A Survey of Classical, Real-Time, and Time-Bounded Verification

Joël Ouaknine

Department of Computer Science
Oxford University
Quantitative Model Checking Winter School, February 2012

The Classical Theory of Verification

The Classical Theory of Verification

- Qualitative (order-theoretic), rather than quantitative (metric).

The Classical Theory of Verification

- Qualitative (order-theoretic), rather than quantitative (metric).
- Time is modelled as the naturals $\mathbb{N}=\{0,1,2,3, \ldots\}$.

The Classical Theory of Verification

- Qualitative (order-theoretic), rather than quantitative (metric).
- Time is modelled as the naturals $\mathbb{N}=\{0,1,2,3, \ldots\}$.
- Note: focus on linear time (as opposed to branching time).

A Simple Example

'P occurs infinitely often'

A Simple Example

'P occurs infinitely often'

A Simple Example

'P occurs infinitely often'

$\square \diamond P$

A Simple Example

'P occurs infinitely often'

$$
\forall x \exists y(x<y \wedge P(y))
$$

Specification and Verification

- Linear Temporal Logic (LTL)

$$
\theta::=P\left|\theta_{1} \wedge \theta_{2}\right| \theta_{1} \vee \theta_{2}|\neg \theta| \bigcirc \theta|\diamond \theta| \square \theta \mid \theta_{1} \mathcal{U} \theta_{2}
$$

For example, $\square(R E Q \rightarrow \diamond A C K)$.

Specification and Verification

- Linear Temporal Logic (LTL)

$$
\theta::=P\left|\theta_{1} \wedge \theta_{2}\right| \theta_{1} \vee \theta_{2}|\neg \theta| \bigcirc \theta|\diamond \theta| \square \theta \mid \theta_{1} \mathcal{U} \theta_{2}
$$

For example, $\square(R E Q \rightarrow \diamond A C K)$.

- First-Order Logic $(\mathrm{FO}(<))$
$\varphi::=x<y|P(x)| \varphi_{1} \wedge \varphi_{2}\left|\varphi_{1} \vee \varphi_{2}\right| \neg \varphi|\forall x \varphi| \exists x \varphi$
For example, $\forall x(R E Q(x) \rightarrow \exists y(x<y \wedge A C K(y)))$.

Specification and Verification

- Linear Temporal Logic (LTL)

$$
\theta::=P\left|\theta_{1} \wedge \theta_{2}\right| \theta_{1} \vee \theta_{2}|\neg \theta| \bigcirc \theta|\diamond \theta| \square \theta \mid \theta_{1} \mathcal{U} \theta_{2}
$$

For example, $\square(R E Q \rightarrow \diamond A C K)$.

- First-Order Logic $(\mathrm{FO}(<))$
$\varphi::=x<y|P(x)| \varphi_{1} \wedge \varphi_{2}\left|\varphi_{1} \vee \varphi_{2}\right| \neg \varphi|\forall x \varphi| \exists x \varphi$ For example, $\forall x(R E Q(x) \rightarrow \exists y(x<y \wedge A C K(y)))$.

Verification is model checking: IMP \models SPEC ?

Another Example

' P holds at every even position
(and may or may not hold at odd positions)'

Another Example

' P holds at every even position (and may or may not hold at odd positions)'

Another Example

'P holds at every even position (and may or may not hold at odd positions)'

- It turns out it is impossible to capture this requirement using LTL or $\mathrm{FO}(<)$.

Another Example

'P holds at every even position (and may or may not hold at odd positions)'

- It turns out it is impossible to capture this requirement using LTL or $\mathrm{FO}(<)$.
- LTL and $\mathrm{FO}(<)$ can however capture the specification: ' Q holds precisely at even positions':

Another Example

'P holds at every even position (and may or may not hold at odd positions)'

- It turns out it is impossible to capture this requirement using LTL or $\mathrm{FO}(<)$.
- LTL and $\mathrm{FO}(<)$ can however capture the specification: ' Q holds precisely at even positions':

$$
Q \wedge \square(Q \rightarrow \bigcirc \neg Q) \wedge \square(\neg Q \rightarrow \bigcirc Q)
$$

