Topics in Timed Automata

B. Srivathsan

RWTH-Aachen

Software modeling and Verification group

Universality (Lecture 3)

Checking if a TA accepts all timed words is undecidable

Universality (Lecture 3)

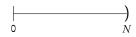
Checking if a TA accepts all timed words is undecidable

Alternating timed automata

Emptiness of alternating timed automata is undecidable

Time: the real line

Bounded time: [0, N) for an a priori given $N \in \mathbb{N}$



Alternating timed automata

Time-bounded emptiness of alternating timed automata is decidable

Alternating timed automata over bounded time

Jenkins, Ouaknine, Rabinovich, Worrell. LICS'10

Universality

Given a time-bound *N*, checking if a TA accepts all timed words of duration at most *N* is decidable

Alternating timed automata

Time-bounded emptiness of alternating timed automata is decidable

Alternating timed automata over bounded time

Jenkins, Ouaknine, Rabinovich, Worrell. LICS'10

Lecture 9:

Time-bounded theory of verification

For the rest of the talk...

Assume that $N \in \mathbb{N}$ is given and let $\mathbb{T} = [0, N)$

Section 1:

Alternating timed automata

- \triangleright X : set of clocks
- $\Phi(X)$: set of clock constraints σ (guards)

$$\sigma: x < c \mid x \le c \mid \sigma_1 \land \sigma_2 \mid \neg \sigma$$

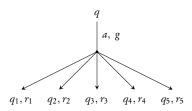
c is a non-negative integer

▶ Timed automaton A: $(Q, Q_0, \Sigma, X, T, F)$

$$T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)$$

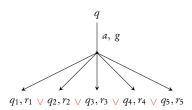
$$T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)$$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$$



$$T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)$$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$$



$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$$

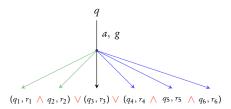
$$\downarrow \mathcal{B}^+(S) \text{ is all } \phi ::= S \mid \phi_1 \wedge \phi_2 \mid \phi_1 \vee \phi_2$$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$$

$$\downarrow \mathcal{B}^+(S) \text{ is all } \phi ::= S \mid \phi_1 \wedge \phi_2 \mid \phi_1 \vee \phi_2$$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$$



Alternating Timed Automata

An **ATA** is a tuple $A = (Q, q_0, \Sigma, X, T, F)$ where:

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$$

is a finite partial function.

Alternating Timed Automata

An ATA is a tuple $A = (Q, q_0, \Sigma, X, T, F)$ where:

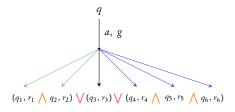
$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$$

is a finite partial function.

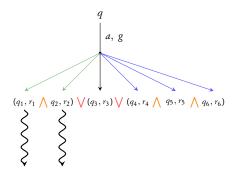
Partition: For every q, a the set

$$\{ [\sigma] \mid T(q, a, \sigma) \text{ is defined } \}$$

gives a finite partition of $\mathbb{R}_{\geq 0}^X$

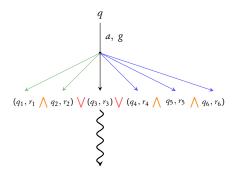


Accepting run from q iff:



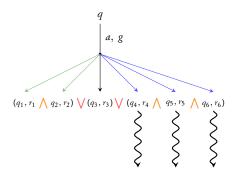
Accepting run from q iff:

ightharpoonup accepting run from q_1 and q_2 ,



Accepting run from q iff:

- accepting run from q_1 and q_2 ,
- or accepting run from q_3 ,



Accepting run from q iff:

- accepting run from q_1 and q_2 ,
- or accepting run from q_3 ,
- or accepting run from q_4 and q_5 and q_6

Example

L: timed words over {a} containing **no two** a's at distance 1 (Not expressible by non-deterministic TA)

Example

L: timed words over {a} containing **no two** a's at distance 1 (Not expressible by non-deterministic TA)

ATA:

$$q_0, a, tt \mapsto (q_0, \emptyset) \land (q_1, \{x\})$$
 $q_1, a, x = 1 \mapsto (q_2, \emptyset)$
 $q_1, a, x \neq 1 \mapsto (q_1, \emptyset)$
 $q_2, a, tt \mapsto (q_2, \emptyset)$

 q_0, q_1 are acc., q_2 is non-acc.

