Automata for Real-Time Systems

B. Srivathsan

Chennai Mathematical Institute

Let $T\Sigma^*$ denote the set of all timed words

Universality: Given A, is $\mathcal{L}(A) = T\Sigma^*$?

Inclusion: Given A, B, is $\mathcal{L}(B) \subseteq \mathcal{L}(A)$?

Universality and inclusion are **undecidable** when A has **two clocks** or more

A theory of timed automata

Alur and Dill. TCS'94

Lecture 5:

A decidable case of the inclusion problem

Universality: Given A, is $\mathcal{L}(A) = T\Sigma^*$?

Inclusion: Given A, B, is $\mathcal{L}(B) \subseteq \mathcal{L}(A)$?

One-clock restriction

Universality and inclusion are decidable when A has at most one clock

On the language inclusion problem for timed automata: Closing a decidability gap

Ouaknine and Worrell. LICS'05

Universality: Given A, is $\mathcal{L}(A) = T\Sigma^*$?

Inclusion: Given A, B, is $\mathcal{L}(B) \subseteq \mathcal{L}(A)$?

One-clock restriction

Universality and inclusion are **decidable** when A has at most **one clock**

On the language inclusion problem for timed automata: Closing a decidability gap

Ouaknine and Worrell. LICS'05

In this lecture: universality for one clock TA

Step 0:

Well-quasi orders and Higman's Lemma

Quasi-order

Given a set Q, a quasi-order is a reflexive and transitive relation:

$$\sqsubseteq \subseteq \mathcal{Q} \times \mathcal{Q}$$

- **▶** (N, ≤)
- **▶** (ℤ, ≤)

Let
$$\Lambda = \{A, B, \dots, Z\}, \quad \Lambda^* = \{\text{set of words}\}\$$

- ▶ $(\Lambda^*, \text{ lexicographic order } \sqsubseteq_L)$: $AAAB \sqsubseteq_L AAB \sqsubseteq_L AB$
- ▶ $(\Lambda^*, \text{ prefix order } \subseteq_P)$: $AB \subseteq_P ABA \subseteq_P ABAA$
- ▶ $(\Lambda^*, \text{ subword order} \preccurlyeq) HIGMAN \preccurlyeq HIGHMOUNTAIN [OW'05]$

Well-quasi-order

An infinite sequence $\langle q_1, q_2, \dots \rangle$ in $(\mathcal{Q}, \sqsubseteq)$ is saturating if $\exists i < j : q_i \sqsubseteq q_j$

A quasi-order \sqsubseteq is a well-quasi-order (wqo) if **every** infinite sequence is saturating

- **▶** (N, ≤)
- ightharpoonup (\mathbb{Z},\leq)
- ▶ (Λ^* , lexicographic order \sqsubseteq_L):
- ▶ $(\Lambda^*, \text{ prefix order } \subseteq_P)$:
- ▶ $(\Lambda^*, \text{ subword order} \preccurlyeq)$

Well-quasi-order

An infinite sequence $\langle q_1, q_2, \dots \rangle$ in $(\mathcal{Q}, \sqsubseteq)$ is saturating if $\exists i < j : q_i \sqsubseteq q_j$

A quasi-order \sqsubseteq is a well-quasi-order (wqo) if **every** infinite sequence is saturating

- **▶** (N, ≤) √
- ▶ $(\mathbb{Z}, \leq) \times -1 \geq -2 \geq -3, ...$
- ▶ $(\Lambda^*, \text{ lexicographic order } \sqsubseteq_L)$: $\times B \supseteq_L AB \supseteq_L AAB ...$
- (Λ^* , prefix order \subseteq_P): \times B, AB, AAB, ...
- ▶ $(\Lambda^*, \text{ subword order} \preccurlyeq)$

Well-quasi-order

An infinite sequence $\langle q_1, q_2, \dots \rangle$ in $(\mathcal{Q}, \sqsubseteq)$ is saturating if $\exists i < j : q_i \sqsubseteq q_j$

A quasi-order \sqsubseteq is a well-quasi-order (wqo) if **every** infinite sequence is saturating

- **▶** (N, ≤) √
- ▶ $(\mathbb{Z}, \leq) \times -1 \geq -2 \geq -3, ...$
- ▶ $(\Lambda^*, \text{ lexicographic order } \sqsubseteq_L)$: $\times B \supseteq_L AB \supseteq_L AAB ...$
- ▶ $(\Lambda^*, \text{ prefix order } \subseteq_P)$: \times B, AB, AAB, . . .
- ▶ $(\Lambda^*, \text{ subword order} \preccurlyeq)$?