Another Example

'P holds at every even position (and may or may not hold at odd positions)'

- It turns out it is impossible to capture this requirement using LTL or $\mathrm{FO}(<)$.
- LTL and $\mathrm{FO}(<)$ can however capture the specification: ' Q holds precisely at even positions':

$$
Q \wedge \square(Q \rightarrow \bigcirc \neg Q) \wedge \square(\neg Q \rightarrow \bigcirc Q)
$$

- So one way to capture the original specification would be to write:

Another Example

'P holds at every even position (and may or may not hold at odd positions)'

- It turns out it is impossible to capture this requirement using LTL or $\mathrm{FO}(<)$.
- LTL and $\mathrm{FO}(<)$ can however capture the specification: ' Q holds precisely at even positions':

$$
Q \wedge \square(Q \rightarrow \bigcirc \neg Q) \wedge \square(\neg Q \rightarrow \bigcirc Q)
$$

- So one way to capture the original specification would be to write: ' Q holds precisely at even positions and $\square(Q \rightarrow P)$ '.

Another Example

'P holds at every even position (and may or may not hold at odd positions)'

- It turns out it is impossible to capture this requirement using LTL or $\mathrm{FO}(<)$.
- LTL and $\mathrm{FO}(<)$ can however capture the specification: ' Q holds precisely at even positions':

$$
Q \wedge \square(Q \rightarrow \bigcirc \neg Q) \wedge \square(\neg Q \rightarrow \bigcirc Q)
$$

- So one way to capture the original specification would be to write: ' Q holds precisely at even positions and $\square(Q \rightarrow P)$ '.
- Finally, need to existentially quantify Q out:

Another Example

'P holds at every even position (and may or may not hold at odd positions)'

- It turns out it is impossible to capture this requirement using LTL or $\mathrm{FO}(<)$.
- LTL and $\mathrm{FO}(<)$ can however capture the specification:
' Q holds precisely at even positions':

$$
Q \wedge \square(Q \rightarrow \bigcirc \neg Q) \wedge \square(\neg Q \rightarrow \bigcirc Q)
$$

- So one way to capture the original specification would be to write: ' Q holds precisely at even positions and $\square(Q \rightarrow P)$ '.
- Finally, need to existentially quantify Q out:
$\exists Q(Q$ holds precisely at even positions and $\square(Q \rightarrow P))$

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO($<$))
$\varphi::=x<y|P(x)| \varphi_{1} \wedge \varphi_{2}\left|\varphi_{1} \vee \varphi_{2}\right| \neg \varphi|\forall x \varphi| \exists x \varphi|\forall P \varphi| \exists P \varphi$

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO(<))
$\varphi::=x<y|P(x)| \varphi_{1} \wedge \varphi_{2}\left|\varphi_{1} \vee \varphi_{2}\right| \neg \varphi|\forall x \varphi| \exists x \varphi|\forall P \varphi| \exists P \varphi$

Theorem (Büchi 1960)
Any $M S O(<)$ formula φ can be effectively translated into an equivalent automaton A_{φ}.

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO(<))
$\varphi::=x<y|P(x)| \varphi_{1} \wedge \varphi_{2}\left|\varphi_{1} \vee \varphi_{2}\right| \neg \varphi|\forall x \varphi| \exists x \varphi|\forall P \varphi| \exists P \varphi$
Theorem (Büchi 1960)
Any $M S O(<)$ formula φ can be effectively translated into an equivalent automaton A_{φ}.

Corollary (Church 1960)
The model-checking problem for automata against $M S O(<)$ specifications is decidable:

$$
M \models \varphi \quad \text { iff } \quad L(M) \cap L\left(A_{\neg \varphi}\right)=\emptyset
$$

Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY (PRIMITIVE RECURSIVE)

Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY (PRIMITIVE RECURSIVE)

```
ELEMENTARY
```

- NON-ELEMENTARY: $\underbrace{2^{2}}$

3EXPSPACE
2EXPSPACE
EXPSPACE
PSPACE
NP
P
NLOG-
SPACE

- NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048,

2048

Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY (PRIMITIVE RECURSIVE)

- NON-ELEMENTARY: $\underbrace{2^{2}}$

- NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048,

2048

Complexity and Equivalence

In fact:
Theorem (Stockmeyer 1974)
$F O(<)$ satisfiability has non-elementary complexity.

