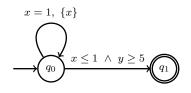
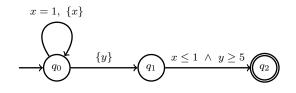
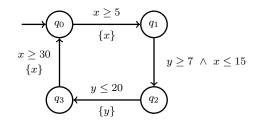

April 10, 2014

is Closure_M for the following zones? a) $y - x \le -2$ b) $x = y \land x > 3$ c) $y - x = 1 \land x \ge 2$


Tutorial 6

Let M_1 be a function such that $M_1(x) = 4$ and $M_1(y) = 2$. What is Closure_{M_1} for the above zones?


- 2. Given two bound functions M_1 and M_2 , we say that $M_1 \leq M_2$ if for all clocks x, $M_1(x) \leq M_2(x)$. Is it true that for any zone Z, $\operatorname{Closure}_{M_2}(Z) \subseteq \operatorname{Closure}_{M_1}(Z)$?
- 3. Consider the following familiar automaton and two bound functions M_1 and M_2 . Set $M_1(y) = M_2(y) = 1$, $M_1(x) = 4$ and $M_2(x) = 2$. Execute the reachability algorithm (Algorithm 1.3 of notes) using Closure_{M_1} and Closure_{M_2} . Which of the bound functions gives a smaller zone graph?


4. Consider the following automaton. Suppose we set $M_1(x) = 1$ and $M_1(y) = 2$ and execute the reachability algorithm using Closure_{M_1} inclusion. What goes wrong?

5. The following automaton is a slight modification of the above automaton. Suppose we set $M_1(x) = 1$ and $M_1(y) = 2$ and execute the reachability algorithm using Closure_{M_1} inclusion for this automaton. Does something go wrong?

6. What are the bounds assigned to the following automaton by the static analysis algorithm?

