Automata for Real-Time Systems

B. Srivathsan

Chennai Mathematical Institute

Let 7X* denote the set of all timed words

Universality: GivenA,is L(A) =TX*?
Inclusion: Given A, B,is L(B) C L(A)?

Universality and inclusion are undecidable when A has two
clocks or more

A theory of timed automata

Alur and Dill. 7CS*94

Lecture 5:

A decidable case of the inclusion
problem

Universality: Given A,is L(A) = TX*?
Inclusion: Given A, B,is L(B) C L(A)?

Universality and inclusion are decidable when A has at most
one clock

On the language inclusion problem for timed automata: Closing a decidability gap

Ouaknine and Worrell. LICS05

4/33

Universality: Given A,is L(A) = Tx*?
Inclusion: Given A, B,is L(B) C L(A)?

Universality and inclusion are decidable when A has at most
one clock

On the language inclusion problem for timed automata: Closing a decidability gap

Ouaknine and Worrell. LICS05

In this lecture: universality for one clock TA

4/33

Step 0:

Well-quasi orders and Higman’s Lemma

v

Quasi-order

Given a set Q, a quasi-order is a reflexive and transitive relation:
C C 9OxQ

(N, <)
(,<)

Let A ={A,B,...,Z}, N* = {set of words}
(A*, lexicographic order C;): AAAB C; AAB C; AB

(A*, prefix order Cp): AB Cp ABA Cp ABAA

(N*, subword order <) HIGMAN < HIGHMOUNTAIN [OW’05]

/33

Well-quasi-order

An infinite sequence (g1, >, . ..) in (Q,C) issaturating if 3:1<j:¢, T ¢

A quasi-order C is a well-quasi-order (wqo) if every infinite sequence is
saturating

v

(N, <)
(z,<)

v

> (A*, lexicographic order C;):
> (A*, prefix order Cp):

> (A*, subword order <)

Well-quasi-order

An infinite sequence (g1, >, . ..) in (Q,C) issaturating if 3:1<j:¢, T ¢

A quasi-order C is a well-quasi-order (wqo) if every infinite sequence is
saturating

» (N,9)V
(Z,<) X —1>-2>-3,...
> (A*, lexicographic order C;): X B J; ABJ; AAB ...

v

> (A*, prefix order Cp): X B, AB, AAB, ...

> (A*, subword order <)

Well-quasi-order

An infinite sequence (g1, >, . ..) in (Q,C) issaturating if 3:1<j:¢, T ¢

A quasi-order C is a well-quasi-order (wqo) if every infinite sequence is
saturating

» (N,9)V
(Z,<) X —1>-2>-3,...
> (A*, lexicographic order C;): X B J; ABJ; AAB ...

v

> (A*, prefix order Cp): X B, AB, AAB, ...

> (A*, subword order <) ?

Higman’s lemma

Let C be a quasi-order on A

Define the induced monotone domination order < on A* as follows:

ar...an < by...b, if there exists a strictly increasing function

fA{L...omy—{1,... ,n}st

Vi<i<m: a C bf(i)

Higman’s lemma

Let C be a quasi-order on A

Define the induced monotone domination order < on A* as follows:

ai...an < by...b, if there exists a strictly increasing function

AL o omy = {1, . n} st

Vi<i<m: a C bf(i)

If C is a wqo on A, then the induced monotone domination order < is a
wqo on A*

/33

Subword order

AN = {AB,....,7Z}
C = xLCyifx =y

Subword order

AN = {AB,....,7Z}
= x Cyifx =y

M

C isawqoas A isfinite

Subword order

AN = {AB,....,7Z}
C = xLCyifx =y
C isawqoas A isfinite
Induced monotone domination order < is the subword order

HIGMAN < HIGHMOUNTAIN

Subword order

AN = {AB,....,7Z}
C = xLCyifx =y

C isawqoas A isfinite

Induced monotone domination order < is the subword order

HIGMAN < HIGHMOUNTAIN

By Higman’s lemma, < is a wqo too

If we start writing an infinite sequence of words, we will eventually
write down a superword of an earlier word in the sequence

Step 1:

