
Timed automata with diagonal
constraints

B. Srivathsan

Chennai Mathematical Institute, India

In this lecture, we will consider timed automata that can additionally take guards of
the form x − y ≤ 5, z − x > 20, etc. Such guards are called diagonal guards or diagonal
constraints.

Definition 1 (Guards with diagonal constraints) Let X be a set of clocks. The set
of guards with diagonal constraints Φ(X) is given by the following grammar:

Φ(X) := xl c | xm c | x− y l c | x− y m c | Φ(X) ∧ Φ(X)

where x, y ∈ X, l ∈ {≤, <}, m ∈ {≥, >} and c ∈ Z.

As seen from the above definition, the above set contains the normal guards of the form
x ≤ 3 ∧ y > 4, in addition to the diagonal constraints like x− y = 5.

Definition 2 (Timed automata with diagonal constraints) A timed automaton
with diagonal constraints is a normal timed automaton whose guards come from the set
given in Definition 1. Let us call such timed automata as d-timed automata.

Results: In this lecture, we will see two results:

1. Diagonal constraints do not add expressive power to timed automata [BPDG98].

2. d-timed automata are exponentially more succinct than timed automata [BC05].

We will see both of them in detail below.

Remark 3 In literature, timed automata without diagonal constraints are sometimes re-
ferred to as diagonal free timed automata.

1

2 Timed automata with diagonal constraints

1 Diagonals to diagonal-free

Diagonal constraints do not add expressive power. This is the substance of the following
theorem.

Theorem 4 [BPDG98] For every d-timed automaton A, there exists a (diagonal-free)
timed automaton Adf such that L(A) = L(Adf).

Proof
Let A = (Q,Σ, X, T, q0, F). Suppose the automaton A has only one diagonal constraint
x − y ≤ c. The idea is to use the states of the automaton to maintain if the constraint is
true or false. In the initial state q0 when the value of both x and y are 0, the constraint
x − y ≤ c is true if 0 ≤ c, otherwise it is false. Note that when time elapses, the value of
the diagonal x − y does not change. The only time when the diagonal changes is during
a reset of either of the clocks x, y. We should modify the transitions to take care of this
change.

The states of Adf would be Q×{0, 1}. A state (q, 0) denotes the fact that whenever the
automaton reaches this state the constraint x − y ≤ c evaluates to false. Similarly when
the automaton reaches the state (q, 1) the constraint x − y ≤ c evaluates to true. Let us
call this additional bit as the attribute of the state.

Consider an arbitrary transition of A:

q
g−−−−→
R

q′

For each such transition, we have the following transitions in Adf depending on whether g
contains the diagonal constraint x− y ≤ c or not.

g does not contain x − y ≤ c: In this case, we need to only take care of passing the
attribute correctly from q to q′.

1. If x /∈ R and y /∈ R, then we have in Adf :

(q, 0)
g−−−−→
R

(q′, 0) and (q, 1)
g−−−−→
R

(q′, 1)

This is because if both x and y are not reset, the truth value of x − y ≤ c remains
the same after the transition.

2. If x ∈ R and y ∈ R, then we have in Adf :

(q, b)
g−−−−→
R

(q′, 1) if 0 ≤ c

(q, b)
g−−−−→
R

(q′, 0) if 0 > c

for b ∈ {0, 1}.

3. If x ∈ R and y /∈ R, then we need to check if −y ≤ c or not. This can be done by
modifying the guard, giving the following transitions:

(q, b)
g ∧ −y≤c−−−−−−−−−→

R
(q′, 1) and (q, b)

g ∧ −y>c−−−−−−−−−→
R

(q′, 0)

for b ∈ {0, 1}.

Succinctness of diagonal constraint timed automata 3

4. The case of x /∈ R and y ∈ R is similar to the above case.

g is of the form x − y ≤ c ∧ g1: In this case, we will consider only (q, 1) for this
transition and add in Adf :

(q, 1)
g1 ∧ g2−−−−−−−−→

R
(q′, b)

where b and g2 depend on the reset set and are given by the conditions for passing the
attribute mentioned in the previous case.

The initial state of Adf would be (q, 1) if 0 ≤ c and (q, 0) otherwise. The set of final
states would be F × {0, 1}.

It can be proved by induction that for every accepting run in A there is a corresponding
accepting run in Adf .

The above construction described the situation when there is a single diagonal constraint
x− y ≤ c. Given A, there can be only a finite number of diagonal constraints, say k. Then
the states of Adf would be Q × {0, 1}k maintaining an attribute for each constraint. The
transitions are then given by passing each attribute correctly depending on the reset set.

�

As we see, the above construction induces an exponential blowup on the size of the
diagonal free timed automaton. Is this blowup necessary or there could be some other
construction that can avoid this blowup? This is answered in the next section.

2 Succinctness of diagonal constraint timed automata

We will show that d-timed automata are exponentially more succinct than diagonal
free timed automata. To this regard, we will construct a sequence of languages
L1, L2, . . . , Ln, . . . such that for each n there exists a d-timed automaton An of size
polynomial in n such that L(An) = Ln and every diagonal free timed automaton that
accepts Ln necessarily has exponentially many states in n. This construction is due
to [BC05].