Complexity and Equivalence

In fact:
Theorem (Stockmeyer 1974)
$F O(<)$ satisfiability has non-elementary complexity.
Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and $F O(<)$ have precisely the same expressive power.

Complexity and Equivalence

In fact:
Theorem (Stockmeyer 1974)
$F O(<)$ satisfiability has non-elementary complexity.
Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and $F O(<)$ have precisely the same expressive power.
But amazingly:
Theorem (Sistla \& Clarke 1982)
LTL satisfiability and model checking are PSPACE-complete.

Logics and Automata

"The paradigmatic idea of the automata-theoretic approach to verification is that we can compile high-level logical specifications into an equivalent low-level finite-state formalism."

Moshe Vardi

Logics and Automata

"The paradigmatic idea of the automata-theoretic approach to verification is that we can compile high-level logical specifications into an equivalent low-level finite-state formalism."

Moshe Vardi
Theorem
Automata are closed under all Boolean operations. Moreover, the language inclusion problem $(L(A) \subseteq L(B)$?) is PSPACE-complete.

The Classical Theory: Expressiveness
$\mathrm{FO}(<) \cdot \cdots \cdots \cdots \cdots \cdots \cdots-\cdots$

The Classical Theory: Expressiveness

The Classical Theory: Expressiveness

The Classical Theory: Expressiveness

The Classical Theory: Complexity

UNDECIDABLE

From Qualitative to Quantitative

"Lift the classical theory to the real-time world."

Boris Trakhtenbrot, LICS 1995

Airbus A350 XWB

A350 XWB Fuel Management Sub-System

BMW Hydrogen 7

BMW Hydrogen 7

Timed Systems

Timed systems are everywhere...

- Hardware circuits
- Communication protocols
- Cell phones
- Plant controllers
- Aircraft navigation systems
- Sensor networks

Timed Automata

Timed automata were introduced by Rajeev Alur at Stanford during his PhD thesis under David Dill:

- Rajeev Alur, David L. Dill: Automata For Modeling Real-Time Systems. ICALP 1990: 322-335
- Rajeev Alur, David L. Dill: A Theory of Timed Automata. TCS 126(2): 183-235, 1994

Timed Automata

Time is modelled as the non-negative reals, $\mathbb{R}_{\geq 0}$.

Timed Automata

Time is modelled as the non-negative reals, $\mathbb{R}_{\geq 0}$.
Theorem (Alur, Courcourbetis, Dill 1990) Reachability is decidable, in fact PSPACE-complete.

Timed Automata

Time is modelled as the non-negative reals, $\mathbb{R}_{\geq 0}$.
Theorem (Alur, Courcourbetis, Dill 1990) Reachability is decidable, in fact PSPACE-complete.

Unfortunately:
Theorem (Alur \& Dill 1990)
Language inclusion is undecidable for timed automata.

An Uncomplementable Timed Automaton

An Uncomplementable Timed Automaton

An Uncomplementable Timed Automaton

$L(A)$:

An Uncomplementable Timed Automaton

$L(A):$

$L(A)$:

An Uncomplementable Timed Automaton

A:

$L(A):$

$L(A)$:

A cannot be complemented:
There is no timed automaton B with $L(B)=\overline{L(A)}$.

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990] is a central quantitative specification formalism for timed systems.

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990] is a central quantitative specification formalism for timed systems.

- MTL $=$ LTL + timing constraints on operators:

$$
\square\left(P E D A L \rightarrow \diamond_{[5,10]} B R A K E\right)
$$

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990] is a central quantitative specification formalism for timed systems.

