- 1. Give regular expressions for the following languages over $\Sigma = \{0, 1\}$:
 - (a) $\{ w \mid w \text{ begins with a } 0 \text{ and ends with a } 1 \}$
 - (b) $\{ w \mid w \text{ contains at least three 1s} \}$
 - (c) { $w \mid w$ has length at most 5}
- 2. Convert the following automata to regular expressions:

- 3. Using pumping lemma, show that the following languages are not regular:
 - (a) $\{ 0^{2^n} \mid n \ge 1 \}$
 - (b) { $ww \mid w \in \{0,1\}^*$ }
 - (c) { $0^{n!} \mid n \ge 1$ }
- 4. Let $h : \Sigma^* \mapsto \Gamma^*$ be a homomorphism. Let $A \subseteq \Sigma^*$ be a language. We know that if A is regular, then h(A) is regular. Construct an example of a language $A' \subseteq \Sigma^*$ such that h(A') is regular, but A' is not.
- 5. Using closure properties of regular languages, show that the following languages are non-regular.
 - (a) $\{0^n 1^m \mid m \ge n \ge 0\}$
 - (b) $\{0^i 1^j \mid i \neq j\}$
 - (c) $\{0^n 1^n 2^n \mid n \ge 1\}$
- 6. Consider the language $\{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k \}$. Does it satisfy the three conditions of the pumping lemma? Is this language regular?
- 7. The Hamming distance H(x, y) between two bit strings x and y is the number of places at which they differ, for example H(110, 011) = 2. If $|x| \neq |y|$, then their Hamming distance is infinite. If x is a string and A is a language, the Hamming distance between x and A is the distance from x to the closest string in A:

$$H(x,A) := \min_{y \in A} H(x,y)$$

For a language $A \subseteq \{0,1\}^*$ and a $k \ge 0$, define the set of strings of Hamming distance at most k from A:

$$N_k(A) := \{x \mid H(x, A) \le A\}$$

Prove that if A is regular, so is $N_k(A)$.