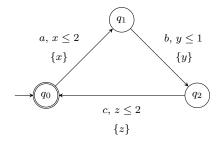
- 1. Give a timed automaton over $\Sigma = \{a, b\}$ that accepts all timed words.
- 2. Let $\mathcal{A} = (\{q\}, \{a, b\}, \{x\}, T, \{q\}, \{q\})$ be a timed automaton with a single state q and a single clock x. Note that q is also an accepting state. Let T be the set of transitions. Give an instance of T that makes \mathcal{A} reject at least one timed word.
- 3. What is the timed word accepted by the following accepting run of some timed automaton with two clocks x and y?

4. Let \mathcal{B} be the following timed automaton:



Consider the timed word s = (abcabc, 0.5, 1, 1.5, 1.8, 1.9, 3).

- a) Does \mathcal{B} accept s? If so, write down the accepting run of \mathcal{B} on s.
- b) For a timed word (w, τ) we define the *time span* of (w, τ) to be the time at which the last letter occurs, i.e., if |w| = n, then time span of (w, τ) is τ_n . For every $k \in \mathbb{N}$, give a timed word in $\mathcal{L}(\mathcal{B})$ that has length greater than k and whose time span is lesser than 1.
- 5. Consider the following algorithm that checks for the emptiness of a timed automaton:

```
Input: A timed automaton \mathcal{A} = (Q, \Sigma, X, T, Q_0, F)
       Output: Is \mathcal{L}(\mathcal{A}) empty?
2
 3
4
       Visited = \{\}
\mathbf{5}
       Waiting = Q_0
6
       while Waiting \neq \emptyset
 7
               pick q \in Waiting
 8
               if q \in F
9
10
                     print \mathcal{L}(\mathcal{A}) is not empty
                     \mathbf{exit}
11
12
               else
                     for each (q,a,g,R,q')\in T
13
                            if q' \notin \text{Visited}
14
                                  add q' to Waiting
15
                     end for
16
                     add q to Visited
17
      end while
18
19
20
       print \mathcal{L}(\mathcal{A}) is empty
```

- a) Give an example of a timed automaton for which the above algorithm works correctly.
- b) Provide an example for which the above algorithm is wrong.
- 6. For the purpose of this question, we need a few definitions.

Let X be a set of clocks. A *clock valuation* is a function $v : X \mapsto \mathbb{R}_{\geq 0}$ that associates a non-negative real value to each clock.

For $\delta \in \mathbb{R}_{\geq 0}$, we write $v + \delta$ for the clock valuation that associates $v(x) + \delta$ to each clock $x \in X$. Essentially, $v + \delta$ denotes the valuation that is reached if δ time elapses from v.

For a set of clocks $S \subseteq X$, we define [S := 0]v:

$$[S := 0]v = \begin{cases} 0 & \text{if } x \in S \\ v(x) & \text{if } x \notin S \end{cases}$$

Here, [S := 0]v denotes the valuation that is reached from v a transition is taken that resets clocks in S. A configuration of a timed automaton is given by a pair (q, v) where q is a state of \mathcal{A} and v is a clock valuation that gives the value of each clock. Consider the following transition θ :

$$\theta: \ (q,v) \xrightarrow{a, \ g} (q',v')$$

where g is the guard of the transition and R is the reset set.

We say that a transition θ is *enabled* from a configuration (q, v) if there exists a non-negative duration $\delta \in \mathbb{R}_{\geq 0}$ such that $v + \delta$ satisfies the guard g. The transition could then be decomposed as a time followed by an action transition:

$$(q,v) \xrightarrow{\delta} (q,v+\delta) \xrightarrow{a, g} (q',v')$$

where v' = [R := 0]v.

We now come to our question. Let $X = \{x, y, z\}$. Let θ be an arbitrary transition in the above form such that the maximum constant that can be used in the guard g is 10.

- a) Show that if θ is enabled from $(q, \langle 21, 15.3, 43.3 \rangle)$, then θ would be enabled from $(q, \langle 100, 40, 22.44 \rangle)$ too.
- b) Given an example of δ , g and R so that θ is enabled from (q, v_1) but not from (q, v_2) when:
 - i) $v_1 = \langle 5.5, 6, 7.8 \rangle$ and $v_2 = \langle 6.6, 6.7.9 \rangle$
 - ii) $v_1 = \langle 5.5, 6, 7.8 \rangle$ and $v_2 = \langle 5.5, 6.2, 7.8 \rangle$
 - iii) $v_1 = \langle 5.5, 6, 7.8 \rangle$ and $v_2 = \langle 5.8, 6.7.5 \rangle$