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Reachability for timed automata

Key idea: Compute the zone graph, use abstraction for termination

(qu ZO)

(q1.21) & ° (g5, 75)

B =q N
Z3 Ca(Zy)? (92, 22)

(93:25)



Reachability for timed automata

Key idea: Compute the zone graph, use abstraction for termination

(407 ZO)

(q1.21) & ° (g5, 75)

B =q N
Z3 Ca(Zy)? (92, 22)

(93:25)

Coarser the abstraction, smaller the zone graph



Condition 1: a should have finite range

Condition 2: a should be sound = a( W) can contain only
valuations simulated by W
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Bounds and abstractions

Theorem [LS00]
Coarsest simulation relation is EXPTIME-hard
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Bounds and abstractions

Theorem [LS00]
Coarsest simulation relation is EXPTIME-hard

(r<3) (x < 4)
(x<1)

(x > 6)

<1

M-bounds [AD94] LU-bounds [BBLP04]
L(x) =6, L(y) = —o0
Ux) =4, Uy) =3

v =<y V v < vV

M(x) =6, M(y) =3




Abstractions in literature [BBLP04, Bou04]

(%/[ ) a;<I.U EXtraz_U
(<) Closurey, «<— Extray Extrasy
Non-convex \ /
Extray,
Convex

Last lecture: Efficiently using the M-bounds based Closure;s abstraction



Lecture 7:

Lower-upper bounds for
abstraction



LU-guards: guards consistent with given L and U
LU-guards for L(x) =3, U(x) =5,L(y) =8,U(y) = —

x>0x>1,x>2,x>3
x<0,x<1,...,x<5
y>0,y=>1,...,9>8

(same with < and >)



LU-automata: automata with only LU-guards
L(x)=3,U(x) =5,L(y) =8,U(y) = -

—’ et
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What do we need?

1. An abstraction abs;; that is sound and complete for all
LU-automata

o/.

2. Efficient inclusion testing Z C abs;;(Z')
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Step 1:
LU-regions



Classic regions [AD94] : ¢/ belongs to [¢]" if:

» Invariance by guards: ¢’ satisfies the same guards as v,

> Invariance by time-elapse: for every time elapse § € R>o, there is a
d" € Rsg such that v/ + ¢ € [v+ 0]".
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Classic regions [AD94] : Given M, ¢ belongs to [v]" if:

» Invariance by guards: ¢’ satisfies the same guards as v,

> Invariance by time-elapse: for every pair of clocks x, y with:

v(x) < M, v(y) <M,
Lo(x) | = [V (x) Jand [o(y) | = [ 2'(9) |

we have:

» if 0 < {v(x)} < {v(y)},then 0 < {v/(x)} < {V(y)}
» if 0<{v(x)} ={v(y)},then 0 < {v(x)} ={v(»)}

| v(x) |: integer part of v(x)

{v(x)}: fractional part of v(x)



Coming next...

Regions for the LU-case



Invariance by (LU-) guards: v(x) is less than both L,, U,

y

y < lo0)] +1

y > [v(y)]

x> |o(x)]

x < |v(x)| +1



Invariance by (LU-) guards: v(x) > L,

Y

y < lo@)] +1

y > [v()]

Ly
X>Lx

x < |v(x)| +1

X



Invariance by (LU-) guards: v(x) > U,

y

y < lo0)] +1

y > [v(y)]

Ux

x> |o(x)]



Invariance by time-elapse: v(x) < U,, o(y) <L,

y
Ly :
> ()] +1 .2
v
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Invariance by time-elapse: v(x) > U,, o(y) <L,

y
Ly ”
> ()] +1 7; v




Invariance by time-elapse: v(x) < U,, o(y) > L,

y
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LU-regions

Definition: ¢ belongs to (v)* if:
» Invariance by guards: ¢/ satisfies the same guards as v,

» Invariance by time-elapse: for every pair of clocks x,y with:

o(x) < Uy, o) < L,
[o(@) ] = |9'(x) ] and [ 0() | = [ 2/0) .