Higman's lemma

Let \sqsubseteq be a quasi-order on Λ

Define the induced monotone domination order \leq on Λ^* as follows:

$$a_1 \dots a_m \ \, \preccurlyeq \ \, b_1 \dots b_n$$
 if there exists a **strictly increasing** function $f: \{1, \dots, m\} \mapsto \{1, \dots, n\}$ s.t $\forall \ \, 1 \leq i \leq m: \ \, a_i \sqsubseteq b_{f(i)}$

Higman's lemma

Let \sqsubseteq be a quasi-order on Λ

Define the induced monotone domination order \leq on Λ^* as follows:

$$a_1 \dots a_m \preccurlyeq b_1 \dots b_n$$
 if there exists a **strictly increasing** function
$$f: \{1, \dots, m\} \mapsto \{1, \dots, n\} \text{ s.t}$$

$$\forall \ 1 \leq i \leq m: \ a_i \sqsubseteq b_{f(i)}$$

Higman'52

If \sqsubseteq is a wqo on Λ , then the induced monotone domination order \preccurlyeq is a wqo on Λ^*

```
\Lambda := \{A, B, \dots, Z\} 

\sqsubseteq := x \sqsubseteq y \text{ if } x = y
```

$$\Lambda := \{A, B, \dots, Z\}
\sqsubseteq := x \sqsubseteq y \text{ if } x = y
\sqsubseteq \text{ is a wqo as } \Lambda \text{ is finite}$$

$$\Lambda := \{A, B, \dots, Z\}
\sqsubseteq := x \sqsubseteq y \text{ if } x = y$$

 \sqsubseteq is a wqo as \land is finite

Induced monotone domination order ≼ is the subword order

 $HIGMAN \leq HIGHMOUNTAIN$

$$\Lambda := \{A, B, \dots, Z\}$$

$$\Box := x \Box \gamma \text{ if } x = \gamma$$

 \sqsubseteq is a wqo as \land is finite

Induced monotone domination order ≼ is the subword order

HIGMAN ≼ HIGHMOUNTAIN

By Higman's lemma, ≼ is a wqo too

If we start writing an **infinite sequence** of words, we will **eventually** write down a **superword** of an earlier word in the sequence

Step 1:

A naive procedure for universality of one-clock TA

Terminology

Let $A = (Q, \Sigma, Q_0, \{x\}, T, F)$ be a timed automaton with one clock

- ▶ Location: $q_0, q_1, \dots \in Q$
- ▶ State: (q, u) where $u \in \mathbb{R}_{>0}$ gives value of the clock
- ► Configuration: finite set of states

Terminology

Let $A = (Q, \Sigma, Q_0, \{x\}, T, F)$ be a timed automaton with one clock

- ▶ Location: $q_0, q_1, \dots \in Q$
- ▶ State: (q, u) where $u \in \mathbb{R}_{>0}$ gives value of the clock
- ► Configuration: finite set of states $\{(q_1, 2.3), (q_0, 0)\}$

$$\{(q_0,0)\} \xrightarrow{0.2, a}$$

$$\{(q_0,0)\} \xrightarrow{0.2, a} \{(q_1,0.2)\}$$

$$\{(q_0,0)\} \xrightarrow{0.2, a} \{(q_1,0.2)\} \xrightarrow{2.1, b}$$

$$\{(q_0,0)\} \xrightarrow{0.2, a} \{(q_1,0.2)\} \xrightarrow{2.1, b} \{(q_1,2.3), (q_0,0)\} \dots$$

$$\{(q_0,0)\} \xrightarrow{0.2, a} \{(q_1,0.2)\} \xrightarrow{2.1, b} \{(q_1,2.3), (q_0,0)\} \dots$$

$$C_1 \xrightarrow{\delta, a} C_2 \text{ if}$$

$$C_2 = \{ (q_2, u_2) \mid \exists (q_1, u_1) \in C_1 \text{ s. t. } (q_1, u_1) \xrightarrow{\delta, a} (q_2, u_2) \}$$

Labeled transition system of configurations

Labeled transition system of configurations

Labeled transition system of configurations

Is a bad configuration reachable from some initial configuration?

Need to handle two dimensions of infinity!

abstraction by equivalence \sim

 $C_1 \sim C_2$ iff:

 C_1 goes to a **bad** config. \Leftrightarrow C_2 goes to a **bad** config.

finite domination order \leq

 $C_1 \leq C_2$ iff:

 C_2 goes to a **bad** config \Rightarrow C_1 goes to a **bad** config. too

finite domination order \leq

 $C_1 \leq C_2$ iff:

 C_2 goes to a **bad** config \Rightarrow C_1 goes to a **bad** config. too

No need to explore C_2 !