The language sequence: Define Ln to be following language over the singleton alphabet
{a}:

{ (a2n , τ) | 0 < τ1 < τ2 < · · · < τ2n < 1}

Lemma 5 [BC05] For every Ln, there exists a d-timed automaton An of size polynomial
in n such that L(An) = Ln.

Proof
We need an automaton that can count from 1 till 2n. Suppose we had a counter c that can
store n bits and its initial value was 0.

The above automaton shows how one can then accept the string a2n . Each time an a is
seen, the counter c is incremented. When it reaches 2n the last letter is read. Additionally

4 Timed automata with diagonal constraints

q0 q1
a, c = 2n

a, increment c

Figure 1.1

in Ln we required that all these letters should occur within 1 time unit and no two letters
occur at the same time. For this, we can add 2 clocks y, z. Add the guard z < 1 in the
transition from q0 to q1 and add the guard and reset y > 0, {y} in the transition from q0

to q0.
However what about the counter? We need a timed automaton. We will now see how

we can use clocks to achieve the same result as the counter.

Encoding counter by clocks: To encode the counter of n bits, introduce 2n clocks
{xi, x′i for i ∈ {1, . . . , n}. Let c = b1b2 . . . bn where b1 denotes the least significant bit and
bn the most significant bit. The bit bi is simulated by the pair {xi, x′i}: if ith bit is 1, then
it is denoted by xi − x′i > 0, and if ith bit is 0, then xi − x′i = 0.

For example, if c has the value 10110, then b1 = 0, b2 = 1, b3 = 1, b4 = 0, b5 = 1 and the
clock constraints that encode c are given by:

x1 − x′1 = 0

x2 − x′2 > 0

x3 − x′3 > 0

x4 − x′4 = 0

x5 − x′5 > 0

Incrementing the counter can be done in the following way: if the first j − 1 bits are 1
and the jth bit is 0, then set all (bi)1≤i≤j−1 to 0 and set bj to 1. This gives us a set of n
instructions which can be translated to n−1 transitions (q0, a, gj, Rj, q0) for j = {1, . . . , n}
where {

gj is
∧j−1
i=1 (xi − x′i > 0) ∧ (xj − x′j = 0)

Rj is
⋃j−1
i=1 {xi, x′i} ∪ {x′j}

Moreover we need to add the transition (q0, a, g, {}, q1) where g checks if xi−x′i > 0 for
all i ∈ {1, . . . , n}.

Initially all clocks are 0 and hence all differences are 0 too. At any point, only one of
the n transitions at q0 will be satisfied. During each transition, the reset simulates the
increment of the clock. When all differences are > 0, that is, when 2n − 1 a’s have been
read, the automaton takes the transition to q1.

Call the above automaton be An. It can be easily checked that the language of An is
Ln. As there are only 2 states and n+ 1 transitions, the size of An is polynomial in n.

�

REFERENCES 5

The next lemma will show that there is every diagonal free timed automaton that
accepts Ln should have atleast 2n states.

Lemma 6 [BC05] Let Bn be a diagonal free timed automaton such that L(Bn) = Ln.
Then Bn has at least 2n states.

Proof
Suppose Bn has strictly less than 2n states. Consider the timed word w defined below:

(a2n , τ) s. t. τi =
i

2n + 1

Clearly, w ∈ Ln. Hence there is an accepting run of Bn on w:

(q0, v0)
δ0,θ0−−→ (q1, v1)

δ1,θ1−−→ . . . (q2n , v2n) (1.1)

where δi = 1
2n+1

and θi is a transition (qi, a, gi, Ri, qi+1).
Note that there is a strict elapse of time at each step. However the total time spent

during the run is strictly less than 1. Therefore, vi + δi should be a function that maps all
clocks to the open interval (0, 1). From the above run, we know that vi + δi satisfies gi,
that is, gi allows the valuation vi + δi. But the guards contain only integer constants and
are additionally diagonal free. Hence we can infer that each gi allows all valuations in the
unit hypercube (0, 1)X .

Now, as the number of states in Bn is strictly less than 2n there exist two indices i, j
such that qi = qj. This will then give an accepting run for the word obtained by removing
the part of w between the ith and jth a’s. This would give a contradiction as this word
with less than 2n a’s cannot belong to Ln.

In more detail, consider the timed word (a2n−(j−i), τ) where

τk =


k

2n+1
if k ≤ i

k+(j−i)
2n+1

if k > i

Using the fact that every guard gi allows valuations in the unit hypercube (0, 1)X , we can
get an accepting run for the above word by modifying (1.1):

(q0, v0)
δ0,θ0−−→ (q1, v1)

δ1,θ1−−→ . . . (qi, vi)
∆,θj−−→ (qj+1, v

′
j+1)

δj+1,θj+1−−−−−→ . . . (q2n , v
′
2n)

where ∆ = (j−i)+1
2n+1

. This gives us the contradiction. �

References

[BC05] Patricia Bouyer and Fabrice Chevalier. On conciseness of extensions of timed
automata. Journal of Automata, Languages and Combinatorics, 10(4):393–405,
2005.

[BPDG98] Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characteriza-
tion of the expressive power of silent transitions in timed automata. Fundamenta
Informaticae, 36(2):145–182, 1998.

	Timed automata with diagonal constraints
	Diagonals to diagonal-free
	Succinctness of diagonal constraint timed automata