- ▶ Given ATA A and timed word $w = (a_1, t_1) \dots (a_n, t_n)$
- ▶ Acceptance game $\mathbb{G}(A, w)$ has n rounds
- Starts at $(0, q_0, v_0)$

- Given ATA A and timed word $w = (a_1, t_1) \dots (a_n, t_n)$
- ▶ Acceptance game $\mathbb{G}(A, w)$ has n rounds
- \triangleright Starts at $(0, q_0, v_0)$

$$(a_i,t_i) \qquad (i,q_i,v_i)$$

$$(a_{i+1}, t_{i+1})$$

- Given ATA A and timed word $w = (a_1, t_1) \dots (a_n, t_n)$
- ▶ Acceptance game $\mathbb{G}(A, w)$ has *n* rounds
- \triangleright Starts at $(0, q_0, v_0)$

$$(a_i,t_i)$$
 (i,q_i,v_i) $v'=v_i+t_{i+1}-t_i$ unique $T(q_i,a_{i+1},\sigma)$ s.t. $v'\models\phi$ (a_{i+1},t_{i+1}) $(\circ\wedge\circ\wedge\circ)\vee(\circ\wedge\circ)\vee(\circ)$

- Given ATA A and timed word $w = (a_1, t_1) \dots (a_n, t_n)$
- ▶ Acceptance game $\mathbb{G}(A, w)$ has *n* rounds
- \triangleright Starts at $(0, q_0, v_0)$

$$(a_i,t_i) \qquad (i,q_i,v_i)$$

$$\downarrow$$
Automaton $(\circ \land \circ \land \circ)$ $v'=v_i+t_{i+1}-t_i$

$$\text{unique } T(q_i,a_{i+1},\sigma) \text{ s.t. } v'\models \phi$$

$$(a_{i+1},t_{i+1}) \qquad (\circ \land \circ \land \circ) \lor (\circ \land \circ) \lor (\circ)$$

- Given ATA A and timed word $w = (a_1, t_1) \dots (a_n, t_n)$
- ▶ Acceptance game $\mathbb{G}(A, w)$ has *n* rounds
- ightharpoonup Starts at $(0, q_0, v_0)$

$$(a_{i}, t_{i}) \qquad (i, q_{i}, v_{i})$$

$$\downarrow$$
Automaton $(\circ \land \circ \land \circ)$ $v' = v_{i} + t_{i+1} - t_{i}$

$$\downarrow$$
Pathfinder \circ unique $T(q_{i}, a_{i+1}, \sigma)$ s.t. $v' \models \phi$

$$(a_{i+1}, t_{i+1}) \qquad (\circ \land \circ \land \circ) \lor (\circ \land \circ) \lor (\circ)$$

- Given ATA A and timed word $w = (a_1, t_1) \dots (a_n, t_n)$
- ▶ Acceptance game $\mathbb{G}(A, w)$ has *n* rounds
- ightharpoonup Starts at $(0, q_0, v_0)$

$$(a_{i}, t_{i}) \qquad (i, q_{i}, v_{i})$$

$$\downarrow$$
Automaton
$$(\circ \land \circ \land \circ) \qquad v' = v_{i} + t_{i+1} - t_{i}$$

$$\downarrow$$
Pathfinder
$$\circ \qquad \text{unique } T(q_{i}, a_{i+1}, \sigma) \text{ s.t. } v' \models \phi$$

$$(a_{i+1}, t_{i+1}) \qquad (i+1, q_{i+1}, v_{i+1}) \qquad (\circ \land \circ \land \circ) \lor (\circ \land \circ) \lor (\circ)$$

- Given ATA A and timed word $w = (a_1, t_1) \dots (a_n, t_n)$
- ▶ Acceptance game $\mathbb{G}(A, w)$ has n rounds
- ightharpoonup Starts at $(0, q_0, v_0)$

$$(a_{i}, t_{i}) \qquad (i, q_{i}, v_{i})$$

$$\downarrow$$
Automaton
$$(\circ \land \circ \land \circ) \qquad v' = v_{i} + t_{i+1} - t_{i}$$

$$\downarrow$$
Pathfinder
$$\circ \qquad \text{unique } T(q_{i}, a_{i+1}, \sigma) \text{ s.t. } v' \models \phi$$

$$(a_{i+1}, t_{i+1}) \qquad (i+1, q_{i+1}, v_{i+1}) \qquad (\circ \land \circ \land \circ) \lor (\circ \land \circ) \lor (\circ)$$

Automaton wins if game ends in accepting state

Time-bounded emptiness problem

Is there a timed word with timestamps in \mathbb{T} accepted by ATA A?

