1. Show that r.e. languages are closed under union and intersection. Are they closed under complementation?
2. Let $L_{1}, L_{2}, \ldots, L_{k}$ be a collection of languages over alphabet $\Sigma$ such that:
3. For all $i \neq j, L_{i} \cap L_{j}=\emptyset$, no string is in two of the languages.
4. $L_{1} \cup L_{2} \cup \cdots \cup L_{k}=\Sigma^{*}$, i.e., every string is in one of the languages.
5. Each of the languages $L_{i}$, for $i=1,2, \ldots, k$ is recursively enumerable.

Prove that each of languages is therefore recursive.
3. Classify the following languages to be either recursive, r.e. but not recursive, or non r.e.
(a) $\{M \mid L(M)$ contains at least two strings $\}$
(b) $\{M \mid \mathrm{M}$ halts on all inputs $\}$
(c) $\{M \mid \mathrm{M}$ fails to halt on at least one input $\}$
(d) The set of Turing Machine codes that accept all inputs that are palindromes (possibly along with some other inputs)
(e) The set of TM codes that when started with a blank tape would eventually write some nonblank symbol on its tape
(f) The set of TM codes that when started with a blank tape eventually write a 1 somewhere on the tape
(g) The set of TM codes that never make a move left
(h) $\{M \# w \mid M$, started with input $w$ never scans any tape cell more than once $\}$
(i) $\{M \mid L(M)=\operatorname{rev} L(M)\}$
4. Let $C$ be a language. Prove that $C$ is r.e. iff there exists a decidable language $D$ such that

$$
C=\{x \mid \exists y \text { s. t. }\langle x, y\rangle \in D\}
$$

5. For $A, B \subseteq \Sigma^{*}$, define

$$
\begin{aligned}
A / B & :=\{x \mid \exists y \in B x y \in A\} \\
A \leftarrow B & :=\{x \mid \forall y \in B x y \in A\}
\end{aligned}
$$

(a) Show that if $A$ is regular and $B$ is any set whatsoever, then $A / B$ and $A \leftarrow B$ are regular.
(b) Show that even if we are given a finite automaton for $A$ and a Turing machine for $B$, we cannot necessarily construct an automaton for $A / B$ or $A \leftarrow B$ effectively (in other words, there is no algorithm that can construct these automata).