- MTL $=$ LTL + timing constraints on operators:

$$
\square\left(P E D A L \rightarrow \diamond_{[5,10]} B R A K E\right)
$$

- Widely cited and used (over nine hundred papers according to scholar.google.com!).

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990] is a central quantitative specification formalism for timed systems.

- MTL $=$ LTL + timing constraints on operators:

$$
\square\left(P E D A L \rightarrow \diamond_{[5,10]} B R A K E\right)
$$

- Widely cited and used (over nine hundred papers according to scholar.google.com!).
Unfortunately:
Theorem (Alur \& Henzinger 1992)
MTL satisfiability and model checking are undecidable over $\mathbb{R}_{\geq 0}$.

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990] is a central quantitative specification formalism for timed systems.

- MTL $=$ LTL + timing constraints on operators:

$$
\square\left(P E D A L \rightarrow \diamond_{[5,10]} B R A K E\right)
$$

- Widely cited and used (over nine hundred papers according to scholar.google.com!).
Unfortunately:
Theorem (Alur \& Henzinger 1992)
MTL satisfiability and model checking are undecidable over $\mathbb{R}_{\geq 0}$.
(Decidable but non-primitive recursive under certain semantic restrictions [Ouaknine \& Worrell 2005].)

Metric Predicate Logic

The first-order metric logic of order $(\mathrm{FO}(<,+1))$ extends $\mathrm{FO}(<)$ by the unary function ' +1 '.

Metric Predicate Logic

The first-order metric logic of order $(\mathrm{FO}(<,+1))$ extends $\mathrm{FO}(<)$ by the unary function ' +1 '.
For example, $\square\left(P E D A L \rightarrow \diamond_{[5,10]}\right.$ BRAKE) becomes

$$
\forall x(P E D A L(x) \rightarrow \exists y(x+5 \leq y \leq x+10 \wedge B R A K E(y)))
$$

Metric Predicate Logic

The first-order metric logic of order ($\mathrm{FO}(<,+1)$) extends $\mathrm{FO}(<)$ by the unary function ' +1 '.
For example, $\square\left(P E D A L \rightarrow \diamond_{[5,10]} B R A K E\right)$ becomes

$$
\forall x(P E D A L(x) \rightarrow \exists y(x+5 \leq y \leq x+10 \wedge B R A K E(y)))
$$

Theorem (Hirshfeld \& Rabinovich 2007)
$F O(<,+1)$ is strictly more expressive than MTL over $\mathbb{R}_{\geq 0}$.

Metric Predicate Logic

The first-order metric logic of order ($\mathrm{FO}(<,+1)$) extends $\mathrm{FO}(<)$ by the unary function ' +1 '.
For example, $\square\left(P E D A L \rightarrow \diamond_{[5,10]} B R A K E\right)$ becomes

$$
\forall x(P E D A L(x) \rightarrow \exists y(x+5 \leq y \leq x+10 \wedge B R A K E(y)))
$$

Theorem (Hirshfeld \& Rabinovich 2007)
$F O(<,+1)$ is strictly more expressive than MTL over $\mathbb{R}_{\geq 0}$.

Corollary: $\mathrm{FO}(<,+1)$ and $\mathrm{MSO}(<,+1)$ satisfiability and model checking are undecidable over $\mathbb{R}_{\geq 0}$.

The Real-Time Theory: Expressiveness

The Real-Time Theory: Expressiveness

The Real-Time Theory: Complexity

Classical Theory

UNDECIDABLE

The Real-Time Theory: Complexity

Classical Theory

Real-Time Theory

UNDECIDABLE

The Real-Time Theory: Complexity

Classical Theory

Real-Time Theory

UNDECIDABLE

The Real-Time Theory: Complexity

Classical Theory

Real-Time Theory

UNDECIDABLE

The Real-Time Theory: Complexity

Classical Theory

Real-Time Theory

UNDECIDABLE

The Real-Time Theory: Complexity

Classical Theory

Real-Time Theory

The Real-Time Theory: Complexity

Classical Theory

Real-Time Theory

The Real-Time Theory: Complexity

Classical Theory

Real-Time Theory

The Real-Time Theory: Complexity

Classical Theory

Real-Time Theory

MSO(<,+1) model checking UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

2-clock+ language inclusion UNDECIDABLE

Key Stumbling Block

Theorem (Alur \& Dill 1990)
Language inclusion is undecidable for timed automata.

