Automata for Real-time Systems

B. Srivathsan

Chennai Mathematical Institute

Lecture 2: Timed languages and timed automata

$$
L_{5}:=\left\{\left(\operatorname{abcd} . \Sigma^{*}, \tau\right) \mid \tau_{3}-\tau_{1} \leq 2 \text { and } \tau_{4}-\tau_{2} \geq 5\right\}
$$

Interleaving distances

Exercise: Prove that L_{5} cannot be accepted by a one-clock TA.

n interleavings \Rightarrow need n clocks

$n+1$ clocks more expressive than n clocks

$$
\left\{\left(a^{k}, \tau\right) \mid \tau_{i+2}-\tau_{i} \leq 1 \text { for all } i \leq k-2\right\}
$$

$$
\left\{\left(a^{k}, \tau\right) \mid \tau_{i+2}-\tau_{i} \leq 1 \text { for all } i \leq k-2\right\}
$$

Timed automata

Runs
 1 clock <2 clocks $<\ldots$

$$
L_{6}:=\left\{\left(a^{k}, \tau\right) \mid \tau_{i} \text { is some integer for each } i\right\}
$$

$$
L_{6}:=\left\{\left(a^{k}, \tau\right) \mid \tau_{i} \text { is some integer for each } i\right\}
$$

Claim: No timed automaton can accept L_{6}

Step 1: Suppose $L_{6}=\mathcal{L}(A)$
Let $c_{\text {max }}$ be the maximum constant appearing in a guard of A

Step 1: Suppose $L_{6}=\mathcal{L}(A)$
Let $c_{\text {max }}$ be the maximum constant appearing in a guard of A

Step 2: For a clock x,

$$
x=\left\lceil c_{\max }\right\rceil+1 \text { and } x=\left\lceil c_{\max }\right\rceil+1.1
$$

satisfy the same guards

Step 1: Suppose $L_{6}=\mathcal{L}(A)$
Let $c_{\text {max }}$ be the maximum constant appearing in a guard of A

Step 2: For a clock x,

$$
x=\left\lceil c_{\max }\right\rceil+1 \text { and } x=\left\lceil c_{\max }\right\rceil+1.1
$$

satisfy the same guards

Step 3: $\quad\left(a ;\left\lceil c_{\max }\right\rceil+1\right) \in L_{6}$ and so A has an accepting run

$$
\left(q_{0}, v_{0}\right) \xrightarrow{\delta=\left\lceil c_{\text {max }}\right\rceil+1}\left(q_{0}, v_{0}+\delta\right) \xrightarrow{a}\left(q_{F}, v_{F}\right)
$$

Step 1: Suppose $L_{6}=\mathcal{L}(A)$
Let $c_{\text {max }}$ be the maximum constant appearing in a guard of A
Step 2: For a clock x,

$$
x=\left\lceil c_{\max }\right\rceil+1 \text { and } x=\left\lceil c_{\max }\right\rceil+1.1
$$

satisfy the same guards

Step 3: $\quad\left(a ;\left\lceil c_{\max }\right\rceil+1\right) \in L_{6}$ and so A has an accepting run

$$
\left(q_{0}, v_{0}\right) \xrightarrow{\delta=\left\lceil c_{\max }\right\rceil+1}\left(q_{0}, v_{0}+\delta\right) \xrightarrow{a}\left(q_{F}, v_{F}\right)
$$

Step 4: By Step 2, the following is an accepting run

$$
\left(q_{0}, v_{0}\right) \xrightarrow{\delta^{\prime}=\left\lceil c_{\max }\right\rceil+1.1}\left(q_{0}, v_{0}+\delta^{\prime}\right) \xrightarrow{a}\left(q_{F}, v_{F}^{\prime}\right)
$$

