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For the Automata Theory Column, we have an article by B. Srivathsan on the re-
achability problem in timed automata. Ever since timed automata were introduced
by Alur and Dill, they have been widely used in the verification of real-time systems.
Their appeal comes from a simple definition that couples expressiveness with compu-
tational tractability. The control state reachability problem, which asks if there is a
computation of a given timed automaton that reaches a given control state, is an im-
portant problem in this context and was shown to be decidable in PSPACE by Alur and
Dill in their seminal paper. However, because of the central role this problem plays in
verification, it has been extensively studied in the past 30 years. In this issue, Sriva-
thsan lucidly articulates the main principles underlying modern approaches to solving
this problem.
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Reachability in timed automata

B Srivathsan, Chennai Mathematical Institute, India
CNRS IRL 2000, ReLaX, Chennai, India

Given a timed automaton A and a control state q, does there exist a run of A that visits q? This problem of
control state reachability in timed automata was posed in [Alur and Dill 1994] and is known to be PSPACE-
complete. One does not hope to have efficient algorithms for this problem, in theory. Nevertheless, research
in this subject over the last three decades has led to industry-strength award-winning tools implementing
this problem. This topic continues to be an active area of research even now. In this article, we present one
successful algorithmic framework for attacking this problem.

1. INTRODUCTION
Timed automata [Alur and Dill 1994] are finite automata equipped with clocks. They
recognize words with timestamps attached to each letter. For example, the automaton
below recognizes (a, t1)(b, t2) such that t2�t1  5. Here, t1 and t2 are non-negative reals
denoting the timestamp at which a and b occurred respectively. The symbol x denotes

q0 q1 q2
a

{x}

b, x  5

a clock, which is assumed to start with value 0 in the initial state q0. The notation {x}
means that x is reset to 0 when a is read. The constraint x  5 denotes that letter b
can be read only when the value of x is at most 5. This constraint is a guard on the
transition. The reset of x at a and the guard x  5 at b together imply t2�t1  5, that is,
the time between a and b is at most 5. The automaton could in general contain several
clocks, have multiple constraints in a guard, and reset multiple clocks in a transition
to express more complex timing constraints.

Timed automata can be used to model state-based systems that have timing con-
straints. Some illustrative examples include asynchronous circuits with gate de-
lays [Maler and Pnueli 1995; Alur 1991], communication protocols [Daws and Tri-
pakis 1998], mutual exclusion protocols [Alur et al. 1995] and scheduling prob-
lems [Abdeddaı̈m et al. 2006]. A comprehensive list of more involved case-studies
can be found in the webpage of the tool UPPAAL1, which has been the leading tool
in timed automata verification. Detecting unwanted behaviours in such systems re-
duces to checking reachability in their timed automaton models. Therefore there is
substantial interest in getting practically viable solutions for the reachability prob-
lem. This has led to several tools for the reachability analysis of timed automata:
UPPAAL [Larsen et al. 1997], KRONOS [Daws et al. 1995], PAT [Sun et al. 2009],
RED [Wang 2006], TChecker [Herbreteau and Point 2019], Theta [Tóth et al. 2017],

1https://uppaal.org/casestudies/
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q0 q1

a, x = 1, {x}

b, y = 1, {y}

c, x = 0 ^ y = 0 ^ z = 100

Fig. 1. Automaton A1 to illustrate a long witness for reachability.

LTS-Min [Kant et al. 2015], Symrob [Roussanaly et al. 2019], MCTA [Kupferschmid
et al. 2008], etc.