Is there a timed word w with timestamps in \mathbb{T} such that **Automaton wins** the game $\mathbb{G}(A, w)$?

Section 2:

Monadic second-order logic

MSO over $(\mathbb{T}, <, +1)$

$$\forall t: (A(t) \Rightarrow (\exists t_1: +1(t,t_1) \land B(t_1)))$$

whenever A occurs, B occurs after 1 time unit

$$\exists t : (A(t) \land \forall t' : ((t' \neq t) \Rightarrow \neg A(t)))$$
A is true at exactly one time instant

$$MSO(<, +1)$$

- ► Syntax:
 - **vocabulary:** first-order variables t_1, t_2, \ldots , second-order monadic predicates X_1, X_2, \ldots
 - ▶ atomic formulas: $t_1 < t_2$, $+1(t_1, t_2)$, $t_1 = t_2$, X(t)
 - $ightharpoonup \wedge$, \vee , \neg , $\forall t$, $\forall X$, $\exists t$, $\exists X$
 - $\phi(X_1,\ldots,X_k)$: free second order variables from X_1,\ldots,X_k
- ▶ Interpretation: of a second-order variable is a **subset** of \mathbb{T}
- Models: of $\phi(X_1, ..., X_k)$ are the set of interpretations of $X_1, ..., X_k$ satisfying ϕ

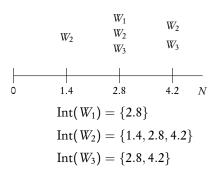
Finiteness assumption

Free second-order variables interpreted by finite sets

Second-order quantification over finite sets

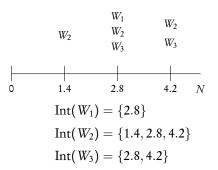
Interpretations and timed words

- W_1, \ldots, W_k : monadic predicate variables
- $\triangleright \ \Sigma = \mathcal{P}_+(\{W_1,\ldots,W_k\})$



Interpretations and timed words

- W_1, \ldots, W_k : monadic predicate variables
- $\triangleright \ \Sigma = \mathcal{P}_+(\{W_1,\ldots,W_k\})$



interpretations \leftrightarrow timed words

Section 3:

McNaughton games

 $\mathbf{W}: W_1, \ldots, W_k$

 $X: X_1, \ldots, X_m$

Y: $Y_1, ..., Y_l$

 $\varphi(\mathbf{W}, \mathbf{X}, \mathbf{Y})$: an MSO(<, +1) formula

$$\mathbf{W}: W_1, \ldots, W_k$$

$$X: X_1, \ldots, X_m$$

Y:
$$Y_1, ..., Y_l$$

$$\varphi(\mathbf{W}, \mathbf{X}, \mathbf{Y})$$
: an MSO(<, +1) formula

X: Player I variables

Y: Player II variables

W: parameters

Let **P** be an interpretation of **W**

$$\mathbf{W}: W_1, \ldots, W_k$$

$$X: X_1, \ldots, X_m$$

Y:
$$Y_1, ..., Y_l$$

$$\varphi(\mathbf{W}, \mathbf{X}, \mathbf{Y})$$
: an MSO(<, +1) formula

X: Player I variables

Y: Player II variables

W: parameters

Let P be an interpretation of W

Each interpretation **P** of **W** gives McNaughton game $\mathbb{G}(\varphi, \mathbf{P})$

$$\mathbf{P} = (a_1, t_1) (a_2, t_2) \dots (a_n, t_n)$$
$$t_1 < t_2 < \dots < t_n$$
$$a_i \in \{0, 1\}^{\mathbf{W}}$$

$$\mathbf{P} = (a_1, t_1) (a_2, t_2) \dots (a_n, t_n)$$
$$t_1 < t_2 < \dots < t_n$$
$$a_i \in \{0, 1\}^{\mathbf{W}}$$

