Topics in Timed Automata

B. Srivathsan

RWTH-Aachen

Software modeling and Verification group

Reachability for timed automata

Key idea: Compute the zone graph, use abstraction for termination

Reachability for timed automata

Key idea: Compute the zone graph, use abstraction for termination

Coarser the abstraction, smaller the zone graph

Condition 1: \mathfrak{a} should have finite range

Condition 2: \mathfrak{a} should be sound $\Rightarrow \mathfrak{a}(W)$ can contain only valuations simulated by W

Bounds and abstractions

Theorem [LSOO]

Coarsest simulation relation is EXPTIME-hard

Bounds and abstractions

Theorem [LSOO]

Coarsest simulation relation is EXPTIME-hard

$$
(y \leq 3) \quad(x<1) \quad(x<4)
$$

$$
(x>6)
$$

$$
(y<1)
$$

Bounds and abstractions

Theorem [LSOO]

Coarsest simulation relation is EXPTIME-hard

$$
(y \leq 3) \quad(x<1) \quad(x<4)
$$

$$
(x>6)
$$

$$
(y<1)
$$

M-bounds $[\mathrm{AD} 94]$
$M(x)=6, M(y)=3$
$v \preccurlyeq_{M} v^{\prime}$

$$
\begin{gathered}
\text { LU-bounds [BBLP04] } \\
L(x)=6, L(y)=-\infty \\
U(x)=4, U(y)=3 \\
v \preccurlyeq_{L U} v^{\prime}
\end{gathered}
$$

Abstractions in literature [BBLPO4, Bou04]

Convex

Last lecture: Efficiently using the M-bounds based Closure $_{M}$ abstraction

Lecture 7:
 Lower-upper bounds for abstraction

LU-guards: guards consistent with given L and U
LU-guards for $L(x)=3, U(x)=5, L(y)=8, U(y)=-\infty$

$$
\begin{array}{r}
x \geq 0, x \geq 1, x \geq 2, x \geq 3 \\
x \leq 0, x \leq 1, \ldots, x \leq 5 \\
y \geq 0, y \geq 1, \ldots, y \geq 8
\end{array}
$$

(same with $<$ and $>$)

LU-automata: automata with only LU-guards

$$
L(x)=3, U(x)=5, L(y)=8, U(y)=-\infty
$$

LU-automata: automata with only LU-guards

$$
L(x)=3, U(x)=5, L(y)=8, U(y)=-\infty
$$

What do we need?

1. An abstraction $\mathrm{abs}_{L U}$ that is sound and complete for all LU-automata

2. Efficient inclusion testing $Z \subseteq \operatorname{abs}_{L U}\left(Z^{\prime}\right)$

Step 1:

LU-regions

Classic regions [AD94]: v^{\prime} belongs to $[v]^{M}$ if:

- Invariance by guards: v^{\prime} satisfies the same guards as v,
- Invariance by time-elapse: for every time elapse $\delta \in \mathbb{R}_{\geq 0}$, there is a $\delta^{\prime} \in \mathbb{R}_{\geq 0}$ such that $v^{\prime}+\delta^{\prime} \in[v+\delta]^{\prime \prime}$.

Classic regions [AD94]: v^{\prime} belongs to $[v]^{M}$ if:

- Invariance by guards: v^{\prime} satisfies the same guards as v,
- Invariance by time-elapse: for every time elapse $\delta \in \mathbb{R}_{\geq 0}$, there is a $\delta^{\prime} \in \mathbb{R}_{\geq 0}$ such that $v^{\prime}+\delta^{\prime} \in[v+\delta]^{\prime \prime}$.

Classic regions [AD94]: v^{\prime} belongs to $[v]^{M}$ if:

- Invariance by guards: v^{\prime} satisfies the same guards as v,
- Invariance by time-elapse: for every time elapse $\delta \in \mathbb{R}_{\geq 0}$, there is a $\delta^{\prime} \in \mathbb{R}_{\geq 0}$ such that $v^{\prime}+\delta^{\prime} \in[v+\delta]^{\prime \prime}$.

Classic regions [AD94]: v^{\prime} belongs to $[v]^{M}$ if:

- Invariance by guards: v^{\prime} satisfies the same guards as v,
- Invariance by time-elapse: for every time elapse $\delta \in \mathbb{R}_{\geq 0}$, there is a $\delta^{\prime} \in \mathbb{R}_{\geq 0}$ such that $v^{\prime}+\delta^{\prime} \in[v+\delta]^{\prime \prime}$.

