Topics in Timed Automata

B. Srivathsan

RWTH-Aachen

Software modeling and Verification group

System

$$
\mathcal{L}(B) \subseteq \mathcal{L}(A)
$$

$$
\text { Is } \mathcal{L}(B) \cap \overline{\mathcal{L}(A)} \text { empty? }
$$

If A is deterministic, inclusion can be solved

System

$$
\mathcal{L}(B) \subseteq \mathcal{L}(A)
$$

$$
\text { Is } \mathcal{L}(B) \cap \overline{\mathcal{L}(A)} \text { empty? }
$$

If A is deterministic, inclusion can be solved

Q: Given general A and B, can we decide if $\mathcal{L}(B) \subseteq \mathcal{L}(A)$?

Lecture 3:
 Language inclusion is undecidable

P : an arbitrary boolean program (string)
$w:$ an arbitrary string

P : an arbitrary boolean program (string)
$w:$ an arbitrary string

Can program P_{1} exist?

If P_{1} exists, then P_{2} exists

If P_{1} exists, then P_{2} exists

P_{2} returns Yes on P_{2}

If P_{1} exists, then P_{2} exists

P_{2} returns Yes on P_{2} if P_{2} does not return Yes on P_{2}

If P_{1} exists, then P_{2} exists

P_{2} returns Yes on P_{2} if P_{2} does not return Yes on P_{2}
P_{2} returns No on P_{2}

If P_{1} exists, then P_{2} exists

P_{2} returns Yes on P_{2} if P_{2} does not return Yes on P_{2}
P_{2} returns No on P_{2} if P_{2} returns Yes on P_{2}

If P_{1} exists, then P_{2} exists

P_{2} returns Yes on P_{2} if P_{2} does not return Yes on P_{2}
P_{2} returns No on P_{2} if P_{2} returns Yes on P_{2}
P_{2} cannot exist $\Rightarrow P_{1}$ cannot exist

Membership problem for 2-counter machines (MP)

Given a 2 -counter machine M and an arbitrary string w, checking if M accepts w is undecidable

Goal of this lecture

Timed regular languages are powerful enough to encode computations of 2-counter machine

We will see:
If there is an algorithm for TA language inclusion, then there is an algorithm for MP

Coming next...

2-counter machines

Computation: $\left\langle q_{0}, w_{0}, 0,0\right\rangle\left\langle q_{1}, w_{i_{1}}, c_{1}, d_{1}\right\rangle \cdots\left\langle q_{i}, w_{i}, c_{i}, d_{i}\right\rangle \cdots$
Accept: if some computation ends in $\left\langle q_{F}, \star, \star, \star\right\rangle$

Goal 1

Given M and w

define timed language $L_{\text {undec }}$ s.t

$$
M \text { accepts } w \text { iff } L_{\text {undec }} \neq \emptyset
$$

Words in $L_{\text {undec }}$ encode accepting computations of M on w

Configuration of a 2-counter machine:

$$
\left\langle q, w_{k}, c, d\right\rangle
$$

Encoding as a word over alphabet: $\left\{a_{1}, a_{2}, b_{i}\right\}$

$$
\text { where } \quad i \in Q \times\{0, \ldots,|w|+1\}
$$

$$
b_{(q, k)} a_{1}^{c} a_{2}^{d}
$$

$\left\langle q_{0}, w_{i_{0}}, 0,0\right\rangle \cdots\left\langle q_{j}, w_{i_{j}}, c_{j}, d_{j}\right\rangle \cdots\left\langle q_{m}, w_{i_{m}}, c_{m}, d_{m}\right\rangle$

Encode the $j^{\text {th }}$ configuration in $[j, j+1)$
$\left\langle q_{0}, w_{i_{0}}, 0,0\right\rangle \cdots\left\langle q_{j}, w_{i_{j}}, c_{j}, d_{j}\right\rangle \cdots\left\langle q_{m}, w_{i_{m}}, c_{m}, d_{m}\right\rangle$

