Theory of computation

B. Srivathsan

Chennai Mathematical Institute
http://www.cmi.ac.in/~sri/Courses/TOC2013

Why do this course?

Credits

Contents of this talk are picked from / inspired by:

- Wikipedia
- Sipser: Introduction to the theory of computation
- Kleene: Introduction to metamathematics
- Emerson: The beginning of model-checking: A personal perspective
- Scott Aaronson's course at MIT: Great ideas in theoretical CS

1900-1940

" Those who don't shave themselves are shaved by the barber "
" Those who don't shave themselves are shaved by the barber "

Who will shave the barber?

" Those who don't shave themselves are shaved by the barber "

Who will shave the barber ?

Russell's paradox (1901) questioned Cantor's set theory

Bertrand Russell (1872-1970)

Foundational crisis of mathematics

New schools of thought emerged in early $20^{\text {th }}$ century

Intuitionist: Browwer

Formalist: Russell, Whitehead, Hilbert

Hilbert's programme

David Hilbert (1862-1943)

Goal: convert Mathematics to mechanical manipulation of symbols

$$
\forall: \text { for all } \quad \exists \text { : there exists } \quad \wedge \text { : and }
$$

- There are infinitely many primes

$$
\forall q \exists p \forall x, y[p>q \wedge(x, y>1 \rightarrow x y \neq p)]
$$

- Fermat's last theorem

$$
\forall a, b, c, n\left[(a, b, c>0 \wedge n>2) \rightarrow a^{n}+b^{n} \neq c^{n}\right]
$$

- Twin prime conjecture

$$
\forall q \exists p \forall x, y[p>q \wedge(x, y>1 \rightarrow(x y \neq p \wedge x y \neq p+2))]
$$

$$
\forall \text { :for all } \quad \exists \text { : there exists } \quad \wedge \text { : and }
$$

- There are infinitely many primes

$$
\forall q \exists p \forall x, y[p>q \wedge(x, y>1 \rightarrow x y \neq p)]
$$

- Fermat's last theorem

$$
\forall a, b, c, n\left[(a, b, c>0 \wedge n>2) \rightarrow a^{n}+b^{n} \neq c^{n}\right]
$$

- Twin prime conjecture

$$
\forall q \exists p \forall x, y[p>q \wedge(x, y>1 \rightarrow(x y \neq p \wedge x y \neq p+2))]
$$

Hilbert's Entscheidungsproblem (1928)

Is there an "algorithm" that can take such a mathematical statement as input and say if it is true or false?

λ-calculus

Alonzo Church (1903-1995)

Turing machines

Alan Turing (1912-1954)

Answer to Entscheidungsproblem is No (1935-1936)

Intuitively, an algorithm meant
"a process that determines the solution in a finite number of operations"

Intuitively, an algorithm meant
"a process that determines the solution in a finite number of operations"

Intuitive notion not adequate to show that an algorithm does not exist for a problem!

Church-Turing thesis

Intuitive notion of algorithms

Turing machine algorithms

Church-Turing thesis

Intuitive notion of algorithms

$$
\equiv
$$

Turing machine algorithms

A prototype for a computing machine!

Church-Turing thesis

Intuitive notion of algorithms

$$
\equiv
$$

Turing machine algorithms

A prototype for a computing machine!

Advent of digital computers in the 40's

1900-1940
 Precise notion of algorithm

1940-1975

How "efficient" is an algorithm?

What is the "optimal" way of solving a problem?

Can we do better than just "brute-force"?

Computational complexity

Juris Hartmanis (Born: 1928)

Richard Stearns (Born: 1936)

Classification of algorithms based on time and space (1965)

NP-completeness (1971-1973)

Stephen Cook (Born: 1939)

Leonid Levin (Born: 1948)

Richard Karp (Born: 1935)

Identified an important class of intrinsically difficult problems
An easy solution to one would give an easy solution to the other!

Some examples...

- Easy problems: sorting, finding shortest path in a graph
- Hard problems: scheduling classes for university

Computationally hard problems very important for cryptographers!