Classic regions [AD94]: v^{\prime} belongs to $[v]^{M}$ if:

- Invariance by guards: v^{\prime} satisfies the same guards as v,
- Invariance by time-elapse: for every time elapse $\delta \in \mathbb{R}_{\geq 0}$, there is a $\delta^{\prime} \in \mathbb{R}_{\geq 0}$ such that $v^{\prime}+\delta^{\prime} \in[v+\delta]^{\prime \prime}$.

Classic regions [AD94]: v^{\prime} belongs to $[v]^{M}$ if:

- Invariance by guards: v^{\prime} satisfies the same guards as v,
- Invariance by time-elapse: for every time elapse $\delta \in \mathbb{R}_{\geq 0}$, there is a $\delta^{\prime} \in \mathbb{R}_{\geq 0}$ such that $v^{\prime}+\delta^{\prime} \in[v+\delta]^{\prime \prime}$.

Classic regions [AD94]: v^{\prime} belongs to $[v]^{M}$ if:

- Invariance by guards: v^{\prime} satisfies the same guards as v,
- Invariance by time-elapse: for every time elapse $\delta \in \mathbb{R}_{\geq 0}$, there is a $\delta^{\prime} \in \mathbb{R}_{\geq 0}$ such that $v^{\prime}+\delta^{\prime} \in[v+\delta]^{\prime \prime}$.

Classic regions [AD94]: v^{\prime} belongs to $[v]^{M}$ if:

- Invariance by guards: v^{\prime} satisfies the same guards as $v, \sqrt{ }$
- Invariance by time-elapse: for every time elapse $\delta \in \mathbb{R}_{\geq 0}$, there is a $\delta^{\prime} \in \mathbb{R}_{\geq 0}$ such that $v^{\prime}+\delta^{\prime} \in[v+\delta]^{\prime \prime}$.

Classic regions [AD94]: Given M, v^{\prime} belongs to $[v]^{M}$ if:

- Invariance by guards: v^{\prime} satisfies the same guards as v,
- Invariance by time-elapse: for every pair of clocks x, y with:

$$
\begin{gathered}
v(x) \leq M_{x}, \quad v(y) \leq M_{y} \\
\lfloor v(x)\rfloor=\left\lfloor v^{\prime}(x)\right\rfloor \text { and }\lfloor v(y)\rfloor=\left\lfloor v^{\prime}(y)\right\rfloor
\end{gathered}
$$

we have:

- if $0<\{v(x)\}<\{v(y)\}$, then $0<\left\{v^{\prime}(x)\right\}<\left\{v^{\prime}(y)\right\}$
- if $0<\{v(x)\}=\{v(y)\}$, then $0<\left\{v^{\prime}(x)\right\}=\left\{v^{\prime}(y)\right\}$

$$
\begin{array}{r}
\lfloor v(x)\rfloor: \text { integer part of } v(x) \\
\{v(x)\}: \text { fractional part of } v(x)
\end{array}
$$

Coming next...

Regions for the LU-case

Invariance by (LU-) guards: $v(x)$ is less than both L_{x}, U_{x}

Invariance by (LU-) guards: $v(x)>L_{x}$

Invariance by (LU-) guards: $v(x)>U_{x}$

Invariance by time-elapse: $v(x) \leq U_{x}, \quad v(y) \leq L_{y}$

Invariance by time-elapse: $v(x)>U_{x}, \quad v(y) \leq L_{y}$

Invariance by time-elapse: $v(x) \leq U_{x}, \quad v(y)>L_{y}$

LU-regions

Definition: v^{\prime} belongs to $\langle v\rangle^{L U}$ if:

- Invariance by guards: v^{\prime} satisfies the same guards as v,
- Invariance by time-elapse: for every pair of clocks x, y with:

$$
\begin{gathered}
v(x) \leq U_{x}, v(y) \leq L_{y} \\
\lfloor v(x)\rfloor=\left\lfloor v^{\prime}(x)\right\rfloor \text { and }\lfloor v(y)\rfloor=\left\lfloor v^{\prime}(y)\right\rfloor,
\end{gathered}
$$

we have:

- if $0<\{v(x)\}<\{v(y)\}$, then $0<\left\{v^{\prime}(x)\right\}<\left\{v^{\prime}(y)\right\}$
- if $0<\{v(x)\}=\{v(y)\}$, then $0<\left\{v^{\prime}(x)\right\}=\left\{v^{\prime}(y)\right\}$

Step 2:

An abstraction $\operatorname{abs}_{L U}$

$$
\begin{gathered}
v \sqsubseteq_{L U} v^{\prime} \\
\text { if } \\
\exists \delta^{\prime} \in \mathbb{R}_{\geq 0} \text { s.t. } v^{\prime}+\delta^{\prime} \in\langle v\rangle^{L U}
\end{gathered}
$$

$$
\begin{gathered}
v \sqsubseteq_{L U} v^{\prime} \\
\text { if }
\end{gathered}
$$

$$
\exists \delta^{\prime} \in \mathbb{R}_{\geq 0} \text { s.t. } v^{\prime}+\delta^{\prime} \in\langle v\rangle^{L U}
$$

Definition

$$
\operatorname{abs}_{L U}(W)=\left\{v \mid \exists v^{\prime} \in W \text { s.t. } v \sqsubseteq_{L U} v^{\prime}\right\}
$$

$$
\begin{gathered}
v \sqsubseteq_{L U} v^{\prime} \\
\text { if } \\
\exists \delta^{\prime} \in \mathbb{R}_{\geq 0} \text { s.t. } v^{\prime}+\delta^{\prime} \in\langle v\rangle^{L U}
\end{gathered}
$$

Definition

$$
\operatorname{abs}_{L U}(W)=\left\{v \mid \exists v^{\prime} \in W \text { s.t. } v \sqsubseteq_{L U} v^{\prime}\right\}
$$

$\mathrm{abs}_{L U}$ is sound and complete

Example

Convex

Time-elapsed zone Z : if $v \in Z$, then $v+\delta \in Z$ for all $\delta \in \mathbb{R}_{\geq 0}$

$\mathfrak{a}_{\preccurlyeq L U}$ coincides with abs $_{L U}$

If Z is time-elapsed, then $\mathfrak{a}_{\preccurlyeq L U}(Z)=\operatorname{abs}_{L U}(Z)$

Better abstractions for timed automata
F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS'12

Time-elapsed zone Z : if $v \in Z$, then $v+\delta \in Z$ for all $\delta \in \mathbb{R}_{\geq 0}$

$\mathfrak{a}_{\preccurlyeq L U}$ coincides with $\mathrm{abs}_{L U}$

If Z is time-elapsed, then $\mathfrak{a}_{\preccurlyeq L U}(Z)=\operatorname{abs}_{L U}(Z)$

Optimality

$\mathfrak{a}_{\preccurlyeq L U}(Z)$ is the coarsest abstraction that is sound and complete for all LU-automata

Better abstractions for timed automata
F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS'12

Step 3:
 Efficient inclusion

$$
\begin{gathered}
v \sqsubseteq_{L U} v^{\prime} \\
\text { if } \\
\exists \delta^{\prime} \in \mathbb{R}_{\geq 0} \text { s.t. } v^{\prime}+\delta^{\prime} \in\langle v\rangle^{L U}
\end{gathered}
$$

Definition

$$
\operatorname{abs}_{L U}(W)=\left\{v \mid \exists v^{\prime} \in W \text { s.t. } v \sqsubseteq_{L U} v^{\prime}\right\}
$$

$$
\begin{gathered}
v \sqsubseteq_{L U} v^{\prime} \\
\text { if } \\
\exists \delta^{\prime} \in \mathbb{R}_{\geq 0} \text { s.t. } v^{\prime}+\delta^{\prime} \in\langle v\rangle^{L U}
\end{gathered}
$$

Definition

$$
\operatorname{abs}_{L U}(W)=\left\{v \mid \exists v^{\prime} \in W \text { s.t. } v \sqsubseteq_{L U} v^{\prime}\right\}
$$

Z, Z^{\prime} : time-elapsed zones
$Z \nsubseteq \operatorname{abs}_{L U}\left(Z^{\prime}\right)$ iff there exists $v \in Z$ s.t.
$\langle v\rangle^{L U}$ does not intersect Z^{\prime}

Efficient inclusion testing

Reduction to two clocks

$Z \nsubseteq \mathfrak{a}_{\preccurlyeq L U}\left(Z^{\prime}\right)$ if and only if there exist 2 clocks x, y s.t.