Step 2:

The equivalence

Credits: Examples in this part taken from one of Ouaknine's talks

Equivalent configurations: Examples

$$C_1 = \{(q_0, 0.5)\} \nsim C_2 = \{(q_0, 1.3)\}$$
 $C_1 = \{(q_0, 0.5)\} \nsim C_2 = \{(q_0, 1.3)\}$
 $C_2 = \{(q_0, 0.5)\} \sim C_2 = \{(q_0, 1.3)\}$

Equivalent configurations: Examples

 C_2 is universal, but C_1 rejects (a, 0)

 C_2 is universal, but C_1 rejects (a, 0.5)

Define
$$REG = \{r_0, r_0^1, r_1, \dots, r_K, r_K^{\infty}\}\$$
 $r_0 \quad r_0^1 \quad r_1 \quad r_1^2 \quad r_2 \quad \cdots \quad r_K \quad r_K^{\infty}$
 $0 \quad 1 \quad 2 \quad K$

$$C = \{(q_1, 0.0), (q_1, 0.3), (q_1, 1.2), (q_2, 1.0), (q_3, 0.8), (q_3, 1.3)\}$$

Define
$$REG = \{r_0, r_0^1, r_1, \dots, r_K, r_K^{\infty}\}$$
 $r_0 \quad r_0^1 \quad r_1 \quad r_1^2 \quad r_2 \quad \dots \quad r_K \quad r_K^{\infty}$
 $0 \quad 1 \quad 2 \quad K$

$$C = \{(q_1, 0.0), (q_1, 0.3), (q_1, 1.2), (q_2, 1.0), (q_3, 0.8), (q_3, 1.3)\}$$

$$\{(q_1, r_0, 0), (q_1, r_0^1, 0.3), (q_1, r_1^2, 0.2), (q_2, r_1, 0), (q_3, r_0^1, 0.8), (q_3, r_1^2, 0.3)\}$$

Define
$$REG = \{r_0, r_0^1, r_1, \dots, r_K, r_K^{\infty}\}$$
 $r_0 \quad r_0^1 \quad r_1 \quad r_1^2 \quad r_2 \quad \cdots \quad r_K \quad r_K^{\infty}$
 $0 \quad 1 \quad 2 \quad K$

$$C = \{(q_1, 0.0), (q_1, 0.3), (q_1, 1.2), (q_2, 1.0), (q_3, 0.8), (q_3, 1.3)\}$$

$$\{(q_1, r_0, 0), (q_1, r_0^1, 0.3), (q_1, r_1^2, 0.2), (q_2, r_1, 0), (q_3, r_0^1, 0.8), (q_3, r_1^2, 0.3)\}$$

$$\{(q_1, r_0, 0), (q_2, r_1, 0)\} \{(q_1, r_1^2, 0.2)\} \{(q_1, r_0^1, 0.3)(q_3, r_1^2, 0.3)\} \{(q_3, r_0^1, 0.8)\}$$

Define
$$REG = \{r_0, r_0^1, r_1, \dots, r_K, r_K^{\infty}\}$$
 $r_0 \quad r_0^1 \quad r_1 \quad r_1^2 \quad r_2 \quad \dots \quad r_K \quad r_K^{\infty}$
 $0 \quad 1 \quad 2 \quad K$

$$C = \{(q_1, 0.0), (q_1, 0.3), (q_1, 1.2), (q_2, 1.0), (q_3, 0.8), (q_3, 1.3)\}$$

$$\{(q_1, r_0, 0), (q_1, r_0^1, 0.3), (q_1, r_1^2, 0.2), (q_2, r_1, 0), (q_3, r_0^1, 0.8), (q_3, r_1^2, 0.3)\}$$

$$\{(q_1, r_0, 0), (q_2, r_1, 0)\} \{(q_1, r_1^2, 0.2)\} \{(q_1, r_0^1, 0.3)(q_3, r_1^2, 0.3)\} \{(q_3, r_0^1, 0.8)\}$$

$$H(C) = \{(q_1, r_0), (q_2, r_1)\} \{(q_1, r_1^2)\} \{(q_1, r_0^1)(q_3, r_1^2)\} \{(q_3, r_0^1)\}$$

$$REG := \{r_0, r_0^1, r_1, \dots, r_K, r_K^{\infty}\}$$

$$\Lambda := \mathcal{P}(Q \times REG)$$

We can give $H: C \mapsto \Lambda^*$ that remembers:

- ▶ **integral** part of the clock value (modulo *K*) in each state of *C*,
- order of fractional parts of the clock among different states in C

Equivalence

$$C_1 \sim C_2$$
 if $H(C_1) = H(C_2)$

Equivalence

$$C_1 \sim C_2$$
 if $H(C_1) = H(C_2)$

It can be shown that \sim is a **bisimulation**

 C_1 goes to a **bad** config. \Leftrightarrow C_2 goes to a **bad** config.

abstraction by equivalence \sim

 $C_1 \sim C_2$ iff:

 C_1 goes to a **bad** config. \Leftrightarrow C_2 goes to a **bad** config.

