- 1. Give an example of a timed automaton whose underlying graph is connected, but no accepting state is reachable.
- 2. Can you give an example of a timed automaton whose underlying graph is connected, but no accepting state is reachable, and whose only guards are upper bound guards: that is guards of the form x < c or $x \leq c$ where $c \in \mathbb{N}$? Note that there could be multiple upper bound guards with different constants.
- 3. The same question as above but now assume that the automaton has only lower bound guards: that is, guards of the form $x \ge c$ or x > c.
- 4. Let Z be the zone defined by $-3 \le y x \le 4$. Can you construct an automaton whose zone graph contains a node (q, Z)?
- 5. Provide an example of an automaton with a single state, $n \ge 2$ clocks and with $M_x = 1$ for each clock x, such that the zone graph computed by Algorithm 1.3 in the notes gives at least 2^n nodes.
- 6. Let \mathcal{A} be an automaton with a single clock. Are simulation relations necessary? Is there an example of such an automaton for which Algorithm 1.1 does not terminate?