1900-1940
 Precise notion of algorithm

1940-1975
 Hardness of problems

1975 - present

Computer programs (esp. large ones) are prone to ERRORS

Computer programs (esp. large ones) are prone to ERRORS

Is there a way to
specify formally what a program is intended to do, and
verify automatically if the program satisfies the specification

Temporal logic

Amir Pnueli (1941-2009)

Introduced a formalism to specify intended behaviours of programs (1977)

Model-checking

Edmund Clarke (Born: 1945)

Allen Emerson (Born: 1954)

Joseph Sifakis (Born: 1946)

Automatically verify a program against its specification (1981)

1900-1940
 Precise notion of algorithm

$$
\begin{gathered}
1940-1975 \\
\text { Hardness of problems } \\
1975 \text { - present } \\
\text { Correctness of programs }
\end{gathered}
$$

1900-1940

Precise notion of algorithm (Theory of computation)
1940-1975

Hardness of problems (Computational complexity theory)

$$
1975 \text { - present }
$$

Correctness of programs (Formal verification)
1900-1940

Precise notion of algorithm (Theory of computation)
1940-1975

Hardness of problems (Computational complexity theory)

$$
1975 \text { - present }
$$

Correctness of programs (Formal verification)

This course: Theory of computation + bit of Computational complexity

Problems \rightarrow languages

Decision problems

Questions for which the answer is either Yes or No

- Is the sum of 5 and 8 equal to 12 ?
- Is 19 a prime number?
- Is the graph G_{1} connected?

Figure: G_{1}

Is the sum of 5 and 8 equal to 12 ?

Is the sum of 5 and 8 equal to 12 ?

$$
\begin{aligned}
L_{\text {add }} & =\{(a, b, c) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid a+b=c\} \\
& \{(1,3,4),(5,9,14),(0,2,2), \ldots\}
\end{aligned}
$$

Is the sum of 5 and 8 equal to 12 ?

$$
\begin{gathered}
L_{\text {add }}=\{(a, b, c) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid a+b=c\} \\
\{(1,3,4),(5,9,14),(0,2,2), \ldots\} \\
\text { Is }(5,8,12) \in L_{\text {add }} ?
\end{gathered}
$$

Is the sum of 5 and 8 equal to 12 ?

$$
\begin{gathered}
L_{\text {add }}=\{(a, b, c) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid a+b=c\} \\
\{(1,3,4),(5,9,14),(0,2,2), \ldots\} \\
\text { Is }(5,8,12) \in L_{\text {add }} ?
\end{gathered}
$$

Is 19 a prime number ?

$$
\begin{gathered}
L_{\text {prime }}=\{x \in \mathbb{N} \mid x \text { is prime }\} \\
\{1,2,3,5,7,11, \ldots\} \\
\text { Is } 19 \in L_{\text {prime }} ?
\end{gathered}
$$

Encoding graphs

\langle graph $\rangle:=$ no. of vertices $\$$ edge relation

$$
3 \$(0,1)(1,2)(0,2)
$$

$4 \$(0,1)(1,2)(0,2)$

Is graph G_{1} connected?

Is graph G_{1} connected?

$$
L_{\text {conn }}=\{\langle G\rangle \mid G \text { is connected }\}
$$

$$
\text { Is }\left\langle G_{1}\right\rangle \in L_{\text {conn }} \text { ? }
$$

Is graph G_{1} connected?

$$
L_{\text {conn }}=\{\langle G\rangle \mid G \text { is connected }\}
$$

$$
\begin{gathered}
\text { Is }\left\langle G_{1}\right\rangle \in L_{\text {conn }} \text { ? } \\
\equiv \\
\text { Is } 3 \$(0,1)(1,2)(0,2) \in L_{\text {conn }} \text { ? }
\end{gathered}
$$

Decision problem P

Language L

Decision problem P

Language L

Decision problem P

Language L

Decision problem P

We answer " ?? " in this course

Decision problem P
Language L

We answer " ?? " in this course

Main challenge: How to get a finite representation for languages?