▶ an **n-round** turn-based game

$$\mathbf{P} = (a_1, t_1) (a_2, t_2) \dots (a_n, t_n)$$
$$t_1 < t_2 < \dots < t_n$$
$$a_i \in \{0, 1\}^{\mathbf{W}}$$

- an **n-round** turn-based game
- ▶ In i^{th} round, Player I chooses $b_i \in \{0, 1\}^X$ and then Player II chooses $b_i' \in \{0, 1\}^Y$

$$\mathbf{P} = (a_1, t_1) (a_2, t_2) \dots (a_n, t_n)$$
$$t_1 < t_2 < \dots < t_n$$
$$a_i \in \{0, 1\}^{\mathbf{W}}$$

- an **n-round** turn-based game
- ▶ In i^{th} round, Player I chooses $b_i \in \{0, 1\}^X$ and then Player II chooses $b_i' \in \{0, 1\}^Y$
- ► After *n* rounds, Player I has constructed an interpretation Q of X, and Player II an interpretation R of Y

$$\mathbf{P} = (a_1, t_1) (a_2, t_2) \dots (a_n, t_n)$$
$$t_1 < t_2 < \dots < t_n$$
$$a_i \in \{0, 1\}^{\mathbf{W}}$$

- an **n-round** turn-based game
- ▶ In i^{th} round, Player I chooses $b_i \in \{0, 1\}^X$ and then Player II chooses $b_i' \in \{0, 1\}^Y$
- ► After *n* rounds, Player I has constructed an interpretation Q of X, and Player II an interpretation R of Y
- If $\varphi(P, Q, R)$ is true, Player I wins. Otherwise, Player II wins

Section 4:

ATA emptiness to McNaughton games

Recall...

- Given ATA A and timed word $w = (a_1, t_1) \dots (a_n, t_n)$
- ▶ Acceptance game $\mathbb{G}(A, w)$ has n rounds
- $\blacktriangleright \text{ Starts at } (0, q_0, v_0)$

 (a_{i+1}, t_{i+1}) $(i+1, q_{i+1}, v_{i+1})$

$$(a_i,t_i)$$
 (i,q_i,v_i) $v'=v_i+t_{i+1}-t_i$ unique $T(q_i,a_{i+1},\sigma)$ s.t. $v'\models\phi$

 $(\circ \wedge \circ \wedge \circ) \vee (\circ \wedge \circ) \vee (\circ)$

▶ Automaton wins if game ends in accepting state

Recall...

- Given ATA A and timed word $w = (a_1, t_1) \dots (a_n, t_n)$
- ► Acceptance game $\mathbb{G}(A, w)$ has *n* rounds
- \triangleright Starts at $(0, q_0, v_0)$

$$(a_{i}, t_{i}) \qquad (i, q_{i}, v_{i})$$

$$\downarrow$$
Automaton $(\circ \land \circ \land \circ)$ $v' = v_{i} + t_{i+1} - t_{i}$

$$\text{unique } T(q_{i}, a_{i+1}, \sigma) \text{ s.t. } v' \models \phi$$

$$(a_{i+1}, t_{i+1}) \qquad (i+1, q_{i+1}, v_{i+1}) \qquad (\circ \land \circ \land \circ) \lor (\circ \land \circ) \lor (\circ)$$

Automaton wins if game ends in accepting state

Recall...

- Given ATA A and timed word $w = (a_1, t_1) \dots (a_n, t_n)$
- ► Acceptance game $\mathbb{G}(A, w)$ has n rounds
- ightharpoonup Starts at $(0, q_0, v_0)$

$$(a_{i}, t_{i}) \qquad (i, q_{i}, v_{i})$$

$$\downarrow$$
Automaton
$$(\circ \land \circ \land \circ) \qquad v' = v_{i} + t_{i+1} - t_{i}$$

$$\downarrow$$
Pathfinder
$$\circ \qquad \text{unique } T(q_{i}, a_{i+1}, \sigma) \text{ s.t. } v' \models \phi$$

$$(a_{i+1}, t_{i+1}) \qquad (i+1, q_{i+1}, v_{i+1}) \qquad (\circ \land \circ \land \circ) \lor (\circ \land \circ) \lor (\circ)$$