A naive procedure for universality of one-clock

TA

Terminology
Let A = (Q, X, Qo, {x}, T, F) be a timed automaton with one clock

> Location: ¢o,q1,--- € Q
> State: (g, #) where u € Rxq gives value of the clock

» Configuration: finite set of states

x<1,a
1<x<3 X
~()
x>2, b

Terminology
Let A = (Q, X, Qo, {x}, T, F) be a timed automaton with one clock

> Location: ¢o,q1,--- € Q
> State: (g, #) where u € Rxq gives value of the clock

» Configuration: finite set of states {(¢,2.3),(40.0)}

x<1,a
1<x<3 X
~()
x>2, b

{x}

Transition between configurations:

0.2,a

{(q,0)} —

x<1,a
1<x<3 %
~()
x>2b

12/33

Transition between configurations:

{(40.0)} =% {(q1,0.2)}

12/33

Transition between configurations:

(40,00} 225 {(q1,02)} =25

12/33

Transition between configurations:

(4,00} =25 {(91,02)} =5 {(91,23),(g0,0)} . ..

12/33

Transition between configurations:

(4,00} =25 {(91,02)} =5 {(91,23),(g0,0)} . ..

x<1, a
1<x<3 %
~()
x>2b
{x}

c 24 o if

C = {(g2,1) | g1, m) € Crs. t. (g1 m) =5 (g2,2)}

Labeled transition system of configurations

0.4,a “N3.6,b

L

13/33

Labeled transition system of configurations

0.4,a - N3.6,b

e Bad: all locations non-accepting

L

13/33

Labeled transition system of configurations

0.4,a - N3.6,b

e Bad: all locations non-accepting

L

Is a bad configuration reachable from some initial configuration?

13/33

Need to handle two dimensions of infinity!

14/33

4 NN

@ N \m \1 c, — abstraction by equivalence ~

Ci ~ G iff:

Cy goes to a bad config. < G, goes to a bad config.

15/33

Cy

finite domination order <

L

Ci<xG iff:

C; goes to a bad config = Cj goes to a bad config. too

16/33

Cy

finite domination order <

L

Ci<xG iff:

C; goes to a bad config = Cj goes to a bad config. too

No need to explore C,!
16/33

Step 2:

The equivalence

Credits: Examples in this part taken from one of Ouaknine’s talks

Equivalent configurations: Examples

Ci = {(90,0.5)} = C; = {(q0,1.3)}

¢ o ! |

¢)]

Equivalent configurations: Examples

Ci = {(90,0.5)} = C; = {(q0,1.3)}

C 6]0}

¢)]

.

C; is universal, but C rejects (4, 0)

G

G

q0

q0

G

G

x<1Vvx>2Y%
YO0

C; is universal, but C; rejects (4,0.5)

Let K be the largest constant appearing in A

Define REG = {ro, 73,71, .., 7k, 7C }
1 2 P
7"0 75 7‘1 e 7"2 ”‘K Tk
[I I I
0 1 2 K

21/33

Let K be the largest constant appearing in A

Define REG = {ro, 73,71, .., 7k, 7C }
1 2 P
7"0 75 7‘1 e 7"2 ”‘K Tk
[I I I
0 1 2 K

C= {(41>Oo)a (61170-3)7 (415 12)’ (6127 10)7 (433 08)’ (%7 13)}

Let K be the largest constant appearing in A

Define REG = {ro, 73,71, .., 7k, 7C }
1 2 P
7"0 75 7‘1 e 7"2 ”‘K Tk
[I I I
0 1 2 K

C= {(41>Oo)a (61170-3)7 (415 12)’ (6127 10)7 (433 08)’ (%7 13)}

{(Qh 7070)5 (5117 7670'3)7 (6117 7%7 02)7 (an 7170)5 (5137 7870'8)7 (q3a 7%703)}

Let K be the largest constant appearing in A

Define REG = {ro, 73,71, .., 7k, 7C }

1 2 P

7"0 75 7‘1 e 7"2 ”‘K Tk
[I I I
0 1 2 K

C= {(ql,0.0), (6]170-3)7 (41; 1'2)v (427 1'0)7 (435 0'8)’ (q37 1'3)}
{(Qh 7070)5 (5117 7670'3)7 (6117 7%7 02)7 (an 7170)5 (5137 7870'8)7 (q3a 7%703)}

