . . .), a state sinit and a
target state t, whether S has a run sinit→ s1→ s2 . . .→ sn with sn > t.

This is equivalent to having a pseudorun sinit,s1, . . . ,sn with sn > t,
where a pseudorun is a sequence s0,s1, . . . such that for all i > 0,
there is a step si−1→ ti with ti > si.

Lem. [Finite Witnesses for Covering]
A WSTS S has a pseudorun sinit, . . . ,sn covering t iff it has a minimal
pseudorun from some s0 6 sinit to t that is a bad sequence in reverse.
NB. a pseudorun s0, . . . ,sn is minimal def⇔ for all 06 i < n, si is a
minimal (pseudo) predecessor of si+1.

⇒ one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and bad sequences
in reverse.

12/24

COVERABILITY

Coverability is the question, given S= (S,→, . . .), a state sinit and a
target state t, whether S has a run sinit→ s1→ s2 . . .→ sn with sn > t.

This is equivalent to having a pseudorun sinit,s1, . . . ,sn with sn > t,
where a pseudorun is a sequence s0,s1, . . . such that for all i > 0,
there is a step si−1→ ti with ti > si.

Lem. [Finite Witnesses for Covering]
A WSTS S has a pseudorun sinit, . . . ,sn covering t iff it has a minimal
pseudorun from some s0 6 sinit to t that is a bad sequence in reverse.
NB. a pseudorun s0, . . . ,sn is minimal def⇔ for all 06 i < n, si is a
minimal (pseudo) predecessor of si+1.

⇒ one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and bad sequences
in reverse.

12/24

Part 3

Bounding Running Time

13/24

BROADCAST PROTOCOLS AND TERMINATION

r c

a

q ⊥
d!!

m??

d?? m!!

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume s0→ s1→ ·· · → sn and pick two positions i < j.
Write si = {an1 ,cn2 ,qn3 ,rn4 ,⊥∗}, and sj = {an

′
1 ,cn

′
2 ,qn

′
3 ,rn

′
4 ,⊥∗}.

– if si
+−→ sj uses only spawn steps then n ′2 < n2,

– if a m and no d have been broadcast, then n ′3 < n3,
– if a d has been broadcast, and then n ′4 < n4.

In all cases, si * sj. QED

14/24

BROADCAST PROTOCOLS AND TERMINATION

r c

a

q ⊥
d!!

m??

d?? m!!

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume s0→ s1→ ·· · → sn and pick two positions i < j.
Write si = {an1 ,cn2 ,qn3 ,rn4 ,⊥∗}, and sj = {an

′
1 ,cn

′
2 ,qn

′
3 ,rn

′
4 ,⊥∗}.

– if si
+−→ sj uses only spawn steps then n ′2 < n2,

– if a m and no d have been broadcast, then n ′3 < n3,
– if a d has been broadcast, and then n ′4 < n4.

In all cases, si * sj. QED

14/24

BROADCAST PROTOCOLS AND TERMINATION

r c

a

q ⊥
d!!

m??

d?? m!!

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume s0→ s1→ ·· · → sn and pick two positions i < j.
Write si = {an1 ,cn2 ,qn3 ,rn4 ,⊥∗}, and sj = {an

′
1 ,cn

′
2 ,qn

′
3 ,rn

′
4 ,⊥∗}.

– if si
+−→ sj uses only spawn steps then n ′2 < n2,

– if a m and no d have been broadcast, then n ′3 < n3,
– if a d has been broadcast, and then n ′4 < n4.

In all cases, si * sj. QED

14/24

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

m??

d?? m!!

“Doubling” run: {cn,q,(⊥∗)} a
n

−−→ {a2n,q,(⊥∗)} m−→ {c2n,(⊥∗)}

Building up: {c2
0
,qn,r} a

20m−−−−→ {c2
1
,qn−1,r} a

21m−−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} a
2n−1

m−−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

15/24

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

m??

d?? m!!

“Doubling” run: {cn,q,(⊥∗)} a
n

−−→ {a2n,q,(⊥∗)} m−→ {c2n,(⊥∗)}

Building up: {c2
0
,qn,r} a

20m−−−−→ {c2
1
,qn−1,r} a

21m−−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} a
2n−1

m−−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

15/24

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

m??

d?? m!!

