Topics in Timed Automata

B. Srivathsan

RWTH-Aachen

Software modeling and Verification group

Universality (Lecture 3)
Checking if a TA accepts all timed words is undecidable

Universality (Lecture 3)
 Checking if a TA accepts all timed words is undecidable

Alternating timed automata

Emptiness of alternating timed automata is undecidable

Time: the real line

0

Bounded time: $[0, N)$ for an a priori given $N \in \mathbb{N}$

Alternating timed automata

Time-bounded emptiness of alternating timed automata is decidable

Alternating timed automata over bounded time
Jenkins, Ouaknine, Rabinovich, Worrell. LICS'10

Universality

Given a time-bound N, checking if a TA accepts all timed words of duration at most N is decidable

Alternating timed automata

Time-bounded emptiness of alternating timed automata is decidable

Alternating timed automata over bounded time
Jenkins, Ouaknine, Rabinovich, Worrell. LICS'10

Lecture 9:

Time-bounded theory of verification

For the rest of the talk...

Assume that $N \in \mathbb{N}$ is given and let $\mathbb{T}=[0, N)$

Section 1:

Alternating timed automata

- X : set of clocks
- $\Phi(X)$: set of clock constraints σ (guards)

$$
\sigma: x<c|x \leq c| \sigma_{1} \wedge \sigma_{2} \mid \neg \sigma
$$

c is a non-negative integer

- Timed automaton $A:\left(Q, Q_{0}, \Sigma, X, T, F\right)$

$$
T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)
$$

$$
T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)
$$

$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$

$$
T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)
$$

$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$

$$
T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))
$$

$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$

$$
\mathcal{B}^{+}(S) \text { is all } \phi::=S\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2}
$$

$$
T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^{+}(Q \times \mathcal{P}(X))
$$

$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$

$$
\mathcal{B}^{+}(S) \text { is all } \phi::=S\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2}
$$

$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^{+}(Q \times \mathcal{P}(X))$

Alternating Timed Automata

An ATA is a tuple $A=\left(Q, q_{0}, \Sigma, X, T, F\right)$ where:

$$
T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^{+}(Q \times \mathcal{P}(X))
$$

is a finite partial function.

Alternating Timed Automata

An ATA is a tuple $A=\left(Q, q_{0}, \Sigma, X, T, F\right)$ where:

$$
T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^{+}(Q \times \mathcal{P}(X))
$$

is a finite partial function.

Partition: For every q, a the set

$$
\{[\sigma] \mid T(q, a, \sigma) \text { is defined }\}
$$

gives a finite partition of $\mathbb{R}_{\geq 0}^{X}$

Acceptance

Accepting run from q iff:

Acceptance

Accepting run from q iff:

- accepting run from q_{1} and q_{2},

Acceptance

Accepting run from q iff:

- accepting run from q_{1} and q_{2},
- or accepting run from q_{3},

Acceptance

Accepting run from q iff:

- accepting run from q_{1} and q_{2},
- or accepting run from q_{3},
- or accepting run from q_{4} and q_{5} and q_{6}

Example

L : timed words over $\{a\}$ containing no two $a^{\prime} s$ at distance 1
(Not expressible by non-deterministic TA)

Example

L : timed words over $\{a\}$ containing no two $a^{\prime} s$ at distance 1 (Not expressible by non-deterministic TA)

ATA:

$$
\begin{aligned}
& q_{0}, a, t t \mapsto\left(q_{0}, \emptyset\right) \wedge\left(q_{1},\{x\}\right) \\
& q_{1}, a, x=1 \mapsto\left(q_{2}, \emptyset\right) \\
& q_{1}, a, x \neq 1 \mapsto\left(q_{1}, \emptyset\right) \\
& q_{2}, a, t t \mapsto\left(q_{2}, \emptyset\right) \\
& q_{0}, q_{1} \text { are acc., } q_{2} \text { is non-acc. }
\end{aligned}
$$

