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Reachability for timed automata
Key idea: Compute the zone graph, use abstraction for termination

(q0,Z0)

(q1,Z1) (q5,Z5)

(q2,Z2)

(q3,Z3)

(q4,Z4)

q3 = q1 ∧
Z3 ⊆ a(Z1)?

Coarser the abstraction, smaller the zone graph
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Condition 1: a should have finite range

Condition 2: a should be sound⇒ a(W ) can contain only
valuations simulated by W
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Bounds and abstractions
Theorem [LS00]

Coarsest simulation relation is EXPTIME-hard

M-bounds [AD94]

M(x) = 6, M(y) = 3

v 4M v′

LU-bounds [BBLP04]

L(x) = 6, L(y) = −∞
U(x) = 4, U(y) = 3

v 4LU v′

(y ≤ 3)

(x < 1)

(y < 1)

(x < 4)

(x > 6)
{y}

{y}

s0 s1 s3

s2
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Abstractions in literature [BBLP04, Bou04]

Non-convex

Convex

a4LU

ClosureM Extra+M

Extra+LU

ExtraLU

ExtraM

(4M)

(4LU)

Last lecture: Efficiently using the M-bounds based ClosureM abstraction
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Lecture 7:
Lower-upper bounds for

abstraction
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LU-guards: guards consistent with given L and U

LU-guards for L(x) = 3,U(x) = 5,L(y) = 8,U(y) = −∞

x ≥ 0, x ≥ 1, x ≥ 2, x ≥ 3
x ≤ 0, x ≤ 1, . . . , x ≤ 5
y ≥ 0, y ≥ 1, . . . , y ≥ 8

(same with < and >)
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LU-automata: automata with only LU-guards

L(x) = 3,U(x) = 5,L(y) = 8,U(y) = −∞

q0 q1
x ≥ 2,

{x}

y ≥ 7
{x}

q1

y ≤ 7
{x}
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What do we need?

1. An abstraction absLU that is sound and complete for all
LU-automata

absLU(W )
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2. Efficient inclusion testing Z ⊆ absLU(Z′)
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Step 1:

LU-regions
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Classic regions [AD94] : v′ belongs to [v]M if:

I Invariance by guards: v′ satisfies the same guards as v,

√

I Invariance by time-elapse: for every time elapse δ ∈ R≥0, there is a
δ′ ∈ R≥0 such that v′ + δ′ ∈ [v + δ]M .

× √

x

y

0

My

Mx

v′

v

v v
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Classic regions [AD94] : Given M, v′ belongs to [v]M if:

I Invariance by guards: v′ satisfies the same guards as v,

I Invariance by time-elapse: for every pair of clocks x, y with:

v(x) ≤ Mx, v(y) ≤ My

b v(x) c = b v′(x) c and b v(y) c = b v′(y) c

we have:

I if 0 < {v(x)} < {v(y)} , then 0 < {v′(x)} < {v′(y)}
I if 0 < {v(x)} = {v(y)} , then 0 < {v′(x)} = {v′(y)}

b v(x) c: integer part of v(x)

{v(x)}: fractional part of v(x)
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Coming next...

Regions for the LU-case
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Invariance by (LU-) guards: v(x) is less than both Lx, Ux

0

y

x

v

x > bv(x)c x < bv(x)c+ 1

y < bv(y)c+ 1

y > bv(y)c
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Invariance by (LU-) guards: v(x) > Lx

0

y

x

v

Lx

x > Lx
x < bv(x)c+ 1

y < bv(y)c+ 1

y > bv(y)c
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Invariance by (LU-) guards: v(x) > Ux

0

y

x

v

Ux x > bv(x)c

y < bv(y)c+ 1

y > bv(y)c
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Invariance by time-elapse: v(x) ≤ Ux, v(y) ≤ Ly

0

y

xUx

Ly

v′
v

x < bv(x)c+ 1

y > bv(y)c+ 1
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Invariance by time-elapse: v(x) > Ux, v(y) ≤ Ly

0

y

xUx

Ly

v′
v

x < bv(x)c+ 1

y > bv(y)c+ 1
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Invariance by time-elapse: v(x) ≤ Ux, v(y) > Ly

0

y

xUx

Ly

v′
v

x < bv(x)c+ 1

y > bv(y)c+ 1
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LU-regions

Definition: v′ belongs to 〈v〉LU if:

I Invariance by guards: v′ satisfies the same guards as v,

I Invariance by time-elapse: for every pair of clocks x, y with:

v(x) ≤ Ux, v(y) ≤ Ly

b v(x) c = b v′(x) c and b v(y) c = b v′(y) c,

we have:

I if 0 < {v(x)} < {v(y)} , then 0 < {v′(x)} < {v′(y)}
I if 0 < {v(x)} = {v(y)} , then 0 < {v′(x)} = {v′(y)}
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Step 2:

An abstraction absLU
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v vLU v′

if

∃δ′ ∈ R≥0 s.t. v′ + δ′ ∈ 〈v〉LU

Definition
absLU(W ) = {v | ∃v′ ∈W s.t. v vLU v′}

absLU is sound and complete

22/35
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Example

Ux Lx

Ly

Uy

0 x

y

v′

absLU(Z)

Z
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Non-convex

Convex

a4LU

ClosureM Extra+M

Extra+LU

ExtraLU

ExtraM

(4M)

(4LU)
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Time-elapsed zone Z: if v ∈ Z, then v + δ ∈ Z for all δ ∈ R≥0

a4LU coincides with absLU

If Z is time-elapsed, then a4LU(Z) = absLU(Z)

Optimality

a4LU(Z) is the coarsest abstraction that is sound and complete
for all LU-automata

Better abstractions for timed automata

F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS’12
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Step 3:

Efficient inclusion
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v vLU v′

if

∃δ′ ∈ R≥0 s.t. v′ + δ′ ∈ 〈v〉LU

Definition
absLU(W ) = {v | ∃v′ ∈W s.t. v vLU v′}

Z,Z′: time-elapsed zones

Z 6⊆ absLU(Z′) iff there exists v ∈ Z s.t.
〈v〉LU does not intersect Z′
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Efficient inclusion testing
Reduction to two clocks

Z 6⊆ a4LU(Z′) if and only if there exist 2 clocks x, y s.t.

Projxy(Z) 6⊆ a4LU(Projxy(Z
′))

Complexity: O(|X|2), where X is the set of clocks

Same complexity as Z ⊆ Z′!

Slightly modified comparison works!

Better abstractions for timed automata

F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS’12
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Non-convex

Convex

a4LU

ClosureM Extra+M

Extra+LU

ExtraLU

ExtraM

(4M)

(4LU)

Question: If a4LU is best, can we do better?
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Get better LU-bounds!
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Global LU-bounds

[BBFL03]

q0 q1 q2

q3

x = 1
{x}

{x, y}
x = 106

y = 106

x ≥ 2 x ≤ 1

Naive: Lx = Ux = 106, Ly = Uy = 106

Size of graph ∼ 106

106

Need to look at semantics...
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Static analysis: bounds for every q
[BBFL03]

q0 q1 q2

q3

x = 1
{x}

{x, y}
x = 106

y = 106

x ≥ 2 x ≤ 1

Naive: Lx = Ux = 106, Ly = Uy = 106

Size of graph < 10

1061

Need to look at semantics...
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LU bounds for every (q,Z) in zone graph

...

...

...

constants at

depend on subtree
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(q,Z,M)

x ≤ 3

(q′, Z′, M′)

Z′ ⊆ ClosureM(Z)

x > 6

X
x ≥ 11

x := 0

M(x) = −∞

All tentative nodes consistent
+ No more exploration

→ Terminate!
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(q,Z,M)

x ≤ 3

(q′, Z′, M′)
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x > 6

X
x ≥ 11

x := 0

M(x) = 5

All tentative nodes consistent
+ No more exploration

→ Terminate!
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Constant propagation

q0 q1 q2

q3

x = 1
{x}

{x, y}
x = 106

y = 106

x ≥ 2 x ≤ 1

Theorem (Correctness)
An accepting state is reachable in A iff the constant propagation al-
gorithm reaches a node with accepting state and a non-empty zone.
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Key idea: Compute the zone graph, use abstraction for termination

(q0,Z0)

(q1,Z1) (q5,Z5)

(q2,Z2)

(q3,Z3)

(q4,Z4)

q3 = q1 ∧
Z3 ⊆ a(Z1)?

Developments are recent, a lot of (not-so-low) hanging fruit available
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