Timed Language Inclusion: Some Related Work

- Topological restrictions and digitization techniques: [Henzinger, Manna, Pnueli 1992], [Bošnački 1999],
[Ouaknine \& Worrell 2003]
- Fuzzy semantics / noise-based techniques:
[Maass \& Orponen 1996],
[Gupta, Henzinger, Jagadeesan 1997],
[Fränzle 1999], [Henzinger \& Raskin 2000], [Puri 2000],
[Asarin \& Bouajjani 2001], [Ouaknine \& Worrell 2003],
[Alur, La Torre, Madhusudan 2005]
- Determinisable subclasses of timed automata:
[Alur \& Henzinger 1992], [Alur, Fix, Henzinger 1994], [Wilke 1996], [Raskin 1999]
- Timed simulation relations and homomorphisms:
[Lynch et al. 1992], [Taşiran et al. 1996],
[Kaynar, Lynch, Segala, Vaandrager 2003]
- Restrictions on the number of clocks:
[Ouaknine \& Worrell 2004], [Emmi \& Majumdar 2006]

Time-Bounded Language Inclusion

Time-Bounded Language Inclusion Problem
Instance: Timed automata A, B, and time bound $T \in \mathbb{N}$
Question: Is $L_{T}(A) \subseteq L_{T}(B)$?

Time-Bounded Language Inclusion

Time-Bounded Language Inclusion Problem
Instance: Timed automata A, B, and time bound $T \in \mathbb{N}$
Question: Is $L_{T}(A) \subseteq L_{T}(B)$?

- Inspired by Bounded Model Checking.

Time-Bounded Language Inclusion

Time-Bounded Language Inclusion Problem
Instance: Timed automata A, B, and time bound $T \in \mathbb{N}$
Question: Is $L_{T}(A) \subseteq L_{T}(B)$?

- Inspired by Bounded Model Checking.
- Timed systems often have time bounds (e.g. timeouts), even if total number of actions is potentially unbounded.

Time-Bounded Language Inclusion

Time-Bounded Language Inclusion Problem

Instance: Timed automata A, B, and time bound $T \in \mathbb{N}$
Question: Is $L_{T}(A) \subseteq L_{T}(B)$?

- Inspired by Bounded Model Checking.
- Timed systems often have time bounds (e.g. timeouts), even if total number of actions is potentially unbounded.
- Universe's lifetime is believed to be bounded anyway...

Timed Automata and Metric Logics

- Unfortunately, timed automata cannot be complemented even over bounded time...

Timed Automata and Metric Logics

- Unfortunately, timed automata cannot be complemented even over bounded time...
- Key to solution is to translate problem into logic: Behaviours of timed automata can be captured in $\mathrm{MSO}(<,+1)$

Timed Automata and Metric Logics

- Unfortunately, timed automata cannot be complemented even over bounded time...
- Key to solution is to translate problem into logic: Behaviours of timed automata can be captured in MSO(<,+1)
- This reverses Vardi's 'automata-theoretic approach to verification' paradigm!

Monadic Second-Order Logic

Theorem (Shelah 1975)
$M S O(<)$ is undecidable over $[0,1)$.

Monadic Second-Order Logic

Theorem (Shelah 1975)
$M S O(<)$ is undecidable over $[0,1)$.