“Doubling” run: {cn,q,(⊥∗)} a
n

−−→ {a2n,q,(⊥∗)} m−→ {c2n,(⊥∗)}

Building up: {c2
0
,qn,r} a

20m−−−−→ {c2
1
,qn−1,r} a

21m−−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} a
2n−1

m−−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

where tower(n) def
= 22

...
2
}
n times

15/24

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

m??

d?? m!!

“Doubling” run: {cn,q,(⊥∗)} a
n

−−→ {a2n,q,(⊥∗)} m−→ {c2n,(⊥∗)}

Building up: {c2
0
,qn,r} a

20m−−−−→ {c2
1
,qn−1,r} a

21m−−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} a
2n−1

m−−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

⇒ Runs of terminating systems may have nonelementary lengths
⇒ Running time of termination verification algorithm is not
elementary (for broadcast protocols)

15/24

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

16/24

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

16/24

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

16/24

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

16/24

CONTROLLED BAD SEQUENCES

Def. A control is a pair of n0 ∈N and g :N→N.

Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is a bound
on the length of controlled bad sequences.
Write Lg,A(n0) for this maximum length.

Length Function Theorem for (Nk,6×):

— Lg,Nk(n0)6 gω
k
(n0)

— Lg,Nk is in Fk+m−1 for g in Fm [McAloon’84, Figueira2SS’11]
(more later on Fast-Growing Hierarchy)

17/24

CONTROLLED BAD SEQUENCES

Def. A control is a pair of n0 ∈N and g :N→N.

Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is a bound
on the length of controlled bad sequences.
Write Lg,A(n0) for this maximum length.

Length Function Theorem for (Nk,6×):

— Lg,Nk(n0)6 gω
k
(n0)

— Lg,Nk is in Fk+m−1 for g in Fm [McAloon’84, Figueira2SS’11]
(more later on Fast-Growing Hierarchy)

17/24

CONTROLLED BAD SEQUENCES

Def. A control is a pair of n0 ∈N and g :N→N.

Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is a bound
on the length of controlled bad sequences.
Write Lg,A(n0) for this maximum length.

Length Function Theorem for (Nk,6×):

— Lg,Nk(n0)6 gω
k
(n0)

— Lg,Nk is in Fk+m−1 for g in Fm [McAloon’84, Figueira2SS’11]
(more later on Fast-Growing Hierarchy)

17/24

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with |sinit| and Succ :N→N.

⇒ Time/space bound in Fk−1 for broadcast protocols with k states,
and in Fω when k is not fixed.

Fact. The minimal pseudoruns explored by the backward-chaining
Coverability algorithm are controlled by |t| and Succ.

⇒ ·· · same upper bounds · · ·

This is a general situation:
— WSTS model (or WQO-based algorithm) provides g
— WQO-theory provides bounds for LA,g
— Translates as complexity upper bounds for WQO-based algorithm

18/24

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with |sinit| and Succ :N→N.

⇒ Time/space bound in Fk−1 for broadcast protocols with k states,
and in Fω when k is not fixed.

Fact. The minimal pseudoruns explored by the backward-chaining
Coverability algorithm are controlled by |t| and Succ.

⇒ ·· · same upper bounds · · ·

This is a general situation:
— WSTS model (or WQO-based algorithm) provides g
— WQO-theory provides bounds for LA,g
— Translates as complexity upper bounds for WQO-based algorithm

18/24

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with |sinit| and Succ :N→N.

⇒ Time/space bound in Fk−1 for broadcast protocols with k states,
and in Fω when k is not fixed.

Fact. The minimal pseudoruns explored by the backward-chaining
Coverability algorithm are controlled by |t| and Succ.

⇒ ·· · same upper bounds · · ·

This is a general situation:
— WSTS model (or WQO-based algorithm) provides g
— WQO-theory provides bounds for LA,g
— Translates as complexity upper bounds for WQO-based algorithm

18/24

THE FAST-GROWING HIERARCHY

An ordinal-indexed family (Fα)α∈Ord of functions N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .))

Fω(x)
def
= Fx+1(x)

gives F1(x) ∼ 2x, F2(x) ∼ 2x, F3(x) ∼ tower(x) and
Fω(x) ∼ ACKERMANN(x), the first Fα that is not primitive recursive.

Fλ(x)
def
= Fλx(x) for λ a limit ordinal with a fundamental sequence

λ0 < λ1 < λ2 < · · ·< λ.

