- 1. Show that r.e. languages are closed under union and intersection. Are they closed under complementation?
- 2. Let L_1, L_2, \ldots, L_k be a collection of languages over alphabet Σ such that:
 - 1. For all $i \neq j$, $L_i \cap L_j = \emptyset$, no string is in two of the languages.
 - 2. $L_1 \cup L_2 \cup \cdots \cup L_k = \Sigma^*$, i.e., every string is in one of the languages.
 - 3. Each of the languages L_i , for i = 1, 2, ..., k is recursively enumerable.

Prove that each of languages is therefore recursive.

- 3. Classify the following languages to be either recursive, r.e. but not recursive, or non r.e.
 - (a) { $M \mid L(M)$ contains at least two strings }
 - (b) $\{ M \mid M \text{ halts on all inputs} \}$
 - (c) $\{ M \mid M \text{ fails to halt on at least one input} \}$
 - (d) The set of Turing Machine codes that accept all inputs that are palindromes (possibly along with some other inputs)
 - (e) The set of TM codes that when started with a blank tape would eventually write some nonblank symbol on its tape
 - (f) The set of TM codes that when started with a blank tape eventually write a 1 somewhere on the tape
 - (g) The set of TM codes that never make a move left
 - (h) { $M \# w \mid M$, started with input w never scans any tape cell more than once }
 - (i) { $M \mid L(M) = \mathbf{rev} L(M)$ }
- 4. Let C be a language. Prove that C is r.e. iff there exists a decidable language D such that

$$C = \{ x \mid \exists y \text{ s. t. } \langle x, y \rangle \in D \}$$

5. For $A, B \subseteq \Sigma^*$, define

$$A/B := \{ x \mid \exists y \in B \ xy \in A \}$$

$$A \leftarrow B := \{ x \mid \forall y \in B \ xy \in A \}$$

- (a) Show that if A is regular and B is any set whatsoever, then A/B and $A \leftarrow B$ are regular.
- (b) Show that even if we are given a finite automaton for A and a Turing machine for B, we cannot necessarily construct an automaton for A/B or $A \leftarrow B$ effectively (in other words, there is no algorithm that can construct these automata).