We start with an example to illustrate the mechanics of timed automata and to also
show why the reachability problem is difficult. Consider automaton A1 of Figure 1. It
has two states and three clocks x, y, z. The goal is to reach q1. Initially the automaton
is at q0, with all clocks being 0. Hence action c is not feasible initially. An elapse of
� time units at q0 gives x = y = z = �, still not enabling c. To do c, the difference
between x and z should be 100, the difference between y and z should be 100, and
finally both x and y should be equal to 0. Doing a once gives x = 0, y = 1, z = 1: this
is because a gets enabled when x = 1, and at the same time instant, it is reset to 0.
Doing a twice, that is, executing path aa gives x = 0, y = 2, z = 2. Once we do aa, the
action b is not feasible anymore since it requires y = 1. Therefore, in order to execute
c, both a and b need to be executed at every time stamp i 2 {1, . . . , 100} after which
we have a valuation with x = 0, y = 0, z = 100. This is when c can be executed. From
this example, we can see that the witness for reachability can have length exponential
in the size of the input, if the constants are encoded in binary. It turns out that even
with unary encoding, the witness can be exponential in the size of the input. This
is because there are exponentially many possible orderings of the clocks and all of
them may need to be visited in order to get a witness. For the PSPACE-hardness, a
reduction from the problem of deciding whether a linear bounded automaton accepts a
given string to the problem of reachability in timed automata is provided in (Theorem
4.17, [Alur and Dill 1994]). In [Courcoubetis and Yannakakis 1992], it was shown that
reachability is PSPACE-complete even for automata with three clocks. When there is
a single clock, the problem is NLOGSPACE-complete [Laroussinie et al. 2004]. For a
long time, the complexity of two clock timed automata was open. This was settled
in [Fearnley and Jurdzinski 2013; 2015] where it was shown that the problem remains
PSPACE-complete.

A naı̈ve algorithm for reachability would be to enumerate paths in the automaton
upto a sufficient bound and check whether one of them is feasible. For example, for au-
tomaton A1 of Figure 1, one could enumerate c, ac, bc, aac, abc, . . . , etc. For enumerating
paths, one could adopt some search order, for instance a breadth-first or a depth-first
search. To check feasibility, it is convenient to store the set of clock values obtained
after performing a particular path. For instance, to check feasibility of abc, if we know
the set of clock values obtained after ab, we can then check whether this set intersects
with the guard appearing in c. If it does, then abc is feasible. Else, it is not. The key
feature in timed automata verification is the fact that this set - the set of clock values
reached after executing a path - can be represented using a simple system of con-
straints called zones. These zones are amenable to efficient manipulation [Dill 1989].
Therefore checking feasibility is a non-issue. The bulk of the challenge is in figuring
out how to do the enumeration sensibly, in particular, when to stop the enumeration.
This is the main focus of this article.

The use of zones for timed automata reachability was advocated in [Daws and Tri-
pakis 1998] and implemented in the tool KRONOS [Daws et al. 1995]. For stopping the
enumeration, an extrapolation operation on zones was used: each new zone obtained
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was inflated to a bigger zone. The number of such inflated zones was by definition fi-
nite, and hence whenever an already existing zone appears again, the enumeration
from that path is stopped. A seminal work [Bouyer 2003; 2004] showed that this ex-
trapolation operation was not correct if the guards of the timed automaton contain
diagonal constraints, that is constraints of the form x� y  5, y � z � 2, etc. Moreover,
it was shown that no extrapolation can work when diagonal constraints are present.
After this powerful result, the majority of work has concentrated on the fragment of
timed automata without diagonal constraints. Several optimizations to the extrapo-
lation approach have been studied, the most notable being [Behrmann et al. 2003;
Behrmann et al. 2004; 2006]. These works are the default options in the tool UP-
PAAL [Larsen et al. 1997], which won the CAV award in 2013 for being the “foremost
tool suite for the automated analysis and verification of real-time systems”2.

In the last decade, a new approach to the zone enumeration has been investigated
and implemented in an open-source tool TChecker 3. In this approach, exploration of
a path is stopped if the zone reached is simulated by an already existing zone ob-
tained via a different path. This idea and the associated technical machinery were
first proposed in [Herbreteau et al. 2011] and later refined in [Herbreteau et al. 2012;
2016]. This approach allows for a new bunch of optimizations [Herbreteau et al. 2013;
Govind et al. 2019] and can also be extended to automata with diagonal constraints
and updates (which are generalizations of the reset operation to allow assignments
like x := y + 2, x := x � 1, etc to clocks in the transitions) [Gastin et al. 2018; 2019;
2020].