E.g. Fω2(x)=Fω·(x+1)(x)=Fω·x+x+1(x)=

x+1︷ ︸︸ ︷
Fω·x+x(Fω·x+x(..Fω·x+x(x)..))

Fα
def
= all functions computable in time FO(1)

α (very robust).

19/24

THE FAST-GROWING HIERARCHY

An ordinal-indexed family (Fα)α∈Ord of functions N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .))

Fω(x)
def
= Fx+1(x)

gives F1(x) ∼ 2x, F2(x) ∼ 2x, F3(x) ∼ tower(x) and
Fω(x) ∼ ACKERMANN(x), the first Fα that is not primitive recursive.

Fλ(x)
def
= Fλx(x) for λ a limit ordinal with a fundamental sequence

λ0 < λ1 < λ2 < · · ·< λ.

E.g. Fω2(x)=Fω·(x+1)(x)=Fω·x+x+1(x)=

x+1︷ ︸︸ ︷
Fω·x+x(Fω·x+x(..Fω·x+x(x)..))

Fα
def
= all functions computable in time FO(1)

α (very robust).

19/24

THE FAST-GROWING HIERARCHY

An ordinal-indexed family (Fα)α∈Ord of functions N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .))

Fω(x)
def
= Fx+1(x)

gives F1(x) ∼ 2x, F2(x) ∼ 2x, F3(x) ∼ tower(x) and
Fω(x) ∼ ACKERMANN(x), the first Fα that is not primitive recursive.

Fλ(x)
def
= Fλx(x) for λ a limit ordinal with a fundamental sequence

λ0 < λ1 < λ2 < · · ·< λ.

E.g. Fω2(x)=Fω·(x+1)(x)=Fω·x+x+1(x)=

x+1︷ ︸︸ ︷
Fω·x+x(Fω·x+x(..Fω·x+x(x)..))

Fα
def
= all functions computable in time FO(1)

α (very robust).

19/24

MORE LENGTH FUNCTION THEOREMS

For finite words with embedding, LΣ∗ is in Fω|Σ|−1 , and in Fωω when
alphabet is not fixed [Cichon’98, SS’11]. Applies e.g. to lossy channel
systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωωω when k is not fixed [SS’11]. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LΣ∗ is in Fε0 [HaaseSS’13].
Applies e.g. to priority channel systems.

Bottom line: we can provide definite complexity upper bounds for
WQO-based algorithms

Some research goals: more varied/complex wqos, less crude notion
of controlled sequences, analysis of complex algorithms

20/24

MORE LENGTH FUNCTION THEOREMS

For finite words with embedding, LΣ∗ is in Fω|Σ|−1 , and in Fωω when
alphabet is not fixed [Cichon’98, SS’11]. Applies e.g. to lossy channel
systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωωω when k is not fixed [SS’11]. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LΣ∗ is in Fε0 [HaaseSS’13].
Applies e.g. to priority channel systems.

Bottom line: we can provide definite complexity upper bounds for
WQO-based algorithms

Some research goals: more varied/complex wqos, less crude notion
of controlled sequences, analysis of complex algorithms

20/24

MORE LENGTH FUNCTION THEOREMS

For finite words with embedding, LΣ∗ is in Fω|Σ|−1 , and in Fωω when
alphabet is not fixed [Cichon’98, SS’11]. Applies e.g. to lossy channel
systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωωω when k is not fixed [SS’11]. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LΣ∗ is in Fε0 [HaaseSS’13].
Applies e.g. to priority channel systems.

Bottom line: we can provide definite complexity upper bounds for
WQO-based algorithms

Some research goals: more varied/complex wqos, less crude notion
of controlled sequences, analysis of complex algorithms

20/24

MORE LENGTH FUNCTION THEOREMS

For finite words with embedding, LΣ∗ is in Fω|Σ|−1 , and in Fωω when
alphabet is not fixed [Cichon’98, SS’11]. Applies e.g. to lossy channel
systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωωω when k is not fixed [SS’11]. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LΣ∗ is in Fε0 [HaaseSS’13].
Applies e.g. to priority channel systems.

Bottom line: we can provide definite complexity upper bounds for
WQO-based algorithms

Some research goals: more varied/complex wqos, less crude notion
of controlled sequences, analysis of complex algorithms

20/24

Part 4

Proving Lower Bounds

21/24

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:
The upper bound is tight for the algorithms we presented
But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are
Fω-hard, hence Fω-complete, for broadcast protocols [S’10]

and Fωω -complete for lossy channel systems [ChambartS’08],
Fωωω -complete for timed-arc Petri nets [HaddadSS’12], Fε0 -complete
for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:
WSTS models are often used for decidability (or hardness) of
problems in logic.