- Given ATA A and timed word $w=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$
- Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $\left(0, q_{0}, v_{0}\right)$
- Given ATA A and timed word $w=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$
- Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $\left(0, q_{0}, v_{0}\right)$

$$
\left(a_{i}, t_{i}\right) \quad\left(i, q_{i}, v_{i}\right)
$$

$$
\left(a_{i+1}, t_{i+1}\right)
$$

- Given ATA A and timed word $w=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$
- Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $\left(0, q_{0}, v_{0}\right)$

$$
\begin{array}{ll}
\left(a_{i}, t_{i}\right) \quad\left(i, q_{i}, v_{i}\right) & \\
& v^{\prime}=v_{i}+t_{i+1}-t_{i} \\
& \text { unique } T\left(q_{i}, a_{i+1}, \sigma\right) \text { s.t. } v^{\prime} \models \phi \\
\left(a_{i+1}, t_{i+1}\right) \quad & (\circ \wedge \circ \wedge \circ) \vee(\circ \wedge \circ) \vee(\circ)
\end{array}
$$

- Given ATA A and timed word $w=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$
- Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $\left(0, q_{0}, v_{0}\right)$

$$
\begin{array}{lll}
\left(a_{i}, t_{i}\right) & \left(i, q_{i}, v_{i}\right) & \\
\text { Automaton }(\circ \wedge \circ \wedge \wedge) & v^{\prime}=v_{i}+t_{i+1}-t_{i} \\
& \text { unique } T\left(q_{i}, a_{i+1}, \sigma\right) \text { s.t. } v^{\prime} \models \phi \\
\left(a_{i+1}, t_{i+1}\right) & & (\circ \wedge \circ \wedge \circ) \vee(\circ \wedge \circ) \vee(\circ)
\end{array}
$$

- Given ATA A and timed word $w=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$
- Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $\left(0, q_{0}, v_{0}\right)$

- Given ATA A and timed word $w=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$
- Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $\left(0, q_{0}, v_{0}\right)$

- Given ATA A and timed word $w=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$
- Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $\left(0, q_{0}, v_{0}\right)$

- Automaton wins if game ends in accepting state

Time-bounded emptiness problem

Is there a timed word with timestamps in \mathbb{T} accepted by ATA A ?

Is there a timed word w with timestamps in \mathbb{T} such that
Automaton wins the game $\mathbb{G}(A, w)$?

Section 2:
Monadic second-order logic

MSO over ($\mathbb{T},<,+1$)

$$
\begin{aligned}
\forall t: & \left(A(t) \Rightarrow\left(\exists t_{1}:+1\left(t, t_{1}\right) \wedge B\left(t_{1}\right)\right)\right) \\
& \text { whenever } A \text { occurs, } B \text { occurs after } 1 \text { time unit }
\end{aligned}
$$

$$
\exists t:\left(A(t) \wedge \forall t^{\prime}:\left(\left(t^{\prime} \neq t\right) \Rightarrow \neg A(t)\right)\right)
$$

A is true at exactly one time instant

$\mathrm{MSO}(<,+1)$

- Syntax:
- vocabulary: first-order variables t_{1}, t_{2}, \ldots, second-order monadic predicates X_{1}, X_{2}, \ldots
- atomic formulas: $t_{1}<t_{2},+1\left(t_{1}, t_{2}\right), t_{1}=t_{2}, X(t)$
- $\wedge, \vee, \neg, \forall t, \forall X, \exists t, \exists X$
- $\phi\left(X_{1}, \ldots, X_{k}\right)$: free second order variables from X_{1}, \ldots, X_{k}
- Interpretation: of a second-order variable is a subset of \mathbb{T}
- Models: of $\phi\left(X_{1}, \ldots, X_{k}\right)$ are the set of interpretations of X_{1}, \ldots, X_{k} satisfying ϕ

Finiteness assumption

Free second-order variables interpreted by finite sets

Second-order quantification over finite sets

Interpretations and timed words

- W_{1}, \ldots, W_{k} : monadic predicate variables
- $\Sigma=\mathcal{P}_{+}\left(\left\{W_{1}, \ldots, W_{k}\right\}\right)$

Interpretations and timed words

- W_{1}, \ldots, W_{k} : monadic predicate variables
- $\Sigma=\mathcal{P}_{+}\left(\left\{W_{1}, \ldots, W_{k}\right\}\right)$

interpretations \leftrightarrow timed words

Section 3:

McNaughton games

$$
\begin{gathered}
\mathbf{W}: W_{1}, \ldots, W_{k} \\
\mathbf{X}: X_{1}, \ldots, X_{m} \\
\mathbf{Y}: Y_{1}, \ldots, Y_{l} \\
\varphi(\mathbf{W}, \mathbf{X}, \mathbf{Y}): \text { an } \mathrm{MSO}(<,+1) \text { formula }
\end{gathered}
$$

$\mathbf{W}: W_{1}, \ldots, W_{k}$
$\mathbf{X}: X_{1}, \ldots, X_{m}$
$\mathbf{Y}: Y_{1}, \ldots, Y_{l}$
$\varphi(\mathbf{W}, \mathbf{X}, \mathbf{Y}):$ an $\mathrm{MSO}(<,+1)$ formula

> X: Player I variables
> Y: Player II variables

W: parameters
Let \mathbf{P} be an interpretation of \mathbf{W}

$$
\begin{gathered}
\mathbf{W}: W_{1}, \ldots, W_{k} \\
\mathbf{X}: X_{1}, \ldots, X_{m} \\
\mathbf{Y}: Y_{1}, \ldots, Y_{l} \\
\varphi(\mathbf{W}, \mathbf{X}, \mathbf{Y}): \text { an } \mathrm{MSO}(<,+1) \text { formula }
\end{gathered}
$$

> X: Player I variables
> Y: Player II variables

W: parameters
Let \mathbf{P} be an interpretation of \mathbf{W}

Each interpretation \mathbf{P} of \mathbf{W} gives McNaughton game $\mathbb{G}(\varphi, \mathbf{P})$

$\mathbb{G}(\varphi, \mathbf{P})$

$$
\begin{gathered}
\mathbf{P}=\left(a_{1}, t_{1}\right)\left(a_{2}, t_{2}\right) \ldots\left(a_{n}, t_{n}\right) \\
t_{1}<t_{2}<\cdots<t_{n} \\
a_{i} \in\{0,1\}^{\mathbf{W}}
\end{gathered}
$$

$\mathbb{G}(\varphi, \mathbf{P})$

$$
\begin{gathered}
\mathbf{P}=\left(a_{1}, t_{1}\right)\left(a_{2}, t_{2}\right) \ldots\left(a_{n}, t_{n}\right) \\
t_{1}<t_{2}<\cdots<t_{n} \\
a_{i} \in\{0,1\}^{\mathbf{W}}
\end{gathered}
$$

- an n-round turn-based game

$\mathbb{G}(\varphi, \mathbf{P})$

$$
\begin{gathered}
\mathbf{P}=\left(a_{1}, t_{1}\right)\left(a_{2}, t_{2}\right) \ldots\left(a_{n}, t_{n}\right) \\
t_{1}<t_{2}<\cdots<t_{n} \\
a_{i} \in\{0,1\}^{\mathbf{W}}
\end{gathered}
$$

- an n-round turn-based game
- In $i^{\text {th }}$ round, Player I chooses $b_{i} \in\{0,1\}^{\mathbf{X}}$ and then Player II chooses $b_{i}^{\prime} \in\{0,1\}^{\mathbf{Y}}$

$\mathbb{G}(\varphi, \mathbf{P})$

$$
\begin{gathered}
\mathbf{P}=\left(a_{1}, t_{1}\right)\left(a_{2}, t_{2}\right) \ldots\left(a_{n}, t_{n}\right) \\
t_{1}<t_{2}<\cdots<t_{n} \\
a_{i} \in\{0,1\}^{\mathbf{W}}
\end{gathered}
$$

- an n-round turn-based game
- In $i^{\text {th }}$ round, Player I chooses $b_{i} \in\{0,1\}^{\mathbf{X}}$ and then Player II chooses $b_{i}^{\prime} \in\{0,1\}^{\mathbf{Y}}$
- After n rounds, Player I has constructed an interpretation \mathbf{Q} of \mathbf{X}, and Player II an interpretation \mathbf{R} of \mathbf{Y}

$\mathbb{G}(\varphi, \mathbf{P})$

$$
\begin{gathered}
\mathbf{P}=\left(a_{1}, t_{1}\right)\left(a_{2}, t_{2}\right) \cdots\left(a_{n}, t_{n}\right) \\
t_{1}<t_{2}<\cdots<t_{n} \\
a_{i} \in\{0,1\}^{\mathbf{W}}
\end{gathered}
$$