In this article, we will describe the simulation approach and some of the optimization
techniques. The plan of the document is depicted below. Sections 2 to 5 give the basic
zone based algorithm. The next three sections discuss some advanced optimizations.
They are orthogonal to each other and can be read independently. Section 9 talks about
the open-source tool TChecker that implements the algorithms discussed in the article.
Finally in Section 10 we give some conclusions and perspectives.

Basic algorithm:

Section 2 Section 3 Section 4 Section 5

Timed automata Zone graph Zone graph
with simulations

Simulations using
maximum constants

Advanced techniques:

Section 6 Section 7 Section 8

Better constants
Simulations based on

lower and upper bounds Local-time semantics

PLAN OF THE DOCUMENT

2http://i-cav.org/cav-award/
3https://github.com/fredher/tchecker
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2. TIMED AUTOMATA AND THE REACHABILITY PROBLEM
We will write N, Z and R�0 for the set of natural numbers, integers and non-negative
reals, respectively. We will write 2S for the power set of a set S.

A clock is a variable over R�0. Fix a finite set X of clocks for the rest of the document.
The set of guards �(X) is obtained using the grammar:

� := x ⇠ c | � ^ �

where x 2 X, ⇠2 {, <,>,�}, and c 2 N. The base constraints x ⇠ c in the above
grammar will be called atomic constraints. We will use a short form x = c for the
guard obtained by the conjunction of atomic constraints x  c and x � c.

A valuation v : X ! R|X|
�0 is a function assigning a non-negative real to each clock.

Valuations will be the basic objects that will be used for the analysis of timed automata.
Here are some notions on valuations. Let v be a valuation.

— Time elapse: for � 2 R�0, we write v+� for the valuation such that (v+�)(x) = v(x)+�
for all x,

— Guard satisfaction: for a guard g 2 �(X), we write v |= g if v(x) ⇠ c for each atomic
constraint x ⇠ c in g,

— Reset: for R ✓ X, we write v[R] for the valuation such that v[R](x) = 0 for x 2 R and
v[R](x) = v(x) for x /2 R,

— Initial: we write 0 for the valuation that maps every clock to 0. It will be called the
initial valuation.

Definition 2.1 (Timed automata [Alur and Dill 1994]). A timed automaton A =
(Q, q0,⌃, X, T, F ) is given by a finite set of states Q, an initial state q0 2 Q, a finite
alphabet ⌃, a set of transitions T ✓ Q ⇥ ⌃ ⇥ �(X) ⇥ 2X ⇥ Q and a finite set F ✓ Q of
accepting states. Each transition (q, a, g, R, q0) 2 T has a source state q, target state q0,
a letter a, a guard g and a set of clocks R that are reset in the transition.

A configuration of a timed automaton is a pair (q, v) consisting of a state q 2 Q and
a valuation v.

Definition 2.2 (Semantics of a timed automaton). The semantics of a timed au-
tomaton A is a transition system SA whose nodes consist of the set of all configura-
tions of A. The initial node is (q0,0) where q0 is the initial state of A and 0 the initial
valuation. The transition relation ! is a union of two kinds of transitions:

delay. (q, v) !� (q, v + �) for all � 2 R�0

action. (q, v) !
t (q0, v0) if t = (q, a, g, R, q0) 2 T is a transition of A, v |= g and

v0 = v[R].

We write (q, v)
�,t
�! (q1, v1) in short for the sequence (q, v) !

�
!

t (q1, v1) of delay �
followed by action t starting from (q, v).

A run of A is an alternating sequence of delay and action transitions in SA starting
from the initial configuration: (q0,0)

�0,t0
���! (q1, v1)

�1,t1
���! · · ·

�n�1,tn�1
������! (qn, vn). The run

is accepting if qn 2 F .

Definition 2.3 (Reachability problem). The reachability problem for timed au-
tomata takes as input a timed automaton A and asks whether it has an accepting
run.

We call the above problem as reachability and not emptiness since our focus is on
algorithms, which are insensitive to the actual letters used. We still keep the alphabet
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in our definition as it is convenient to explain the examples described in the document.
We would essentially be using the alphabet to name the transitions.

3. ZONE GRAPH OF A TIMED AUTOMATON
In this section, we formalize the idea of enumerating paths of the automaton as dis-
cussed in Section 1.