22/24

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:
The upper bound is tight for the algorithms we presented
But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are
Fω-hard, hence Fω-complete, for broadcast protocols [S’10]

and Fωω -complete for lossy channel systems [ChambartS’08],
Fωωω -complete for timed-arc Petri nets [HaddadSS’12], Fε0 -complete
for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:
WSTS models are often used for decidability (or hardness) of
problems in logic.

22/24

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:
The upper bound is tight for the algorithms we presented
But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are
Fω-hard, hence Fω-complete, for broadcast protocols [S’10]

and Fωω -complete for lossy channel systems [ChambartS’08],
Fωωω -complete for timed-arc Petri nets [HaddadSS’12], Fε0 -complete
for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:
WSTS models are often used for decidability (or hardness) of
problems in logic.

22/24

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:
The upper bound is tight for the algorithms we presented
But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are
Fω-hard, hence Fω-complete, for broadcast protocols [S’10]

and Fωω -complete for lossy channel systems [ChambartS’08],
Fωωω -complete for timed-arc Petri nets [HaddadSS’12], Fε0 -complete
for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:
WSTS models are often used for decidability (or hardness) of
problems in logic.

22/24

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:
The upper bound is tight for the algorithms we presented
But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are
Fω-hard, hence Fω-complete, for broadcast protocols [S’10]

and Fωω -complete for lossy channel systems [ChambartS’08],
Fωωω -complete for timed-arc Petri nets [HaddadSS’12], Fε0 -complete
for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:
WSTS models are often used for decidability (or hardness) of
problems in logic.

22/24

PROVING Fα-HARDNESS

The four hardness results we just mentioned have all been proved
using the same techniques:

One shows how the WSTS model can weakly compute Fα and its
inverse F−1

α .

Encode initial ordinals in (S,6) & implement Hardy computations in S.
Hardy computations: (α+1,x) 7→ (α,x+1) and (λ,x) 7→ (λx,x).

Main technical issue: robustness

— One easily guarantee s6 t⇒ α(s)6 α(t) but this does not
guarantee Fα(s)(x)6 Fα(t)(x) required for weak computation of Fα.

— We need s6 t⇒ α(s)v α(t), using an ad-hoc stronger relation.

23/24

PROVING Fα-HARDNESS

The four hardness results we just mentioned have all been proved
using the same techniques:

One shows how the WSTS model can weakly compute Fα and its
inverse F−1

α .

Encode initial ordinals in (S,6) & implement Hardy computations in S.
Hardy computations: (α+1,x) 7→ (α,x+1) and (λ,x) 7→ (λx,x).

Main technical issue: robustness

— One easily guarantee s6 t⇒ α(s)6 α(t) but this does not
guarantee Fα(s)(x)6 Fα(t)(x) required for weak computation of Fα.

— We need s6 t⇒ α(s)v α(t), using an ad-hoc stronger relation.

23/24

PROVING Fα-HARDNESS

The four hardness results we just mentioned have all been proved
using the same techniques:

One shows how the WSTS model can weakly compute Fα and its
inverse F−1

α .

Encode initial ordinals in (S,6) & implement Hardy computations in S.
Hardy computations: (α+1,x) 7→ (α,x+1) and (λ,x) 7→ (λx,x).

Main technical issue: robustness

— One easily guarantee s6 t⇒ α(s)6 α(t) but this does not
guarantee Fα(s)(x)6 Fα(t)(x) required for weak computation of Fα.

— We need s6 t⇒ α(s)v α(t), using an ad-hoc stronger relation.

23/24

CONCLUDING REMARKS

Complexity analysis of WSTS models is possible

WSTS models are powerful, i.e., very expressive

WSTS have applications outside verification

Join the fun! Technical details are lighter than it seems, see our
lecture notes “Algorithmic aspects of wqo theory”

24/24

CONCLUDING REMARKS

Complexity analysis of WSTS models is possible

WSTS models are powerful, i.e., very expressive

WSTS have applications outside verification

Join the fun! Technical details are lighter than it seems, see our
lecture notes “Algorithmic aspects of wqo theory”

THANK YOU FOR YOUR INTEREST

24/24