Encode the $j^{\text {th }}$ configuration in $[j, j+1)$

- if $c_{j+1}=c_{j}, \quad \forall a_{1}$ at time t in $(j, j+1), \quad \exists a_{1}$ at time $t+1$
- if $c_{j+1}=c_{j}+1$,
$\forall a_{1}$ at time t in $(j+1, j+2)$ except the last one,
$\exists a_{1}$ at time $t-1$
- if $c_{j+1}=c_{j}-1$,
$\forall a_{1}$ at time t in $(j, j+1)$ except the last one,
$\exists a_{1}$ at time $t+1$
(same for counter d)
$L_{\text {undec }}$: encodes the accepting computations
Timed word $(\sigma, \tau) \in L_{\text {undec }}$ iff
$L_{\text {undec }}$: encodes the accepting computations
Timed word $(\sigma, \tau) \in L_{\text {undec }}$ iff

$$
\begin{gathered}
\sigma=b_{i_{0}} a_{1}^{c_{0}} a_{2}^{d_{0}} \quad b_{i_{1}} a_{1}^{c_{1}} a_{2}^{c_{2}} \cdots \quad b_{i_{m}} a_{1}^{c_{m}} a_{2}^{c_{m}} \text { s.t. } \\
\left\langle q_{0}, w_{i_{0}}, c_{0}, d_{0}\right\rangle\left\langle q_{1}, w_{i_{1}}, c_{1}, d_{1}\right\rangle \cdots\left\langle q_{m}, w_{i_{m}}, c_{m}, d_{m}\right\rangle \text { is accepting }
\end{gathered}
$$

$L_{\text {undec }}$: encodes the accepting computations
Timed word $(\sigma, \tau) \in L_{\text {undec }}$ iff

- $\quad \sigma=b_{i_{0}} a_{1}^{c_{0}} a_{2}^{d_{0}} b_{i_{1}} a_{1}^{c_{1}} a_{2}^{c_{2}} \cdots b_{i_{m}} a_{1}^{c_{m}} a_{2}^{c_{m}}$ s.t. $\left\langle q_{0}, w_{i_{0}}, c_{0}, d_{0}\right\rangle\left\langle q_{1}, w_{i_{1}}, c_{1}, d_{1}\right\rangle \cdots\left\langle q_{m}, w_{i_{m}}, c_{m}, d_{m}\right\rangle$ is accepting
- each $b_{i j}$ occurs at time j
$L_{\text {undec }}$: encodes the accepting computations
Timed word $(\sigma, \tau) \in L_{\text {undec }}$ iff

$$
\begin{gathered}
\sigma=b_{i_{0}} a_{1}^{c_{0}} a_{2}^{d_{0}} \quad b_{i_{1}} a_{1}^{c_{1}} a_{2}^{c_{2}} \cdots \quad b_{i_{m}} a_{1}^{c_{m}} a_{2}^{c_{m}} \text { s.t. } \\
\left\langle q_{0}, w_{i_{0}}, c_{0}, d_{0}\right\rangle\left\langle q_{1}, w_{i_{1}}, c_{1}, d_{1}\right\rangle \cdots\left\langle q_{m}, w_{i_{m}}, c_{m}, d_{m}\right\rangle \text { is accepting }
\end{gathered}
$$

- each $b_{i j}$ occurs at time j
- if $c_{j+1}=c_{j}, \quad \forall a_{1}$ at time t in $(j, j+1), \quad \exists a_{1}$ at time $t+1$
- if $c_{j+1}=c_{j}+1$,
$\forall a_{1}$ at time t in $(j+1, j+2)$ except the last one,
$\exists a_{1}$ at time $t-1$
- if $c_{j+1}=c_{j}-1$,
$\forall a_{1}$ at time t in $(j, j+1)$ except the last one,
$\exists a_{1}$ at time $t+1$

Goal 1

Given M and w

define timed language $L_{\text {undec }}$ s.t

M accepts w iff $L_{\text {undec }} \neq \emptyset$

Words in $L_{\text {undec }}$ encode accepting computations of M on w

Done!