{(‘11’7070)’ (q2771’)} {(4177170 2)} {(417707)(q3,7’1,0 3)} {(437%’0 8)}

Let K be the largest constant appearing in A

Define REG = {ro, 73,71, .., 7k, 7C }

1 2 P

7"0 75 7‘1 e 7"2 ”‘K Tk
[I I I
0 1 2 K

C= {(41>Oo)a (61170-3)7 (415 12)’ (6127 10)7 (433 08)’ (%7 13)}
{(qlarovo)a(4177670'3)7(6]177%’0'2)7(anrlvo)a(4377(%70'8)7(43’7%70'3)}
{(‘11’7070)’ (q2771’)} {(4177170 2)} {(417707)(q3,7’1,0 3)} {(437%’0 8)}

H(C) = {(g1,70), (q2,7)} {(q1, 7))} {(q1,70) (a5,)} {43, 7)}

Let K be the largest constant appearing in A
REG :={ro, 78,71, .., 1k, 70}

A:=7P(Qx REG)

We can give H : C+> A* that remembers:

> integral part of the clock value (modulo K) in each state of C,

» order of fractional parts of the clock among different states in C

Equivalence

Ci~C, if H(C)=H(C)

Equivalence

Ci~ G if H(C)=H(G)
It can be shown that ~ is a bisimulation

C goes to a bad config. < G, goes to a bad config.

4 NN

@ N \m \1 c, — abstraction by equivalence ~

Ci ~ G iff:

Cy goes to a bad config. < G, goes to a bad config.

24/33

Step 3:

The domination order

Gy

finite domination order <

L

Ci <G iff:

C; goes to a bad config = Cj goes to a bad config. too

26/33

Look at H(Cy) and H(C,), the words over A*

A =P(QxREG)

Look at H(Cy) and H(C,), the words over A*
A=P(Q x REG)

Let C be the inclusion (quasi-)order on A

Look at H(Cy) and H(C,), the words over A*
A=P(Q x REG)
Let C be the inclusion (quasi-)order on A

Consider the induced monotone domination order < over A*

{(g0,70)} {(q1,75), (90, 73)}

<

{(QO,VO), (41771)} {(qz,rg)} {(q1,7’(1)), (qov 72)7 (an 7%)}

Look at H(Cy) and H(C,), the words over A*
A=P(Q x REG)
Let C be the inclusion (quasi-)order on A

Consider the induced monotone domination order < over A*

{(g0,70)} {(q1,75), (90, 73)}

=
{(qov"’o)’ (41771)} {(qz,rg)} {(qlvril))= (qov 72)7 (an 7%)}

Theorem: If H(C;) < H(C,), then 3C; C Gy s.t. Cp ~ G,

Look at H(Cy) and H(C,), the words over A*
A=P(Q x REG)
Let C be the inclusion (quasi-)order on A

Consider the induced monotone domination order < over A*

{(g0,70)} {(q1,75), (90, 73)}

-\<
{(q0,70), (q1,71)} {(q2:73)} {(91,78),(q0,73): (q2,71)}

Theorem: If H(C;) < H(C,), then 3C; C Gy s.t. Cp ~ G,

C is a wqo as A is finite. Therefore, < is a wqo due to Higman’s lemma

Final algorithm

» Start from H(Cy), where Cy is the initial configuration
» Successor computation is effective

» Termination guaranteed as domination order is wqo

A is universal iff the algorithm does not reach a bad node

Universality is decidable for one-clock timed automata

29/33

Universality is decidable for one-clock timed automata

For two clocks, we know universality is undecidable

29/33

Universality is decidable for one-clock timed automata

For two clocks, we know universality is undecidable

Where does this algorithm go wrong when A has two clocks?

79/33

Two clocks

State: (g,#,v)

Configuration: {(g1, #1,v1), (g2, 42, v2), - - - s (@us #ny V) }

At the least, the following should be remembered while abstracting:

> relative ordering between fractional parts of x

> relative ordering between fractional parts of y

Current encoding can remember only one of them

Other encodings possible?

Consider some domination order <

C1 7\4 Cz lf fOI‘ all Cé Q Cz:

» ecither relative order of clock x does not match

> or relative order of clock y does not match

In the next slide: No wqo possible!

An infinite non-saturating sequence C;, G, G, . ..

Y

An infinite non-saturating sequence C;, G, G, . ..

Y Y

An infinite non-saturating sequence C;, G, G, . ..

Y Y

Conclusion

» An algorithm for universality when A has one clock

» Can be extended for £(B) C L£(A) when A has one-clock