Step 1: Suppose $L_{6}=\mathcal{L}(A)$
Let $c_{\text {max }}$ be the maximum constant appearing in a guard of A
Step 2: For a clock x,

$$
x=\left\lceil c_{\max }\right\rceil+1 \text { and } x=\left\lceil c_{\max }\right\rceil+1.1
$$

satisfy the same guards

Step 3: $\quad\left(a ;\left\lceil c_{\max }\right\rceil+1\right) \in L_{6}$ and so A has an accepting run

$$
\left(q_{0}, v_{0}\right) \xrightarrow{\delta=\left\lceil c_{\max }\right\rceil+1}\left(q_{0}, v_{0}+\delta\right) \xrightarrow{a}\left(q_{F}, v_{F}\right)
$$

Step 4: By Step 2, the following is an accepting run

$$
\left(q_{0}, v_{0}\right) \xrightarrow{\delta^{\prime}=\left\lceil c_{\max }\right\rceil+1.1}\left(q_{0}, v_{0}+\delta^{\prime}\right) \xrightarrow{a}\left(q_{F}, v_{F}^{\prime}\right)
$$

Hence $\left(a ;\left\lceil c_{\max }\right\rceil+1.1\right) \in \mathcal{L}(A) \neq L_{6}$
Therefore no timed automaton can accept L_{6}

$$
L_{7}=\left\{\left((a b)^{k}, \tau\right) \mid \tau_{2 i+2}-\tau_{2 i+1}<\tau_{2 i}-\tau_{2 i-1} \text { for each } i \geq 1\right\}
$$

Converging $a b$ distances

$$
L_{7}=\left\{\left((a b)^{k}, \tau\right) \mid \tau_{2 i+2}-\tau_{2 i+1}<\tau_{2 i}-\tau_{2 i-1} \text { for each } i \geq 1\right\}
$$

Converging $a b$ distances

Exercise: Prove that no timed automaton can accept L_{7}

$$
L_{7}=\left\{\left((a b)^{k}, \tau\right) \mid \tau_{2 i}=i \text { and } \tau_{2 i+2}-\tau_{2 i+1}<\tau_{2 i}-\tau_{2 i-1}\right\}
$$

Pivoted converging $a b$ distances

$$
L_{7}=\left\{\left((a b)^{k}, \tau\right) \mid \tau_{2 i}=i \text { and } \tau_{2 i+2}-\tau_{2 i+1}<\tau_{2 i}-\tau_{2 i-1}\right\}
$$

Pivoted converging $a b$ distances

$$
L_{7}=\left\{\left((a b)^{k}, \tau\right) \mid \tau_{2 i}=i \text { and } \tau_{2 i+2}-\tau_{2 i+1}<\tau_{2 i}-\tau_{2 i-1}\right\}
$$

Pivoted converging $a b$ distances

$$
\begin{aligned}
\tau_{2 i+2}-\tau_{2 i+1}<\tau_{2 i}-\tau_{2 i-1} & \Leftrightarrow \tau_{2 i+2}-\tau_{2 i}<\tau_{2 i+1}-\tau_{2 i-1} \\
& \Leftrightarrow 1<\tau_{2 i+1}-\tau_{2 i-1}
\end{aligned}
$$

$$
L_{7}=\left\{\left((a b)^{k}, \tau\right) \mid \tau_{2 i}=i \text { and } \tau_{2 i+2}-\tau_{2 i+1}<\tau_{2 i}-\tau_{2 i-1}\right\}
$$

Pivoted converging $a b$ distances

$$
\begin{aligned}
\tau_{2 i+2}-\tau_{2 i+1}<\tau_{2 i}-\tau_{2 i-1} & \Leftrightarrow \tau_{2 i+2}-\tau_{2 i}<\tau_{2 i+1}-\tau_{2 i-1} \\
& \Leftrightarrow 1<\tau_{2 i+1}-\tau_{2 i-1}
\end{aligned}
$$

Timed automata

Runs
1 clock <2 clocks $<\ldots$
Role of max constant

Timed automata

Runs
1 clock <2 clocks $<\ldots$
Role of max constant

Timed regular languages

Definition

A timed language is called timed regular if it can be accepted by a timed automaton

$$
\begin{gathered}
A=\left(Q, \Sigma, X, T, Q_{0}, F\right) \quad A^{\prime}=\left(Q^{\prime}, \Sigma, X^{\prime}, T^{\prime}, Q_{0}^{\prime}, F^{\prime}\right) \\
A_{\cup}=\left(Q \cup Q^{\prime}, \Sigma, X \cup X^{\prime}, T \cup T^{\prime}, Q_{0} \cup Q_{0}^{\prime}, F \cup F^{\prime}\right) \\
\mathcal{L}(A) \cup \mathcal{L}\left(A^{\prime}\right)=\mathcal{L}\left(A_{\cup}\right)
\end{gathered}
$$