3.1. Symbolic transition relation
We first define a transition relation ) over nodes of the form (q,W ) where W is a set
of valuations.

Definition 3.1 (Symbolic transition relation )). Let A be a timed automaton. For
every transition t = (q, a, g, R, q0) of A, we have a transition )

t defined as follows:

(q,W ) )t (q0,W 0) when W 0 = {v0 | 9v 2 W, 9� 2 R�0. (q, v) !
t
!

� (q0, v0)}

The transition relation ) is the union of all )t.
The transition relation defined above considers each valuation v 2 W that can take

the transition t, obtains the valuation vt after performing the transition and then col-
lects all time-successors of vt. It is action followed by time, as opposed to the convention
�,t
�! that we used in the definition of runs. Therefore the symbolic transition ) always
yields sets closed under time-successors. The initial configuration of the automaton is
(q0,0). Starting from the initial valuation 0 the set of valuations reachable by a time
elapse at the initial state is given by {0 + � | � 2 R�0}. Call this W0. From (q0,W0) as
the initial node, computing the symbolic transition relation ) leads to different nodes
(q,W ) wherein the sets W are closed under time-successors.

Example 3.2. Consider the automaton with two clocks shown in Figure 2. The sets
of valuations computed using Definition 3.1 are shown on the top of the automaton.
The bright red part shows the valuations obtained immediately after the action, and
the faded red part shows the ones obtained exclusively through time elapse. We explain
some of these computations.

q0 q1 q2 q3
a, x  5 b, y � 7

{x}

c

W0 : y � x = 0 W1 : y � x = 0 W2 : y � x � 7 W3 : y � x � 7

x

y

x

y

x

y

x

y

Fig. 2. Illustrating symbolic transitions. Trivial constraints like x � 0 and y � 0 are not written.

At the initial node, we start with the initial valuation x = 0, y = 0. Doing a time
elapse � gives x = �, y = �. Therefore, the set of all time successors of x = 0, y = 0 is
given by {x = �, y = � | � � 0}. This is succinctly represented as y � x = 0 ^ x � 0.
Consider (q1, y � x = 0 ^ x � 0) and the outgoing transition b. The action b has guard
y � 7. The set of valuations that satisfy this guard is given by y � x = 0 ^ y � 7,
representing the valuations {x = �, y = � | � � 7}. Action b has a reset {x}. Resetting x
gives the set {x = 0, y = � | � � 7}. This is depicted by the bright red line x = 0 ^ y � 7
in the picture corresponding to W2. The time elapse operation can be seen as picking
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1

1

2

2

3

3

4

4

x

y

0

y
�
x

1

x � 1

y � 1

x
�
y

2

x  5

y  4

Fig. 3. An example of a zone

a point and then moving to the right parallel to the diagonal x = y. Doing the time
elapse from each point in {x = 0, y = � | � � 7} gives the set y � x � 7 ^ x � 0: a point
x = �1, y = �2 with �2 � �1 � 7 is obtained from x = 0, y = �2 � �1 by a time elapse �1.

3.2. Zones
As seen in the example, the sets computed are represented using simple constraints.
This turns out to be a general property of timed automata. The sets W obtained in
the nodes (q,W ) computed using a sequence of symbolic transitions can be described
by some simple constraints involving only the difference between clocks [Daws and
Tripakis 1998; Bengtsson and Yi 2004]. This leads to the definition of zones.

Definition 3.3 (Zones [Daws and Tripakis 1998]). A zone is a set of valuations de-
fined by a conjunction of two kinds of clock constraints: for x, y 2 X

x ⇠ c

x� y ⇠ c

where, ⇠2 {, <,=, >,�} and c 2 Z. For example, (x > 4 ^ y � x  1) is a zone.

The sets depicted in Figure 2 are zones. Another example of a zone is illustrated in
Figure 3. It can be shown that for transitions (q,W ) ) (q0,W 0), if W is a zone then so
is W 0 [Daws and Tripakis 1998; Bengtsson and Yi 2004]. Observe that the initial set
of valuations W0 = {0+ � | � 2 R�0} is indeed a zone: it is given by the constraints

^

x,y2X

(x � 0 ^ x� y = 0)

Therefore every sequence of symbolic transitions leads to a zone. In the sequel, zones
are denoted by Z,Z 0, etc.