Automaton wins if game ends in accepting state

$$\mathbb{G}(A, w) \rightarrow \mathbb{G}(\varphi_A, \mathbf{P})$$

Automaton
$$\rightarrow$$
 Player I

Pathfinder \rightarrow Player II

 $w \rightarrow$ P

φ_A should ensure:

- only one X_{θ} is true at time point
- only one Y_{α} is true and α belongs to θ
- ▶ the transition function of *A* is respected
- ▶ initial, accepting

$$\mathbb{G}(A, w) \rightarrow \mathbb{G}(\varphi_A, \mathbf{P})$$

Automaton
$$\rightarrow$$
 Player I

Pathfinder \rightarrow Player II

 $w \rightarrow P$
 $\theta : (\circ \land \circ \land \circ) \rightarrow X_{\theta} \in X$

φ_A should ensure:

- only one X_{θ} is true at time point
- only one Y_{α} is true and α belongs to θ
- ▶ the transition function of *A* is respected
- ▶ initial, accepting

$$\mathbb{G}(A, w) \rightarrow \mathbb{G}(\varphi_A, \mathbf{P})$$

Automaton
$$\rightarrow$$
 Player I

Pathfinder \rightarrow Player II

 $w \rightarrow P$
 $\theta : (\circ \land \circ \land \circ) \rightarrow X_{\theta} \in X$
 $\alpha : \circ \rightarrow Y_{\alpha} \in Y$

φ_A should ensure:

- only one X_{θ} is true at time point
- only one Y_{α} is true and α belongs to θ
- ▶ the transition function of *A* is respected
- initial, accepting

$$igwedge_{lpha} \left(\ Y_{lpha}(t) \ \Rightarrow \ igvee_{ heta \models lpha} X_{ heta}(t) \
ight) \ \land \ igwedge_{lpha
eq eta} \ \lnot (\ Y_{lpha}(t) \land Y_{eta}(t) \)$$

 α belongs to θ and only one α is true

For every T(q, a, g) that is defined:

$$\forall t: \left(\mathit{state}_q(t) \land \mathit{next}(t,t') \land W_a(t') \land \mathit{const}_g(t') \Rightarrow \\ \bigvee_{\theta \models T(q,a,g)} X_{\theta}(t') \right)$$

• Automaton chooses θ respecting the transition function T(q, a, g)

For every T(q, a, g) that is defined:

$$orall t: \left(\mathit{state}_q(t) \ \land \ \mathit{next}(t,t') \ \land \ W_a(t') \ \land \ \mathit{const}_g(t') \ \Rightarrow \ \bigvee_{\theta \models T(q,a,g)} X_{\theta}(t') \ \right)$$

- Automaton chooses θ respecting the transition function T(q, a, g)
- $state_q(t)$: formula to say that the automaton state at t is q
- ▶ next(t, t'): t and t' are consecutive time-stamps in input word
- $const_g(t')$: clock constraint g is true at t'

$$\exists u: \left(u < t \land reset_x(u) \land \forall w: \left(u < w < t \Rightarrow \neg reset_x(w) \right) \right.$$
 $\land t - u \sim k$

- $const_g(t)$ for $g \equiv x \sim k$
- reset_x(u): formula to say x was reset at u (information available from $Y_{\alpha}(u)$)

Automaton wins $\mathbb{G}(A, w)$

 \Leftrightarrow

Player I wins $\mathbb{G}(\varphi_A, \mathbf{P})$

Section 5:

Deciding McNaughton games

Theorem

Let $\mathbb{T} = [0, N)$. Given an MSO(<, +1) formula $\varphi(\mathbf{W}, \mathbf{X}, \mathbf{Y})$, it is **decidable** whether there exists an interpretation \mathbf{P} of \mathbf{W} over \mathbb{T} such that Player I wins $\mathbb{G}(\varphi, \mathbf{P})$

 \rightarrow proof on the board

Section 6:

Complexity

Time-bounded emptiness problem

Given an ATA *A* and a time bound *N*, is some finite word of duration at most *N* accepted by *A*?

- ► The above problem has **non-elementary** lower-bound
- ► If *N* is fixed and not part of input, the algorithm is elementary

Take-away

- ► Time-bounded emptiness of ATA is decidable
- ► Inclusion and universality for TA over bounded time is decidable
- Decidability of automata through logic

Recommended: Slides of Ouaknine on Time-bounded verification (see course page)