- an n-round turn-based game
- In $i^{\text {th }}$ round, Player I chooses $b_{i} \in\{0,1\}^{\mathbf{X}}$ and then Player II chooses $b_{i}^{\prime} \in\{0,1\}^{\mathbf{Y}}$
- After n rounds, Player I has constructed an interpretation \mathbf{Q} of \mathbf{X}, and Player II an interpretation \mathbf{R} of \mathbf{Y}
- If $\varphi(\mathbf{P}, \mathbf{Q}, \mathbf{R})$ is true, Player I wins. Otherwise, Player II wins

Section 4:

ATA emptiness to McNaughton games

Recall...

- Given ATA A and timed word $w=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$
- Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $\left(0, q_{0}, v_{0}\right)$

$$
\left(a_{i}, t_{i}\right) \quad\left(i, q_{i}, v_{i}\right)
$$

$$
v^{\prime}=v_{i}+t_{i+1}-t_{i}
$$

$$
\text { unique } T\left(q_{i}, a_{i+1}, \sigma\right) \text { s.t. } v^{\prime} \models \phi
$$

$\left(a_{i+1}, t_{i+1}\right) \quad\left(i+1, q_{i+1}, v_{i+1}\right)$
$(\circ \wedge \circ \wedge \circ) \vee(\circ \wedge \circ) \vee(\circ)$

- Automaton wins if game ends in accepting state

Recall...

- Given ATA A and timed word $w=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$
- Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $\left(0, q_{0}, v_{0}\right)$
$\left(a_{i}, t_{i}\right) \quad\left(i, q_{i}, v_{i}\right)$

Automaton

$$
v^{\prime}=v_{i}+t_{i+1}-t_{i}
$$

$$
\text { unique } T\left(q_{i}, a_{i+1}, \sigma\right) \text { s.t. } v^{\prime} \models \phi
$$

$\left(a_{i+1}, t_{i+1}\right) \quad\left(i+1, q_{i+1}, v_{i+1}\right)$
$(\circ \wedge \circ \wedge \circ) \vee(\circ \wedge \circ) \vee(\circ)$

- Automaton wins if game ends in accepting state

Recall...

- Given ATA A and timed word $w=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$
- Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $\left(0, q_{0}, v_{0}\right)$
$\left(a_{i}, t_{i}\right) \quad\left(i, q_{i}, v_{i}\right)$

Automaton

Pathfinder
$\left(a_{i+1}, t_{i+1}\right) \quad\left(i+1, q_{i+1}, v_{i+1}\right)$

$$
v^{\prime}=v_{i}+t_{i+1}-t_{i}
$$

$$
\text { unique } T\left(q_{i}, a_{i+1}, \sigma\right) \text { s.t. } v^{\prime} \models \phi
$$

$$
(\circ \wedge \circ \wedge \circ) \vee(\circ \wedge \circ) \vee(\circ)
$$

- Automaton wins if game ends in accepting state

$\mathbb{G}(A, w) \rightarrow \mathbb{G}\left(\varphi_{A}, \mathbf{P}\right)$

$$
\begin{aligned}
\text { Automaton } & \rightarrow \text { Player I } \\
\text { Pathfinder } & \rightarrow \text { Player II } \\
w & \rightarrow \mathbf{P}
\end{aligned}
$$

φ_{A} should ensure:

- only one X_{θ} is true at time point
- only one Y_{α} is true and α belongs to θ
- the transition function of A is respected
- initial, accepting

$\mathbb{G}(A, w) \rightarrow \mathbb{G}\left(\varphi_{A}, \mathbf{P}\right)$

$$
\begin{aligned}
\text { Automaton } & \rightarrow \text { Player I } \\
\text { Pathfinder } & \rightarrow \text { Player II } \\
w & \rightarrow \mathbf{P} \\
\theta:(\circ \wedge \circ \wedge \circ) & \rightarrow X_{\theta} \in \mathbf{X}
\end{aligned}
$$

φ_{A} should ensure:

- only one X_{θ} is true at time point
- only one Y_{α} is true and α belongs to θ
- the transition function of A is respected
- initial, accepting

