Automata for Real-time Systems

B. Srivathsan

Chennai Mathematical Institute

Lecture 2:

Timed languages and timed automata

Exercise: Prove that L_5 cannot be accepted by a one-clock TA.

n interleavings \Rightarrow need *n* clocks

n + 1 clocks more expressive than n clocks

$$\{ (a^k, \tau) \mid \tau_{i+2} - \tau_i \leq 1 \text{ for all } i \leq k-2 \}$$

{
$$(a^k, \tau) \mid \tau_{i+2} - \tau_i \le 1 \text{ for all } i \le k - 2$$
 }

Timed automata

Runs 1 clock < 2 clocks < ...

 $L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$

 $L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$

Claim: No timed automaton can accept L_6

Let c_{max} be the maximum constant appearing in a guard of A

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock *x*, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock *x*, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3: $(a; \lceil c_{max} \rceil + 1) \in L_6$ and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock *x*, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3: $(a; \lceil c_{max} \rceil + 1) \in L_6$ and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Step 4: By Step 2, the following is an accepting run $(q_0, v_0) \xrightarrow{\delta' = \lceil c_{max} \rceil + 1.1} (q_0, v_0 + \delta') \xrightarrow{a} (q_F, v'_F)$

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock *x*, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3: $(a; \lceil c_{max} \rceil + 1) \in L_6$ and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Step 4: By Step 2, the following is an accepting run $(q_0, v_0) \xrightarrow{\delta' = \lceil c_{max} \rceil + 1.1} (q_0, v_0 + \delta') \xrightarrow{a} (q_F, v'_F)$ Hence $(a; \lceil c_{max} \rceil + 1.1) \in \mathcal{L}(A) \neq L_6$

Therefore **no timed automaton** can accept L_6 \Box

 $L_7 = \{ ((ab)^k, \tau) | \tau_{2i+2} - \tau_{2i+1} < \tau_{2i} - \tau_{2i-1} \text{ for each } i \ge 1 \}$ Converging *ab* distances

 $L_7 = \{ ((ab)^k, \tau) \mid \tau_{2i+2} - \tau_{2i+1} < \tau_{2i} - \tau_{2i-1} \text{ for each } i \ge 1 \}$ Converging *ab* distances

Exercise: Prove that no timed automaton can accept L_7

 $\tau_{2i+2} - \tau_{2i+1} < \tau_{2i} - \tau_{2i-1} \Leftrightarrow \tau_{2i+2} - \tau_{2i} < \tau_{2i+1} - \tau_{2i-1} \\ \Leftrightarrow 1 < \tau_{2i+1} - \tau_{2i-1}$

 $\tau_{2i+2} - \tau_{2i+1} < \tau_{2i} - \tau_{2i-1} \iff \tau_{2i+2} - \tau_{2i} < \tau_{2i+1} - \tau_{2i-1} \\ \Leftrightarrow 1 < \tau_{2i+1} - \tau_{2i-1}$

Timed automata

Runs

 $1 \text{ clock} < 2 \text{ clocks} < \dots$

Role of max constant

Timed automata

Runs

 $1 \text{ clock} < 2 \text{ clocks} < \dots$

Role of max constant

Timed regular lngs.

Timed regular languages

Definition

A timed language is called **timed regular** if it can be **accepted** by a timed automaton

 $A = (Q, \Sigma, X, T, Q_0, F)$ $A' = (Q', \Sigma, X', T', Q'_0, F')$

 $A_{\cup} = (Q \cup Q', \Sigma, X \cup X', T \cup T', Q_0 \cup Q'_0, F \cup F')$ $\mathcal{L}(A) \cup \mathcal{L}(A') = \mathcal{L}(A_{\cup})$

Timed regular languages are closed under union

 $A = (Q, \Sigma, X, T, Q_0, F) \qquad A' = (Q', \Sigma, X', T', Q'_0, F')$ $A_{\cap} = (Q \times Q', \Sigma, X \cup X', T_{\cap}, Q_0 \times Q'_0, F \times F')$ $T_{\cap} : \quad (q_1, q'_1) \xrightarrow[R \cup R']{} (q_2, q'_2) \text{ if }$ $q_1 \xrightarrow[R \cup R']{} q_2 \in T \text{ and } q'_1 \xrightarrow[R']{} q'_2 \in T'$

Timed regular languages are closed under intersection

L: a timed language over Σ

Untime(L) $\equiv \{w \in \Sigma^* \mid \exists \tau. (w, \tau) \in L\}$

Untiming construction

For every timed automaton A there is a finite automaton A_u s.t.

Untime($\mathcal{L}(A)$) = $\mathcal{L}(A_u)$

more about this later . . .

Complementation

 $\Sigma : \{a, b\}$

 $L = \{ (w, \tau) \mid \text{ there is an } a \text{ at some time } t \text{ and} \\ \text{no action occurs at time } t + 1 \}$

$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at} a \text{ distance 1 from it } \}$$

Complementation

 $\Sigma : \{a, b\}$

 $L = \{ (w, \tau) \mid \text{ there is an } a \text{ at some time } t \text{ and} \\ \text{no action occurs at time } t + 1 \}$

$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at} \\ a \text{ distance 1 from it } \}$$

Claim: No timed automaton can accept \overline{L}

Decision problems for timed automata: A survey

Alur, Madhusudhan. SFM'04: RT

Suppose \overline{L} is timed regular

Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a's occur before time 1 and no two a's happen at same time \}$

Clearly L' is timed regular

Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a$'s occur before time 1 and no two a's happen at same time $\}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a$'s occur before time 1 and no two a's happen at same time $\}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 4: But, Untime($\overline{L} \cap L'$) = { $a^n b^m \mid m \ge n$ }, not regular!

Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a$'s occur before time 1 and no two a's happen at same time $\}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 4: But, Untime($\overline{L} \cap L'$) = { $a^n b^m | m \ge n$ }, not regular!

Therefore \overline{L} cannot be timed regular \Box

Timed regular languages are not closed under complementation

Timed automata

Runs

 $1 \operatorname{clock} < 2 \operatorname{clocks} < \dots$

Role of max constant

Timed regular lngs.

Closure under \cup , \cap

Non-closure under complement

Timed automata

Runs

 $1 \operatorname{clock} < 2 \operatorname{clocks} < \dots$

Role of max constant

Timed regular lngs.

Closure under \cup , \cap

Non-closure under complement

ε -transitions

Claim: No timed automaton can accept L_6

 $x = 1, \varepsilon, \{x\}$ $\xrightarrow{q_0}$ $x = 1, a, \{x\}$

ε -transitions

 ε -transitions add expressive power to timed automata.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae'98

ε -transitions

 ε -transitions add expressive power to timed automata. However, they add power only when a clock is reset in an ε -transition.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae'98

Timed automata

Runs

 $1 \operatorname{clock} < 2 \operatorname{clocks} < \dots$

Role of max constant

Timed regular lngs.

Closure under \cup , \cap

Non-closure under complement

ε -transitions

More expressive

 $\xrightarrow{\varepsilon}$ without reset \equiv TA

Recall...

$$egin{aligned} \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B}) \ & ext{iff} \ & extsf{L}(\mathcal{A}) \ \cap \ \overline{\mathcal{L}(\mathcal{B})} = \emptyset \end{aligned}$$

$$egin{aligned} \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B}) \ & ext{iff} \ & \mathcal{L}(\mathcal{A}) \ \cap \ \overline{\mathcal{L}(\mathcal{B})} = \emptyset \end{aligned}$$

non-closure under complement \Rightarrow the above **cannot be done** for TA!

Course plan

Course plan

