1. Consider the following NFA.

(a) Give a string beginning with a that is not accepted.
(b) Contruct an equivalent DFA. Omit inaccessible states.
2. Give a k-state NFA or ϵ-NFA for the set of strings w over $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ such that at least one letter of Σ does not occur in w.
3. Give an NFA or an ϵ-NFA for the set of strings over $\{0,1\}$ such that at least one of the last seven positions is a 1.
4. Show that every ϵ-NFA can be converted to an ϵ-NFA with a single accepting state that accepts the same language.
5. Show that if an NFA with k states accepts any string at all, then it accepts a string of length $k-1$ or less.
6. For a string $w=w_{1} w_{2} \ldots w_{k}$, the reverse of w denoted as $w^{\mathcal{R}}$ is the string $w_{k} w_{k-1} \ldots w_{2} w_{1}$ obtained by writing w from the back. For a language A let $\operatorname{rev}(A)$ be $\left\{w^{\mathcal{R}} \mid w \in A\right\}$. Show that if A is regular, then $\operatorname{rev}(A)$ is regular.
7. For any set of strings A, define the set:

$$
\text { FirstHalves }(A)=\{x|\exists y| x|=|y| \text { and } x y \in A\}
$$

Prove that if A is regular, so is FirstHalves (A).
8. For languages A and B, let the perfect shuffle of A and B be the language:
$\left\{w \mid w=a_{1} b_{1} \ldots a_{k} b_{k}\right.$, where the string $a_{1} \ldots a_{k} \in A$ and the string $b_{1} \ldots b_{k} \in B$ and each $\left.a_{i}, b_{i} \in \Sigma\right\}$
Show that the class of regular languages is closed under perfect shuffle.
9. For languages A and B, let the shuffle of A and B be the language:
$\left\{w \mid w=a_{1} b_{1} \ldots a_{k} b_{k}\right.$, where the string $a_{1} \ldots a_{k} \in A$ and the string $b_{1} \ldots b_{k} \in B$ and each $\left.a_{i}, b_{i} \in \Sigma^{*}\right\}$
Show that the class of regular languages is closed under shuffle.