$\mathbb{G}(A, w) \rightarrow \mathbb{G}\left(\varphi_{A}, \mathbf{P}\right)$

$$
\begin{aligned}
\text { Automaton } & \rightarrow \text { Player I } \\
\text { Pathfinder } & \rightarrow \text { Player II } \\
w & \rightarrow \mathbf{P} \\
\theta:(\circ \wedge \circ \wedge \circ) & \rightarrow X_{\theta} \in \mathbf{X} \\
\alpha: \circ & \rightarrow Y_{\alpha} \in \mathbf{Y}
\end{aligned}
$$

φ_{A} should ensure:

- only one X_{θ} is true at time point
- only one Y_{α} is true and α belongs to θ
- the transition function of A is respected
- initial, accepting

$$
\bigwedge_{\alpha}\left(Y_{\alpha}(t) \Rightarrow \bigvee_{\theta \models \alpha} X_{\theta}(t)\right) \wedge \bigwedge_{\alpha \neq \beta} \neg\left(Y_{\alpha}(t) \wedge Y_{\beta}(t)\right)
$$

α belongs to θ and only one α is true

For every $T(q, a, g)$ that is defined:

$$
\begin{gathered}
\forall t:\left(\operatorname{state}_{q}(t) \wedge \operatorname{next}\left(t, t^{\prime}\right) \wedge W_{a}\left(t^{\prime}\right) \wedge \operatorname{const}_{g}\left(t^{\prime}\right) \Rightarrow\right. \\
\left.\bigvee_{\theta \models T(q, a, g)} X_{\theta}\left(t^{\prime}\right)\right)
\end{gathered}
$$

- Automaton chooses θ respecting the transition function $T(q, a, g)$

For every $T(q, a, g)$ that is defined:

$$
\begin{gathered}
\forall t:\left(\operatorname{state}_{q}(t) \wedge \operatorname{next}\left(t, t^{\prime}\right) \wedge W_{a}\left(t^{\prime}\right) \wedge \text { const }_{g}\left(t^{\prime}\right) \Rightarrow\right. \\
\left.\bigvee_{\theta \models T(q, a, g)} X_{\theta}\left(t^{\prime}\right)\right)
\end{gathered}
$$

- Automaton chooses θ respecting the transition function $T(q, a, g)$
- $\operatorname{state}_{q}(t)$: formula to say that the automaton state at t is q
- next $\left(t, t^{\prime}\right): t$ and t^{\prime} are consecutive time-stamps in input word
- const $_{g}\left(t^{\prime}\right)$: clock constraint g is true at t^{\prime}

$$
\begin{gathered}
\exists u:\left(u<t \wedge \operatorname{reset}_{x}(u) \wedge \forall w:\left(u<w<t \Rightarrow \neg \operatorname{reset}_{x}(w)\right)\right. \\
\wedge t-u \sim k)
\end{gathered}
$$

- $\operatorname{const}_{g}(t)$ for $g \equiv x \sim k$
- $\operatorname{reset}_{x}(u)$: formula to say x was reset at u (information available from $Y_{\alpha}(u)$)

Automaton wins $\mathbb{G}(A, w)$

$$
\Leftrightarrow
$$

Player I wins $\mathbb{G}\left(\varphi_{A}, \mathbf{P}\right)$

Section 5:

Deciding McNaughton games

Theorem

$$
\text { Let } \mathbb{T}=[0, N) \text {. Given an } \mathrm{MSO}(<,+1) \text { formula } \varphi(\mathbf{W}, \mathbf{X}, \mathbf{Y}) \text {, }
$$ it is decidable whether there exists an interpretation \mathbf{P} of \mathbf{W} over \mathbb{T} such that Player I wins $\mathbb{G}(\varphi, \mathbf{P})$

\rightarrow proof on the board

Section 6:
Complexity

Time-bounded emptiness problem

Given an ATA A and a time bound N, is some finite word of duration at most N accepted by A ?

- The above problem has non-elementary lower-bound
- If N is fixed and not part of input, the algorithm is elementary

Take-away

- Time-bounded emptiness of ATA is decidable
- Inclusion and universality for TA over bounded time is decidable
- Decidability of automata through logic

Recommended: Slides of Ouaknine on Time-bounded verification (see course page)