we have:

> if 0 < {o(x)} <{v(y)},then 0 <{v(x)} < {v/(y)}
> if 0 <{o(x)} ={v(y)}, then 0 <{v(x)} ={v'(7)}



Step 2:

An abstraction abs;



vy
if U
/ (5/ EE <7}>L
30" € Rzo s.t. v+
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Example

abs;/(Z)
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(:$ll/)

(=<.,) Closurey «—

/

Non-convex

Convex
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Time-elapsed zone Z: if v € Z, then v+ 6 € Zfor all 6 € Rxg

If Z is time-elapsed, then a,,(Z) = abs;y(Z)

Better abstractions for timed automata

F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS’12
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Time-elapsed zone Z: if v € Z, then v+ 6 € Zfor all 6 € Rxg

If Z is time-elapsed, then a,,(Z) = abs;y(Z)

a<,u(Z) is the coarsest abstraction that is sound and complete
for all LU-automata

Better abstractions for timed automata

F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS’12

75/35



Step 3:

Efficient inclusion



v Gy v
if
36" e RZQ st. v +46 € <’(}>LU

abs; (W) = {v |3 € Wst. oLy o'}
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v v
if
30’ € RZO s.t. v + 0 e <‘U>LU

Definition
abs;(W) = {v| I € Wst. vy o'}

Z,7': time-elapsed zones

Z & abs;y(Z') iff there exists v € Z s.t.

(v)"  does not intersect Z’



Efficient inclusion testing

Z ¢ a5,y(Z') if and only if there exist 2 clocks x, y s.t.

Projxy(Z) ,Z asLU(Proixy(Z,))

Better abstractions for timed automata

F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS’12
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Efficient inclusion testing

Z ¢ a5,y(Z') if and only if there exist 2 clocks x, y s.t.
Proj, (Z) £ a<.u(Proj,,(Z'))

Complexity: O(|X|?), where X is the set of clocks

Better abstractions for timed automata

F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS’12
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Reduction to two clocks
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Efficient inclusion testing

Reduction to two clocks

Z Z a-,,(Z') if and only if there exist 2 clocks x, y s.t.
Proixy(z) J@ aﬁlU(Proixy(Zl))
Complexity: O(|X|?), where X is the set of clocks

Same complexity as Z C Z'!
Slightly modified comparison works!

Better abstractions for timed automata

F. Herbreteau, B. Srivathsan, I. Walukiewicz. LICS’12



Non-convex

Convex
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Non-convex

Convex

Question: If ag,, is best, can we do better?
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Get better LU-bounds!



Global LU-bounds

x=1

{x}

x = 10°

{x, 9} y = 10°
ko LG

Naive: L, = Uy, = 10, L,=U = 10°
Size of graph ~ 10°



Static analysis: bounds for every ¢
[BBFLO3]

x=1

{x}

Size of graph < 10



Static analysis: bounds for every ¢

[BBFLO3]
x=1
{x}
x = 10°
{x, 7} y = 10°
SOSE0
10° 10°
x> 2 x <1

Size of graph ~ 10°

Need to look at semantics...



LU bounds for every (g, Z) in zone graph



LU bounds for every (g, Z) in zone graph

/
/
/
constants at / \

depend on subtree *


















7' C ClosureM(Z):l
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All tentative nodes consistent
Mx)= 11 + No more exploration

— Terminate!

Z' C Closurey(Z) :I
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Constant propagation

x=1
{x}
x = 10°

{x, 7} y=10°

<1

RO

()

An accepting state is reachable in A iff the constant propagation al-
gorithm reaches a node with accepting state and a non-empty zone.
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Key idea: Compute the zone graph, use abstraction for termination

(90, Zo)

(q1:Z21) » (g5, Z5)

Zy C a(Z,)? (92, 2>)

(93:Z5)

Developments are recent, a lot of (not-so-low) hanging fruit available
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