Step 3:

The domination order

 $finite \ domination \ order \preccurlyeq$

 $C_1 \leq C_2$ iff:

 C_2 goes to a **bad** config \Rightarrow C_1 goes to a **bad** config. too

$$\Lambda = \mathcal{P}(\ Q \times REG\)$$

$$\Lambda = \mathcal{P}(\ Q \times REG\)$$

Let \subseteq be the **inclusion** (quasi-)order on Λ

$$\Lambda = \mathcal{P}(\ Q \times REG\)$$

Let \subseteq be the **inclusion** (quasi-)order on Λ

Consider the induced monotone domination order \leq over Λ^*

$$\{(q_0, r_0)\} \ \{(q_1, r_0^1), (q_0, r_2^3)\}$$

$$\iff \{(q_0, r_0), (q_1, r_1)\} \ \{(q_2, r_2^3)\} \ \{(q_1, r_0^1), (q_0, r_2^3), (q_2, r_1^2)\}$$

$$\Lambda = \mathcal{P}(\ Q \times REG\)$$

Let \subseteq be the **inclusion** (quasi-)order on Λ

Consider the induced monotone domination order \leq over Λ^*

$$\{(q_0, r_0)\} \ \{(q_1, r_0^1), (q_0, r_2^3)\}$$

$$\{(q_0, r_0), (q_1, r_1)\}\ \{(q_2, r_2^3)\}\ \{(q_1, r_0^1), (q_0, r_2^3), (q_2, r_1^2)\}$$

Theorem: If $H(C_1) \preceq H(C_2)$, then $\exists C_2' \subseteq C_2$ s.t. $C_1 \sim C_2$

$$\Lambda = \mathcal{P}(\ Q \times REG\)$$

Let \subseteq be the **inclusion** (quasi-)order on Λ

Consider the induced monotone domination order \leq over Λ^*

$$\{(q_0, r_0)\} \ \{(q_1, r_0^1), (q_0, r_2^3)\}$$

$$\leq \{(q_0, r_0), (q_1, r_1)\} \ \{(q_2, r_2^3)\} \ \{(q_1, r_0^1), (q_0, r_2^3), (q_2, r_1^2)\}$$
Theorem: If $H(C_1) \leq H(C_2)$, then $\exists C_2' \subseteq C_2$ s.t. $C_1 \sim C_2$

 \subseteq is a wqo as Λ is finite. Therefore, \preccurlyeq is a wqo due to Higman's lemma

Final algorithm

- ▶ Start from $H(C_0)$, where C_0 is the initial configuration
- Successor computation is effective
- ► Termination guaranteed as domination order is wqo

A is universal iff the algorithm does not reach a bad node

One-clock

Universality is decidable for one-clock timed automata

One-clock

Universality is decidable for one-clock timed automata

For **two clocks**, we know universality is undecidable

One-clock

Universality is decidable for one-clock timed automata

For two clocks, we know universality is undecidable

Where does this algorithm go wrong when A has two clocks?

Two clocks

State: (q, u, v)

Configuration: $\{(q_1, u_1, v_1), (q_2, u_2, v_2), \dots, (q_n, u_n, v_n)\}$

At the **least**, the following should be remembered while abstracting:

- \triangleright relative ordering between fractional parts of x
- relative ordering between fractional parts of y

Current encoding can remember only one of them

Other encodings possible?

Consider some domination order ≼

 $C_1 \not\preccurlyeq C_2$ if for all $C'_2 \subseteq C_2$:

- either relative order of clock *x* does not match
- or relative order of clock y does not match

In the next slide: No wqo possible!

An infinite **non-saturating** sequence C_1, C_2, C_3, \ldots

An infinite **non-saturating** sequence C_1, C_2, C_3, \ldots

An infinite **non-saturating** sequence C_1, C_2, C_3, \ldots

Conclusion

- ► An algorithm for **universality** when *A* has one clock
- ▶ Can be **extended** for $\mathcal{L}(B) \subseteq \mathcal{L}(A)$ when *A* has one-clock