Definition 3.4 (Zone graph). Given a timed automaton A, the zone graph ZG(A) of
A is a transition system whose nodes are of the form (q, Z) with q a control state of A
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and Z a zone. The initial node is (q0, Z0) where Z0 = {0+ � | � 2 R�0}. The transitions
are given by the relation ) of Definition 3.1.

As zones have a simple description, they can be efficiently represented using what
are called Difference-Bound Matrices (DBMs) [Dill 1989]. The successor computation
(q, Z) )t (q0, Z 0) for a transition t = (q, a, g, R, q0) proceeds in the following steps.

(q, Z)
guard
����! (q, Z ^ g)

reset
���! (q, (Z ^ g)[R])

elapse
����! (q,

�������!
(Z ^ g)[R])

where the operations on the zones are as defined:
Z ^ g = {v | v 2 Z and v |= g}

Z1[R] = {v[R] | v 2 Z1}

�!
Z2 = {v + � | v 2 Z2, � 2 R�0}

All these operations can be computed efficiently using DBMs. The costliest operation is
the computation of the intersection of a zone with a guard. It has been shown in [Zhao
et al. 2005] that the intersection operation can be done in O(|X|

2) time. The other
operations are easier, and therefore the entire successor computation can be done in
O(|X|

2), a complexity quadratic in the number of clocks. Extensions of timed automata
have been defined where guards could contain diagonal constraints like x � y  4. In
this case, the intersection takes O(|X|

3).

3.3. A certificate for (un)reachability
To solve reachability, we want an algorithm that produces a certificate ascertaining
whether a given state q is reachable or not in the timed automaton. A certificate for
reachability is a run leading to state q. Certificates for unreachability are less obvious.
We want an object that contains exactly the set of reachable control states, in some
form. The zone graph acts as a certificate: if there is no node with state q in the zone
graph, we can conclude that q is not reachable in the timed automaton. This is due
to the completeness of the zone graph that we state below. The next theorem follows
simply from the definition of the symbolic transition.

THEOREM 3.5. The zone graph ZG(A) of a timed automaton A satisfies the follow-
ing properties:

— Soundness. for every path (q0, Z0) )t1 (q1, Z1) )t2 . . . )tn (qn, Zn) in ZG(A) there is
a run (q0, v0)

�1,t1
���! (q1, v1)

�2,t2
���! · · ·

�n,tn
���! (qn, vn) in SA such that v0 = 0 and vi 2 Zi

for all 0  i  n.
— Completeness. for every run (q0, v0)

�1,t1
���! (q1, v1)

�2,t2
���! · · ·

�n,tn
���! (qn, vn) with v0 = 0

in SA there is a path (q0, Z0) )t1 (q1, Z1) )t2 . . . )tn (qn, Zn) in ZG(A) with vi 2 Zi

for all 0  i  n.
The theorem suggests to compute the zone graph to solve reachability. However,

there is one major hurdle: zone graphs can be infinite in general. Figure 4 shows an
automaton A2 in the left, the zones obtained by executing paths an in the middle and
the zone graph in the right. We do not explicitly mark any accept states in the au-
tomaton, since we are interested in looking at the entire zone graph which contains
all the reachable control states. In the zone graph ZG(A2), edges marked with a red
cross are disabled, that is, there is no valuation in the zone that satisfies the guard
of the transition corresponding to the edge. For example, the transition b is disabled
from the zone obtained after aa. Hence the path aab is not feasible. As we notice in this
example, the zone graph is infinite.
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q0 q1

a, x = 1, {x}

b, y = 1

Automaton A2

y
�
x
=

0

y
�
x
=

1

y
�
x
=

2

...

