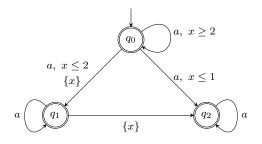
1. The purpose of this question is to understand the algorithm by Ouaknine and Worrell for checking the universality of one-clock timed automata. Let us call it the OW-algorithm. The definitions and notations used in this question are identical to those in Lecture 5.

Consider the following automaton over the singleton alphabet $\{a\}$:



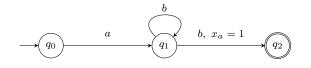
The set of regions $REG = \{r_0, r_{01}, r_1, r_{12}, r_2, r_{2\infty}\}$

- a) What is the set Λ ? Recall that nodes in the graph built by the OW-algorithm would be labeled by words in Λ^* .
- b) Consider the word $W = \{(q_1, r_0)\}\{(q_2, r_{01})\}$. List two different configurations C_1 and C_2 of the automaton that map to this word by the encoding H defined in Lecture 5, i.e., $H(C_1) = H(C_2) = W$.
- c) For the C_1 and C_2 that you have chosen, prove that for $\delta_1 = 1.3$, there exists a $\delta_2 \in \mathbb{R}_{>0}$ such that

if
$$C_1 \xrightarrow{\delta_1, a} C'_1$$
 then $C_2 \xrightarrow{\delta_2, a} C'_2$

such that $H(C'_1) = H(C'_2)$. In the above, the value 1.3 did not have a special role. Prove that for every value of δ_1 there exists a δ_2 such that the above is true.

- d) Run the OW-algorithm on the above automaton and check if it accepts all timed words.
- 2. Determinize the following event recording automaton over the alphabet $\{a, b\}$:



3. Determinize the following Integer Reset timed automaton:

$$b, y = 1, \{y\}$$

$$\xrightarrow{q_0} a, x = 1$$

$$\xrightarrow{q_1} b$$

$$\xrightarrow{q_2} a, x \ge 2$$

$$\xrightarrow{q_3}$$