Theory of computation

B. Srivathsan

Chennai Mathematical Institute

http://www.cmi.ac.in/~sri/Courses/TOC2013

Why do this course?

Credits

Contents of this talk are picked from / inspired by:

- Wikipedia
- Sipser: Introduction to the theory of computation
- Kleene: Introduction to metamathematics
- Emerson: The beginning of model-checking: A personal perspective
- Scott Aaronson's course at MIT: Great ideas in theoretical CS

1900 - 1940

(Illustrations from Logicomix. Published by Bloomsbury)

" Those who don't shave themselves are shaved by the barber "

" Those who don't shave themselves are shaved by the barber "

Who will shave the barber ?

" Those who don't shave themselves are shaved by the barber "

Who will shave the barber?

Bertrand Russell (1872 - 1970)

Russell's paradox (1901)

questioned Cantor's set theory

Foundational crisis of mathematics

New schools of thought emerged in early 20th century

Intuitionist: Brouwer

Formalist: Russell, Whitehead, Hilbert

Hilbert's programme

David Hilbert (1862 - 1943)

Goal: convert Mathematics to mechanical manipulation of symbols

 $\forall: \texttt{for all} \quad \exists: \texttt{there exists} \quad \land: \texttt{and}$

There are infinitely many primes

$$\forall q \exists p \,\forall x, y \ [\ p > q \land (x, y > 1 \rightarrow xy \neq p) \]$$

Fermat's last theorem

$$\forall a, b, c, n \ [\ (a, b, c > 0 \land n > 2) \rightarrow a^n + b^n \neq c^n \]$$

Twin prime conjecture

 $\forall q \exists p \forall x, y \ [\ p > q \land (x, y > 1 \rightarrow (xy \neq p \land xy \neq p + 2)) \]$

 $\forall: \texttt{for all} \quad \exists: \texttt{there exists} \quad \land: \texttt{and}$

There are infinitely many primes

$$\forall q \exists p \ \forall x, y \ [\ p > q \land (x, y > 1 \rightarrow xy \neq p) \]$$

Fermat's last theorem

$$\forall a, b, c, n \ [\ (a, b, c > 0 \land n > 2) \rightarrow a^n + b^n \neq c^n \]$$

Twin prime conjecture

$$\forall q \exists p \forall x, y \ [\ p > q \land (x, y > 1 \rightarrow (xy \neq p \land xy \neq p + 2)) \]$$

Hilbert's Entscheidungsproblem (1928)

Is there an "algorithm" that can take such a mathematical statement as input and say if it is true or false?

λ -calculus

Alonzo Church (1903 - 1995)

Turing machines

Alan Turing (1912 - 1954)

Answer to Entscheidungsproblem is No (1935 - 1936)

Intuitively, an algorithm meant

"a process that determines the solution in a finite number of operations"

Intuitively, an algorithm meant

"a process that determines the solution in a finite number of operations"

Intuitive notion **not adequate** to show that an algorithm **does not exist** for a problem!

Church-Turing thesis

Intuitive notion of algorithms

 \equiv Turing machine algorithms

Church-Turing thesis

Intuitive notion of algorithms

Turing machine algorithms

A prototype for a computing machine!

Church-Turing thesis

Intuitive notion of algorithms

Turing machine algorithms

A prototype for a computing machine!

Advent of digital computers in the 40's

1900 - 1940 Precise notion of algorithm

1940 - 1975

How "efficient" is an algorithm?

What is the "optimal" way of solving a problem?

Can we do better than just "brute-force"?

Computational complexity

Juris Hartmanis (Born: 1928)

Richard Stearns (Born: 1936)

Classification of algorithms based on time and space (1965)

NP-completeness (1971 - 1973)

Stephen Cook (Born: 1939)

Leonid Levin (Born: 1948)

Richard Karp (Born: 1935)

Identified an important class of intrinsically difficult problems

An easy solution to one would give an easy solution to the other!

Some examples...

- Easy problems: sorting, finding shortest path in a graph
- Hard problems: scheduling classes for university

Computationally hard problems very important for cryptographers!

1900 - 1940 Precise notion of algorithm

1940 - 1975 Hardness of problems

1975 - present

Computer programs (esp. large ones)

are prone to **ERRORS**

Computer programs (esp. large ones)

are prone to **ERRORS**

Is there a way to

specify formally what a program is intended to do, andverify automatically if the program satisfies the specification

Temporal logic

Amir Pnueli (1941 - 2009)

Introduced a formalism to specify intended behaviours of programs (1977)

Model-checking

Edmund Clarke (Born: 1945)

Allen Emerson (Born: 1954)

Joseph Sifakis (Born: 1946)

Automatically verify a program against its specification (1981)

1900 - 1940 Precise notion of algorithm 1940 - 1975 Hardness of problems 1975 - present Correctness of programs

1900 - 1940

Precise notion of algorithm (Theory of computation)

1940 - 1975

Hardness of problems (Computational complexity theory)

1975 - present

Correctness of programs (Formal verification)

1900 - 1940

Precise notion of algorithm (Theory of computation)

1940 - 1975

Hardness of problems (Computational complexity theory)

1975 - present

Correctness of programs (Formal verification)

This course: Theory of computation + bit of Computational complexity

$Problems \rightarrow languages$

Decision problems

Questions for which the answer is either Yes or No

- ▶ Is the sum of 5 and 8 equal to 12?
- Is 19 a prime number?
- Is the graph G_1 connected?

Figure: G₁

Is the sum of 5 and 8 equal to 12?

Is the sum of 5 and 8 equal to 12 ?

$$L_{add} = \{ (a, b, c) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid a + b = c \} \\ \{ (1, 3, 4), (5, 9, 14), (0, 2, 2), \dots \}$$

Is the sum of 5 and 8 equal to 12?

$$L_{add} = \{ (a, b, c) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid a + b = c \} \\ \{ (1, 3, 4), (5, 9, 14), (0, 2, 2), \dots \}$$

Is $(5, 8, 12) \in L_{add}$?

Is the sum of 5 and 8 equal to 12?

$$L_{add} = \{ (a, b, c) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid a + b = c \} \\ \{ (1, 3, 4), (5, 9, 14), (0, 2, 2), \dots \}$$

Is $(5, 8, 12) \in L_{add}$?

Is 19 a prime number ?

 $L_{prime} = \{ x \in \mathbb{N} \mid x \text{ is prime } \}$ $\{ 1, 2, 3, 5, 7, 11, \ldots \}$

Is $19 \in L_{prime}$?

Encoding graphs

 $\langle \text{graph} \rangle := \text{no. of vertices }$ edge relation

Is graph G_1 connected?

Is graph G_1 connected?

$$L_{conn} = \{ \langle G \rangle \mid G \text{ is connected } \}$$

Is $\langle G_1 \rangle \in L_{conn}$?

Is graph G_1 connected?

 $L_{conn} = \{ \langle G \rangle \mid G \text{ is connected } \}$

Is $\langle G_1 \rangle \in L_{conn}$?

 \equiv

Is 3 $(0,1)(1,2)(0,2) \in L_{conn}$?

We answer "?? " in this course

We answer "?? " in this course

Main challenge: How to get a finite representation for languages?