By contrast,
Theorem

- $M S O(<)$ is decidable over \mathbb{N} [Büchi 1960]
- $M S O(<)$ is decidable over \mathbb{Q}, via [Rabin 1969]

Finite Variability

Timed behaviours are modelled as flows (or signals):

Finite Variability

Timed behaviours are modelled as flows (or signals):
$f:[0, T) \rightarrow 2^{M P}$

Finite Variability

Timed behaviours are modelled as flows (or signals):
$f:[0, T) \rightarrow 2^{M P} \quad Q:$

R:

Finite Variability

Timed behaviours are modelled as flows (or signals):

$f:[0, T) \rightarrow 2^{\mathrm{MP}}$
Q:

R:

Finite Variability

Timed behaviours are modelled as flows (or signals):

Finite Variability

Timed behaviours are modelled as flows (or signals):

Predicates must have finite variability:

Finite Variability

Timed behaviours are modelled as flows (or signals):

Predicates must have finite variability:

Disallow e.g. \mathbb{Q} :

Finite Variability

Timed behaviours are modelled as flows (or signals):
$f:[0, T) \rightarrow 2^{\mathrm{MP}}$
Q:

Predicates must have finite variability:

Disallow e.g. \mathbb{Q} :
Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

The Time-Bounded Theory of Verification

Theorem
For any bounded time domain $[0, T)$, satisfiability and model checking are decidable as follows:

MSO $(<,+1)$	NON-ELEMENTARY
$F O(<,+1)$	NON-ELEMENTARY
$M T L$	EXPSPACE-complete

The Time-Bounded Theory of Verification

Theorem
For any bounded time domain $[0, T)$, satisfiability and model checking are decidable as follows:

MSO $(<,+1)$	NON-ELEMENTARY
$F O(<,+1)$	NON-ELEMENTARY
$M T L$	EXPSPACE-complete

Theorem
MTL and $F O(<,+1)$ are equally expressive over any fixed bounded time domain $[0, T)$.

The Time-Bounded Theory of Verification

Theorem
For any bounded time domain $[0, T)$, satisfiability and model checking are decidable as follows:

$M S O(<,+1)$	NON-ELEMENTARY
$F O(<,+1)$	NON-ELEMENTARY
$M T L$	EXPSPACE-complete

Theorem
MTL and $F O(<,+1)$ are equally expressive over any fixed bounded time domain $[0, T)$.

Theorem
Given timed automata A, B, and time bound $T \in \mathbb{N}$, the time-bounded language inclusion problem $L_{T}(A) \subseteq L_{T}(B)$ is decidable and 2EXPSPACE-complete.

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by 'vertical stacking'.

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by 'vertical stacking'.

- Let φ be an MSO(<,+1) formula and let $T \in \mathbb{N}$.

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by 'vertical stacking'.

- Let φ be an MSO(<,+1) formula and let $T \in \mathbb{N}$.
- Construct an $\mathrm{MSO}(<)$ formula $\bar{\varphi}$ such that:
φ is satisfiable over $[0, T) \Longleftrightarrow \bar{\varphi}$ is satisfiable over $[0,1)$

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by 'vertical stacking'.

- Let φ be an MSO(<,+1) formula and let $T \in \mathbb{N}$.
- Construct an $\mathrm{MSO}(<)$ formula $\bar{\varphi}$ such that:
φ is satisfiable over $[0, T) \Longleftrightarrow \bar{\varphi}$ is satisfiable over $[0,1)$
- Conclude by invoking decidability of MSO(<).

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

\vdash
0

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$
$P_{0}: \stackrel{\rightharpoonup}{\square}$

P_{2} :

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

P_{2} :

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

Replace every:

- $\forall x \psi(x)$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

Replace every:

- $\forall x \psi(x)$ by $\forall x(\psi(x) \wedge \psi(x+1) \wedge \psi(x+2))$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

Replace every:

- $\forall x \psi(x)$ by $\forall x(\psi(x) \wedge \psi(x+1) \wedge \psi(x+2))$
- $x+k_{1}<y+k_{2}$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

Replace every:

- $\forall x \psi(x)$ by $\forall x(\psi(x) \wedge \psi(x+1) \wedge \psi(x+2))$
$-x+k_{1}<y+k_{2}$ by $\begin{cases}x<y & \text { if } k_{1}=k_{2} \\ \text { true } & \text { if } k_{1}<k_{2} \\ \text { false } & \text { if } k_{1}>k_{2}\end{cases}$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

Replace every:

- $\forall x \psi(x)$ by $\forall x(\psi(x) \wedge \psi(x+1) \wedge \psi(x+2))$
- $x+k_{1}<y+k_{2}$ by $\begin{cases}x<y & \text { if } k_{1}=k_{2} \\ \text { true } & \text { if } k_{1}<k_{2} \\ \text { false } & \text { if } k_{1}>k_{2}\end{cases}$
- $P(x+k)$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

Replace every:

- $\forall x \psi(x)$ by $\forall x(\psi(x) \wedge \psi(x+1) \wedge \psi(x+2))$
$-x+k_{1}<y+k_{2}$ by $\begin{cases}x<y & \text { if } k_{1}=k_{2} \\ \text { true } & \text { if } k_{1}<k_{2} \\ \text { false } & \text { if } k_{1}>k_{2}\end{cases}$
- $P(x+k)$ by $P_{k}(x)$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

Replace every:

- $\forall x \psi(x)$ by $\forall x(\psi(x) \wedge \psi(x+1) \wedge \psi(x+2))$
$-x+k_{1}<y+k_{2}$ by $\begin{cases}x<y & \text { if } k_{1}=k_{2} \\ \text { true } & \text { if } k_{1}<k_{2} \\ \text { false } & \text { if } k_{1}>k_{2}\end{cases}$
- $P(x+k)$ by $P_{k}(x)$
- $\forall P \psi$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$

Replace every:

- $\forall x \psi(x)$ by $\forall x(\psi(x) \wedge \psi(x+1) \wedge \psi(x+2))$
$-x+k_{1}<y+k_{2}$ by $\begin{cases}x<y & \text { if } k_{1}=k_{2} \\ \text { true } & \text { if } k_{1}<k_{2} \\ \text { false } & \text { if } k_{1}>k_{2}\end{cases}$
- $P(x+k)$ by $P_{k}(x)$
- $\forall P \psi$ by $\forall P_{0} \forall P_{1} \forall P_{2} \psi$

From $\mathrm{MSO}(<,+1)$ to $\mathrm{MSO}(<)$
P :

Replace every:

- $\forall x \psi(x)$ by $\forall x(\psi(x) \wedge \psi(x+1) \wedge \psi(x+2))$
$-x+k_{1}<y+k_{2}$ by $\begin{cases}x<y & \text { if } k_{1}=k_{2} \\ \text { true } & \text { if } k_{1}<k_{2} \\ \text { false } & \text { if } k_{1}>k_{2}\end{cases}$
- $P(x+k)$ by $P_{k}(x)$
- $\forall P \psi$ by $\forall P_{0} \forall P_{1} \forall P_{2} \psi$

Then φ is satisfiable over $[0, T) \Longleftrightarrow \bar{\varphi}$ is satisfiable over $[0,1)$.

The Time-Bounded Theory: Expressiveness

The Time-Bounded Theory: Expressiveness

The Time-Bounded Theory: Expressiveness

The Time-Bounded Theory: Expressiveness

The Time-Bounded Theory: Complexity

Classical Theory

UNDECIDABLE

The Time-Bounded Theory: Complexity

Classical Theory

Time-Bounded Theory

The Time-Bounded Theory: Complexity

Classical Theory

Time-Bounded Theory

UNDECIDABLE

The Time-Bounded Theory: Complexity

Classical Theory

Time-Bounded Theory

UNDECIDABLE

The Time-Bounded Theory: Complexity

Classical Theory

Time-Bounded Theory

UNDECIDABLE

The Time-Bounded Theory: Complexity

Classical Theory

Time-Bounded Theory

UNDECIDABLE

The Time-Bounded Theory: Complexity

Classical Theory

Time-Bounded Theory

UNDECIDABLE

Conclusion and Future Work

- For real-time systems, the time-bounded theory is much better behaved than the real-time theory.

Conclusion and Future Work

- For real-time systems, the time-bounded theory is much better behaved than the real-time theory.

Future work:

- Extend the theory further!
- Branching-time
- Timed games and synthesis
- Weighted and hybrid automata
- ...
- Algorithmic and complexity issues
- Expressiveness issues
- Implementation and case studies