Timed regular languages are closed under union

$$
\begin{gathered}
A=\left(Q, \Sigma, X, T, Q_{0}, F\right) \quad A^{\prime}=\left(Q^{\prime}, \Sigma, X^{\prime}, T^{\prime}, Q_{0}^{\prime}, F^{\prime}\right) \\
A_{\cap}=\left(Q \times Q^{\prime}, \Sigma, X \cup X^{\prime}, T_{\cap}, Q_{0} \times Q_{0}^{\prime}, F \times F^{\prime}\right) \\
T_{\cap}:\left(q_{1}, q_{1}^{\prime}\right) \xrightarrow[R \cup R^{\prime}]{a, g \wedge g^{\prime}}\left(q_{2}, q_{2}^{\prime}\right) \text { if } \\
q_{1} \xrightarrow[R]{a, g} q_{2} \in T \text { and } q_{1}^{\prime} \frac{a, g^{\prime}}{R^{\prime}} q_{2}^{\prime} \in T^{\prime}
\end{gathered}
$$

Timed regular languages are closed under intersection

L : a timed language over Σ

$$
\operatorname{Untime}(L) \equiv\left\{w \in \Sigma^{*} \mid \exists \tau .(w, \tau) \in L\right\}
$$

Untiming construction

For every timed automaton A there is a finite automaton A_{u} s.t.

$$
\operatorname{Untime}(\mathcal{L}(A))=\mathcal{L}\left(A_{u}\right)
$$

Complementation

$$
\Sigma:\{a, b\}
$$

$L=\{(w, \tau) \mid$ there is an a at some time t and no action occurs at time $t+1\}$

$$
\begin{aligned}
\bar{L}=\{(w, \tau) \mid & \text { every } a \text { has an action at } \\
& \text { a distance } 1 \text { from it }\}
\end{aligned}
$$

Complementation

$$
\begin{gathered}
\sum:\{a, b\} \\
L=\left\{(w, \tau) \left\lvert\, \begin{array}{c}
\text { there is an } a \text { at some time } t \text { and } \\
\text { no action occurs at time } t+1\}
\end{array}\right.\right. \\
\bar{L}=\left\{(w, \tau) \left\lvert\, \begin{array}{c}
\text { every } a \text { has an action at } \\
\text { a distance } 1 \text { from it }\}
\end{array}\right.\right.
\end{gathered}
$$

Claim: No timed automaton can accept \bar{L}
Decision problems for timed automata: A survey
Alur, Madhusudhan. SFM'04: RT

Step 1: $\bar{L}=\{(w, \tau) \mid$ every a has an action at a distance 1 from it \}

Suppose \bar{L} is timed regular

$$
\begin{aligned}
\text { Step 1: } \bar{L}=\{(w, \tau) \mid & \text { every } a \text { has an action at } \\
& \text { a distance } 1 \text { from it }\}
\end{aligned}
$$

Suppose \bar{L} is timed regular
$\begin{aligned} \text { Step 2: Let } L^{\prime}=\left\{\left(a^{*} b^{*}, \tau\right) \mid\right. & \text { all } a \text { 's occur before time } 1 \text { and } \\ & \text { no two } a \text { 's happen at same time }\}\end{aligned}$
Clearly L^{\prime} is timed regular

$$
\begin{aligned}
\text { Step 1: } \bar{L}=\{(w, \tau) \mid & \text { every } a \text { has an action at } \\
& \text { a distance } 1 \text { from it }\}
\end{aligned}
$$