1

1

2

x

y

Zones at q0 due to
the self-loop transition

q0, y � x = 0

q0, y � x = 1

q0, y � x = 2

...

q1, y � 1 ^ y � x = 0

q1, y � 1 ^ y � x = 1

a

b

a

b

b
⇥

Zone graph ZG(A2)

Fig. 4. Zone graph could be infinite

(q0, Z0)

(q, Z0)

(q, Z)

(q, Z)

a1

a2 a3

a4 a5 a6

b1

b2

⇥

⇥

(q, Z0)

a1

a2 a3

a4 a5 a6

b1

b2⇥

Fig. 5. Computing a finite prefix of the zone graph using simulations. When node (q, Z) is simulated by
(q, Z0), all sequences feasible from (q, Z) are feasible from (q, Z0) too.

A naı̈ve exploration of the zone graph therefore does not work. Can we find a finite
prefix of the zone graph that contains all reachable control states? That is, for every
node (q, Z) outside this prefix, there exists a representative node (q, Z 0) inside the pre-
fix, having the same control state. In addition to asking just for a finite prefix, one
would like a prefix which is as small as possible and yet contains all reachable states.
Moreover, the test for sufficiency of the prefix should be efficient. The subsequent sec-
tions provide an answer to this question.

4. PRUNING THE ZONE GRAPH USING SIMULATIONS
We will now discuss a mechanism to compute a finite prefix that contains all reachable
states. The idea is depicted in Figure 5. On the left, the potentially infinite zone graph
starting from the initial node (q0, Z0) is shown in gray. The red portion is the finite
prefix that contains all reachable control states. For every node (q, Z) that is outside
this prefix, there is a node (q, Z 0) inside the prefix such that (q, Z) is simulated by
(q, Z 0). Intuitively, if (q, Z) is simulated by (q, Z 0) every sequence w of actions feasible
from (q, Z) is feasible from the bigger node (q, Z 0). This is illustrated in Figure 5 by
the picture on the right. Therefore it is possible to explore w from (q, Z 0) while staying
inside the prefix. This also ensures that every reachable control state is present inside
the prefix.

The main challenge now is to come up with a concrete simulation relation which can
be applied on zones. A simple solution would be to say (q, Z) is simulated by (q, Z 0)
whenever Z ✓ Z 0. It is easy to see that this is correct: whatever can be done from
(q, Z) can also be done from (q, Z 0). However, applying this operation in the example
of Figure 4 does not give a finite prefix. Notice that the zones appearing at q0 are all
incomparable and hence a mere inclusion is useless. One needs a more sophisticated
simulation. We will first formalize the concept of simulations and present a concrete
simulation relation in Section 5.
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4.1. Simulations
We will define a relation over the space of configurations that satisfies some “one-step”
properties. This will then be lifted to zones.

Definition 4.1 (Simulation). A simulation for a timed automaton A is a reflexive
and transitive relation � on its semantics SA that relates configurations having the
same control state, and satisfies two other properties. For all (q, v) � (q, v0), we have:

(1) (q, v + �) � (q, v0 + �) for every � 2 R�0, and
(2) for every transition t = (q, a, g, R, q1), if (q, v) !t (q1, v1) then (q, v0) !t (q1, v01) and

(q1, v1) � (q1, v01).

We extend the definition to zones, by saying (q, Z) � (q, Z 0) if for every v 2 Z there
exists v0 2 Z 0 such that (q, v) � (q, v0).

The above definition is sometimes called a strong-timed simulation in the litera-
ture [Tripakis and Yovine 2001]. In the first condition above, we say that for every
time elapse �, we have (q, v + �) � (q, v0 + �). Instead we could relax the condition by
saying for every � 2 R�0 there exists �0 2 R�0 such that (q, v + �) � (q, v0 + �0). This
is enough since we are only interested in control state reachability. We do not care
about the exact times taken while reaching a state. This relaxed definition asking for
an arbitrary �0 is known as a time-abstract simulation. However, the concrete simu-
lations that we know all turn out to be strong-timed simulations. Hence we stick to
Definition 4.1. The next lemma follows directly from Definitions 3.1 and 4.1.

LEMMA 4.2. Let � be a simulation for a timed automaton A. Let (q, Z) � (q, Z 0).
For every sequence of transitions (q, Z) )

t1 (q1, Z1) )
t2 · · · )

tn (qn, Zn) in ZG(A)
there exists a sequence (q, Z 0) )

t1 (q1, Z 0
1) )

t2 · · · )
tn (qn, Zn) in ZG(A) such that

(qi, Zi) � (qi, Z 0
i).

