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Theorem (Lecture 2)

Deterministic timed automata are closed under complement

1. Unique run for every timed word

2. Complementation: Interchange acc. and non-acc. states

w1 ∈ L(A) w2 /∈ L(A) w1 /∈ L(A) w2 ∈ L(A)
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Theorem (Lecture 1)

Non-deterministic timed automata are not closed under complement

Many runs for a timed word

w1 ∈ L(A)

Exists an acc. run

w2 /∈ L(A)

All runs non-acc.

Complementation: interchange acc/non-acc + ask are all runs acc. ?
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A timed automaton model with existential and universal
semantics for acceptance
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Lecture 5:
Alternating timed automata

Lasota and Walukiewicz. FoSSaCS’05, ACM TOCL’2008
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Section 1:

Introduction to ATA
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I X : set of clocks

I Φ(X) : set of clock constraints σ (guards)

σ : x < c | x ≤ c | σ1 ∧ σ2 | ¬σ

c is a non-negative integer

I Timed automaton A: (Q,Q0,Σ,X,T , F)

T ⊆ Q× Σ× Φ(X)×Q× P(X)
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T ⊆ Q× Σ× Φ(X)×Q× P(X)

T : Q× Σ× Φ(X) 7→ P(Q× P(X))

q

a, g

q1, r1 q2, r2 q3, r3 q4, r4 q5, r5

∨ ∨ ∨ ∨
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T : Q× Σ× Φ(X) 7→ P(Q× P(X))

B+(S) is all φ ::= S | φ1 ∧ φ2 | φ1 ∨ φ2

T : Q× Σ× Φ(X) 7→ B+(Q× P(X))

q

a, g

(q1, r1 q2, r2) (q3, r3) (q4, r4 q5, r5 q6, r6)∧ ∨ ∨ ∧ ∧
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Alternating Timed Automata

An ATA is a tuple A = (Q, q0,Σ,X,T , F) where:

T : Q× Σ× Φ(X) 7→ B+(Q× P(X))

is a finite partial function.

Partition: For every q, a the set

{ [σ] | T (q, a, σ) is defined }

gives a finite partition of RX
≥0
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Acceptance
q

a, g

(q1, r1 q2, r2) (q3, r3) (q4, r4 q5, r5 q6, r6)
∧ ∨ ∨ ∧ ∧

Accepting run from q iff:

I accepting run from q1 and q2,

I or accepting run from q3,

I or accepting run from q4 and q5 and q6
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L : timed words over {a} containing no two a′s at distance 1
(Not expressible by non-deterministic TA)

ATA:

q0, a, tt 7→ (q0, ∅) ∧ (q1, {x})

q1, a, x = 1 7→ (q2, ∅)

q1, a, x 6= 1 7→ (q1, ∅)

q2, a, tt 7→ (q2, ∅)

q0, q1 are acc., q2 is non-acc.
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Closure properties

I Union, intersection: use disjunction/conjunction

I Complementation: interchange

1. acc./non-acc.

2. conjunction/disjunction

No change in the number of clocks!
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Section 2:

The 1-clock restriction

14/29



I Emptiness: given A, is L(A) empty

I Universality: given A, does L(A) contain all timed words

I Inclusion: given A,B, is L(A) ⊆ L(B)

Undecidable for two clocks or more (via Lecture 3)

Decidable for one clock (via Lecture 4)

Restrict to one-clock ATA
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Theorem
Languages recognizable by 1-clock ATA and (many clock) TA

are incomparable

→ proof on the board
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Section 3:

Complexity
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Lower bound
Complexity of emptiness of purely universal 1-clock ATA is

not bounded by a primitive recursive function

⇒ complexity of Ouaknine-Worrell algorithm for
universality of 1-clock TA is non-primitive recursive
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Primitive recursive functions
Functions f : N 7→ N

Basic primitive recursive functions:

I Zero function: Z() = 0

I Successor function: Succ(n) = n + 1

I Projection function: Pi(x1, . . . , xn) = xi

Operations:

I Composition

I Primitive recursion: if f and g are p.r. of arity k and k + 2, there is a
p.r. h of arity k + 1:

h(0, x1, . . . , xk) = f (x1, . . . , xk)

h(n + 1, x1, . . . , xk) = g(h(n, x1, . . . , xk), n, x1, . . . , xk)

19/29



Addition:

Add(0, y) = y
Add(n + 1, y) = Succ(Add(n, y))

Multiplication:

Mult(0, y) = Z()
Mult(n + 1, y) = Add(Mult(n, y), y)

Exponentiation 2n:

Exp(0) = Succ(Z())
Exp(n + 1) = Mult(Exp(n), 2)

Hyper-exponentiation (tower of n two-s):

HyperExp(0) = Succ(Z())
HyperExp(n + 1) = Exp(HyperExp(n))
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Poly

Exp

HyperExp

Primitive recursive

Recursive/Computable

Recursive but not primitive rec.: Ackermann function, Sudan function
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Coming next: a problem that has complexity non-primitive
recursive

22/29



Channel systems

q1

q2

q3

p1 p2

c1!b

c2?c

c2?a

c1?a

c2?a

c1!a c2!c c1?b

a a ab b

a c

channel c1

channel c2

Finite state description of communication protocols
G. von Bochmann. 1978

On communicating finite-state machines
D. Brand and P. Zafiropulo. 1983

Example from Schnoebelen’2002
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Theorem [BZ’83]

Reachability in channel systems is undecidable
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Coming next: modifying the model for decidability
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Lossy channel systems

Finkel’94, Abdulla and Jonsson’96

Messages stored in channel can be lost during transition

Theorem [Schnoebelen’2002]

Reachability for lossy one-channel systems is non-primitive
recursive
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Reachability problem for lossy one-channel systems can be
reduced to emptiness problem for purely universal 1-clock

ATA
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1-clock ATA

I closed under boolean operations

I decidable emptiness problem

I expressivity incomparable to many clock TA

I non-primitive recursive complexity for emptiness

I Other results: Undecidability of:
I 1-clock ATA + ε-transitions

I 1-clock ATA over infinite words
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Summary of Part 1 of the course

I Lecture 1: Expressiveness, ε-transitions

I Lecture 2: Determinization

I Lecture 3: Universality and inclusion

I Lecture 4: Restriction to one-clock

I Lecture 5: Alternating timed automata
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