Suppose \bar{L} is timed regular

$$
\begin{aligned}
\text { Step 2: Let } L^{\prime}=\left\{\left(a^{*} b^{*}, \tau\right) \mid\right. & \text { all } a \text { 's occur before time } 1 \text { and } \\
& \text { no two } a \text { 's happen at same time }\}
\end{aligned}
$$

Clearly L^{\prime} is timed regular

Step 3: Untime ($\left.\bar{L} \cap L^{\prime}\right)$ should be a regular language

$$
\begin{aligned}
\text { Step 1: } \bar{L}=\{(w, \tau) \mid & \text { every } a \text { has an action at } \\
& \text { a distance } 1 \text { from it }\}
\end{aligned}
$$

Suppose \bar{L} is timed regular
$\begin{aligned} \text { Step 2: Let } L^{\prime}=\left\{\left(a^{*} b^{*}, \tau\right) \mid\right. & \text { all } a \text { 's occur before time } 1 \text { and } \\ & \text { no two } a \text { 's happen at same time }\}\end{aligned}$
Clearly L^{\prime} is timed regular

Step 3: Untime($\left.\bar{L} \cap L^{\prime}\right)$ should be a regular language

Step 4: But, Untime $\left(\bar{L} \cap L^{\prime}\right)=\left\{a^{n} b^{m} \mid m \geq n\right\}$, not regular!

$$
\begin{aligned}
\text { Step 1: } \bar{L}=\{(w, \tau) \mid & \text { every } a \text { has an action at } \\
& \text { a distance } 1 \text { from it }\}
\end{aligned}
$$

Suppose \bar{L} is timed regular

Step 2: Let $L^{\prime}=\left\{\left(a^{*} b^{*}, \tau\right) \mid\right.$ all a^{\prime} s occur before time 1 and no two a 's happen at same time $\}$
Clearly L^{\prime} is timed regular

Step 3: Untime ($\left.\bar{L} \cap L^{\prime}\right)$ should be a regular language

Step 4: But, Untime $\left(\bar{L} \cap L^{\prime}\right)=\left\{a^{n} b^{m} \mid m \geq n\right\}$, not regular!

Therefore \bar{L} cannot be timed regular

Timed regular languages are not closed under complementation

Timed automata

Runs
1 clock <2 clocks $<\ldots$
Role of max constant

Timed regular lngs.

Closure under \cup, \cap

Non-closure under complement

Timed automata

Runs
1 clock <2 clocks $<\ldots$
Role of max constant

Timed regular lngs.

Closure under \cup, \cap

Non-closure under complement

ε-transitions

Claim: No timed automaton can accept L_{6}

$L_{6}:=\left\{\left(a^{k}, \tau\right) \mid \tau_{i}\right.$ is some integer for each $\left.i\right\}$

$L_{6}:=\left\{\left(a^{k}, \tau\right) \mid \tau_{i}\right.$ is some integer for each $\left.i\right\}$

$$
x=1, \varepsilon,\{x\}
$$

ε-transitions

ε-transitions add expressive power to timed automata.

Characterization of the expressive power of silent transitions in timed automata
Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae'98

ε-transitions

ε-transitions add expressive power to timed automata. However, they add power only when a clock is reset in an ε-transition.

Characterization of the expressive power of silent transitions in timed automata
Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae'98

Timed automata

Runs
1 clock <2 clocks $<\ldots$
Role of max constant

Timed regular lngs.

Closure under \cup, \cap

Non-closure under complement

ε-transitions

More expressive
$\xrightarrow{\varepsilon}$ without reset \equiv TA

Recall...

Huge system
\downarrow
Higher-level description

translation

Automaton \mathcal{A}

Property

Higher-level description

Automaton \mathcal{B}

Model-Checker

$$
\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B}) ?
$$

$$
\begin{gathered}
\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B}) \\
\text { iff } \\
\mathcal{L}(\mathcal{A}) \cap \overline{\mathcal{L}(\mathcal{B})}=\emptyset
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B}) \\
\text { iff } \\
\mathcal{L}(\mathcal{A}) \cap \overline{\mathcal{L}(\mathcal{B})}=\emptyset
\end{gathered}
$$

non-closure under complement \Rightarrow the above cannot be done for TA!

Course plan

Course plan