$$
\operatorname{Proj}_{x y}(Z) \nsubseteq \mathfrak{a}_{\preccurlyeq L U}\left(\operatorname{Proj}_{x y}\left(Z^{\prime}\right)\right)
$$

Efficient inclusion testing

Reduction to two clocks

$Z \nsubseteq \mathfrak{a}_{\preccurlyeq L U}\left(Z^{\prime}\right)$ if and only if there exist $\mathbf{2}$ clocks x, y s.t.

$$
\operatorname{Proj}_{x y}(Z) \nsubseteq \mathfrak{a}_{\preccurlyeq L U}\left(\operatorname{Proj}_{x y}\left(Z^{\prime}\right)\right)
$$

Complexity: $\mathcal{O}\left(|X|^{2}\right)$, where X is the set of clocks

Efficient inclusion testing

Reduction to two clocks

$Z \nsubseteq \mathfrak{a}_{\preccurlyeq L U}\left(Z^{\prime}\right)$ if and only if there exist 2 clocks x, y s.t.

$$
\operatorname{Proj}_{x y}(Z) \nsubseteq \mathfrak{a}_{\preccurlyeq L U}\left(\operatorname{Proj}_{x y}\left(Z^{\prime}\right)\right)
$$

Complexity: $\mathcal{O}\left(|X|^{2}\right)$, where X is the set of clocks
Same complexity as $Z \subseteq Z^{\prime}$!

Better abstractions for timed automata
F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS'12

Efficient inclusion testing

Reduction to two clocks

$Z \nsubseteq \mathfrak{a}_{\preccurlyeq L U}\left(Z^{\prime}\right)$ if and only if there exist 2 clocks x, y s.t.

$$
\operatorname{Proj}_{x y}(Z) \nsubseteq \mathfrak{a}_{\preccurlyeq L U}\left(\operatorname{Proj}_{x y}\left(Z^{\prime}\right)\right)
$$

Complexity: $\mathcal{O}\left(|X|^{2}\right)$, where X is the set of clocks
Same complexity as $Z \subseteq Z^{\prime}$!

Slightly modified comparison works!

Better abstractions for timed automata
F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS'12

Convex

Convex

Question: If $\mathfrak{a}_{\preccurlyeq L U}$ is best, can we do better?

Get better LU-bounds!

Global LU-bounds

Naive: $L_{x}=U_{x}=10^{6}, L_{y}=U_{y}=10^{6}$
Size of graph $\sim 10^{6}$

Static analysis: bounds for every q [BBFL03]

Size of graph <10

Static analysis: bounds for every q

[BBFL03]

Size of graph $\sim 10^{6}$

Need to look at semantics...

LU bounds for every (q, Z) in zone graph

LU bounds for every (q, Z) in zone graph

$$
M(x)=-\infty
$$

$$
(q, Z, M)
$$

$$
M(x)=-\infty
$$

$$
(q, Z, M)
$$

$$
x \leq 3
$$

$$
M(x)=3
$$

$$
M(x)=3
$$

$$
(q, Z, M)
$$

$$
x \leq 3
$$

$$
M(x)=5
$$

All tentative nodes consistent

$$
M(x)=11 \quad+\text { No more exploration }
$$

Constant propagation

Theorem (Correctness)

An accepting state is reachable in \mathcal{A} iff the constant propagation algorithm reaches a node with accepting state and a non-empty zone.

Key idea: Compute the zone graph, use abstraction for termination

Developments are recent, a lot of (not-so-low) hanging fruit available

References I

R. Alur and D.L. Dill.

A theory of timed automata.
Theoretical Computer Science, 126(2):183-235, 1994.
G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen.

Static guard analysis in timed automata verification.
In TACAS'03, volume 2619 of $L N C S$, pages 254-270. Springer, 2003.
G. Behrmann, P. Bouyer, K. Larsen, and R. Pelánek.

Lower and upper bounds in zone based abstractions of timed automata.
Tools and Algorithms for the Construction and Analysis of Systems, pages 312-326, 2004.
P. Bouyer.

Forward analysis of updatable timed automata.
Form. Methods in Syst. Des., 24(3):281-320, 2004.
François Laroussinie and Ph. Schnoebelen.
The state explosion problem from trace to bisimulation equivalence.
In Proceedings of the Third International Conference on Foundations of Software Science and Computation Structures, FOSSACS '00, pages 192-207. Springer-Verlag, 2000.