The above lemma guarantees that stopping the zone graph computation at (q, Z) and
continuing it from (q, Z 0) is sufficient for control state reachability. The next important
question is that of finiteness. What kind of simulations can generate a finite prefix?

Definition 4.3. A simulation � is said to be finite if for every state q and for every
sequence Z1, Z2, . . . of zones there exist indices i, j with j > i such that (q, Zj) � (q, Zi).

When a finite simulation is employed, there can be no infinite paths explored. At
some point we will hit a node (q, Zj) that is simulated by an existing node (q, Zi).
Finite simulations therefore induce finite prefixes of the zone graph.

4.2. Simulation graphs and the reachability algorithm
We will call the prefixes induced by simulations as simulation graphs. When the sim-
ulation is finite, we can get a finite simulation graph.

Definition 4.4 (Simulation graph). Let A be a timed automaton and � a simulation
relation. A simulation graph ZG�(A) is a subset of nodes and edges of the zone graph
ZG(A) along with some new edges called simulation edges. Each node is marked either
uncovered or covered. The simulation graph satisfies the following conditions.

— The initial node (q0, Z0) is present in ZG�(A) and is marked uncovered.
— For every uncovered node (q, Z), all its successors along with the associated transi-

tions are present in ZG�(A): that is, every edge (q, Z) )t (q1, Z1) in ZG(A) is also
present in the simulation graph.

— For every covered node (q, Z), there exists an uncovered node (q, Z 0) such that
(q, Z) � (q, Z 0). In such a case, there is a simulation edge (q, Z) 99K (q, Z 0).
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The above conditions do not necessarily give a unique graph. We denote by ZG�(A)
some arbitrarily picked simulation graph for A.

The idea is that from covered nodes we do not explore further. The set of uncovered
nodes forms the finite prefix and the covered nodes are the border between the prefix
and the rest of the zone graph. Let us introduce one more notation before we discuss
the correctness of simulation graphs. We want to capture the combination )

t99K con-
sisting of a successor edge followed by a simulation edge, whenever such a sequence
exists. Let (q, Z) be an uncovered node and t an outgoing transition from q. We write
(q, Z) t (q1, Z 0

1) when (q, Z) )t (q1, Z1) and:
— either (q1, Z1) is uncovered and Z 0

1 = Z1,
— or (q1, Z1) is covered and (q1, Z1) 99K (q1, Z 0

1).
Notice that (q1, Z 0

1) will be an uncovered node. The next theorem gives an analogue of
Theorem 3.5 for simulation graphs.

THEOREM 4.5. The simulation graph ZG�(A) satisfies the following two proper-
ties:
— Soundness: for every (q0, Z0) )t1 (q1, Z1) )t2 · · · )

tn (qn, Zn) in ZG�(A) there is a
run (q0, v0)

�1,t1
���! (q1, v1) · · ·

�n,tn
���! (qn, vn) in SA such that v0 = 0 and vi 2 Zi for all

0  i  n.
— Completeness: for every run (q0, v0)

�1,t1
���! (q1, v1)

�2,t2
���! · · ·

�n,tn
���! (qn, vn) of SA there

exists a path (q0, Z0)  t1 (q1, Z 0
1)  t2 · · ·  tn (qn, Z 0

n) in ZG�(A) such that for every
vi there exists v0i 2 Z 0

i with (qi, vi) � (qi, v0i).
Observe that the difference between Theorems 3.5 and 4.5 occurs in the complete-

ness condition. For zone graphs, every run of A had a representative sequence of zones
in the zone graph with valuation vi by itself being present in zone Zi. In the simulation
case, every vi has a bigger v0i in the corresponding zone Z 0

i.
We can now describe a reachability algorithm that computes a simulation graph. The

algorithm is just a pseudocode-like summary of the above discussion. When the sim-
ulation is finite, the algorithm terminates with a finite simulation graph. Correctness
of the algorithm simply follows from Theorem 4.5.