Goal 2

Given M and w

construct a timed automaton $\mathcal{A}_{\text {zndec }}$

for the complement language $\overline{L_{\text {undec }}}$

Goal 2

Given M and w

construct a timed automaton $\mathcal{A}_{\text {undec }}$

for the complement language $\overline{L_{\text {undec }}}$

M accepts w iff $\mathcal{L}\left(\mathcal{A}_{\text {undec }}\right) \neq T \Sigma^{*}$

Goal 2

Given M and w

construct a timed automaton $\mathcal{A}_{\text {undec }}$
for the complement language $\overline{L_{\text {undec }}}$

M accepts w iff $\mathcal{L}\left(\mathcal{A}_{\text {undec }}\right) \neq T \Sigma^{*}$

\rightarrow reduction to universality of TA
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations
Timed word $(\sigma, \tau) \in \overline{L_{\text {undec }}}$ iff
$\overline{L_{\text {undec }}}:$ words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point j
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point j
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*}$
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point j
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*}$
- or, initial subsequence in $[0,1)$ is wrong
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point j
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*}$
- or, initial subsequence in $[0,1)$ is wrong
- or, some transition of M has been violated in the word
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point j
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*}$
- or, initial subsequence in $[0,1)$ is wrong
- or, some transition of M has been violated in the word
- or, final b-symbol denotes non-accepting state
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point $j \mathcal{A}_{0}$
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*} \mathcal{A}_{1}$
- or, initial subsequence in $[0,1)$ is wrong $\mathcal{A}_{\text {init }}$
- or, some transition of M has been violated in the word \mathcal{A}_{t} for each transition t of M
- or, final b-symbol denotes non-accepting state $\mathcal{A}_{\text {acc }}$
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point $j \mathcal{A}_{0}$
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*} \mathcal{A}_{1}$
- or, initial subsequence in $[0,1)$ is wrong $\mathcal{A}_{\text {init }}$
- or, some transition of M has been violated in the word \mathcal{A}_{t} for each transition t of M
- or, final b-symbol denotes non-accepting state $\mathcal{A}_{\text {acc }}$

Required $\mathcal{A}_{\text {undec }}$: union of $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{A}_{\text {init }}, \mathcal{A}_{t_{1}}, \ldots, \mathcal{A}_{t_{p}}, \mathcal{A}_{\text {acc }}$

Crux

With our encoding, can timed automata express that $n \neq m$?

1. $\exists a_{1}$ at time $t \in(j, j+1)$ s.t there is no a_{1} at $t+1$, or
2. $\exists a_{1}$ at time $t \in(j+1, j+2)$ s.t. there is no a_{1} at $t-1$
$\exists a_{1}$ at time $t \in(j, j+1)$ s.t there is no a_{1} at $t+1$

$\exists a_{1}$ at time $t \in(j+1, j+2)$ s.t. there is no a_{1} at $t-1$

$\exists a_{1}$ at time $t \in(j+1, j+2)$ s.t. there is no a_{1} at $t-1$

Need only two clocks!
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point $j \mathcal{A}_{0}$
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*} \mathcal{A}_{1}$
- or, initial subsequence in $[0,1)$ is wrong $\mathcal{A}_{\text {init }}$
- or, some transition of M has been violated in the word \mathcal{A}_{t} for each transition t of M
- or, final b-symbol denotes non-accepting state $\mathcal{A}_{\text {acc }}$

Required $\mathcal{A}_{\text {undec }}$ can be constructed using two clocks

M accepts w iff $\quad \mathcal{L}\left(A_{\text {undec }}\right) \neq T \Sigma^{*}$

Universality for TA

The universality problem is undecidable for TA with two clocks or more

A theory of timed automata

Alur and Dill. TCS'94

Put B as the trivial single state automaton accepting $T \Sigma *$

$$
\mathcal{L}(A)=T \Sigma^{*} \quad \text { iff } \quad \mathcal{L}(B) \subseteq \mathcal{L}(A)
$$

Language inclusion

The problem $\mathcal{L}(B) \subseteq \mathcal{L}(A)$ is undecidable when A has two clocks or more

A theory of timed automata
Alur and Dill. TCS'94

Next lecture...

- $\mathcal{L}(B) \subseteq \mathcal{L}(A)$ is decidable when A has at most 1 clock
- Further understanding as to why no algorithm when A has more than two clocks