Reachability algorithm. Input is a timed automaton A, a set of accept states F and
a finite simulation �. Algorithm uses two lists Passed and Waiting.
(1) Initialization: If q0 2 F , return Y es. Else, add the initial node (q0, Z0) to Waiting.
(2) While Waiting is non-empty. Pick and remove a node (q, Z) from Waiting. Add it

to Passed. For all transitions t = (q, a, g, R, q1), compute (q, Z) )t (q1, Z1).
— If q1 2 F , return Y es.
— Else, if there exists a node (q1, Z 0

1) in Passed or Waiting such that (q1, Z1) �

(q1, Z 0
1), discard (q1, Z1).

— Else add (q1, Z1) to Waiting.
(3) Return No (when Waiting becomes empty and algorithm has not stopped at (2)).

4.3. Where is the challenge?
So far, in this section, we have discussed a framework using simulations to get a reach-
ability algorithm. But one needs to instantiate this framework with a concrete simu-
lation relation. Moreover, notice that the test (q, Z) � (q, Z 0) is used frequently in the
reachability algorithm: each fresh node is simulation-tested with potentially many ex-
isting nodes. Therefore, we require a simulation relation for which this test is efficient.
In zone technology, it is difficult to do better than O(|X|

2), a quadratic complexity in
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the number of clocks. Successor computation and inclusion between zones have this
complexity. In some sense, we need to go through every constraint in the zone, and
there is a constraint for every pair of clocks. So it is reasonable to assume we cannot
do better than O(|X|

2). Therefore, our aim would be to construct a simulation relation
that is finite and for which the simulation test can be done in O(|X|

2).

5. SIMULATION BASED ON MAXIMUM CONSTANTS
It is clear from Example 4 that a simple inclusion Z ✓ Z 0 does not induce a finite
simulation. We need a way to relate valuations with different values for clocks. In the
paper introducing timed automata [Alur and Dill 1994], a fundamental observation
was made, which has been reused several times in the literature: once the value of a
clock goes beyond the maximum constant appearing among the guards of the automa-
ton, its actual value does not matter. With this in mind, we introduce a simulation
relation that is parameterized by a bounds function associating a constant to every
clock. This relation was proposed in [Behrmann et al. 2006].

Definition 5.1 (M -bounds). An M -bound is a function M : X ! N [ {�1} that
maps each clock to a natural number or �1. A constraint x ⇠ c conforms to M if
c  M(x). A guard g conforms to M if every atomic constraint in g conforms to M . A
timed automaton A conforms to M if every constraint x ⇠ c appearing in a guard of A
conforms to M .

Definition 5.2 (M -equivalence). The M -equivalence ⌘M is a relation between val-
uations that is parameterized by an M -bound. We say v ⌘M v0 if for all clocks x:

either v(x) = v0(x) or both v(x) > M(x) and v0(x) > M(x)

We extend the relation to configurations by saying (q, v) ⌘M (q, v0) if v ⌘M v0.
Example 5.3. Consider automaton A2 in Figure 4. Here is an M -bound that A2

conforms to: M(x) = 1,M(y) = 1. Consider three valuations: v1 : x = 0, y = 1, v2 : x =
0, y = 2, v3 : x = 0, y = 3. Notice that v2 ⌘M v3, but v1 6⌘M v2 since v1(y)  M(y) and
v2(y) > M(y). Valuation v1 satisfies the guard y = 1 whereas v2 does not satisfy the
same guard. On the other hand v2 and v3 satisfy the same set of guards that conform
to M .

LEMMA 5.4. Let v ⌘M v0 for a given M -bound, and let x ⇠ c be a constraint that
conforms to M . Then, v |= (x ⇠ c) iff v0 |= (x ⇠ c).

It is easy to see that ⌘M is an equivalence, and so we have already called it the
M -equivalence. What we require is a simulation. The next theorem states that ⌘M is
in fact a bisimulation for automata that conform to M . Proof of the theorem follows by
verifying that ⌘ satisfies the conditions mentioned in Definition 4.1 that are required
for a simulation. Condition (2) follows thanks to Lemma 5.4.

THEOREM 5.5. Let A be a timed automaton that conforms to an M -bound. The
relation (q, v) ⌘M (q, v0) is a bisimulation for A.

We can extend ⌘M to a simulation on zones as in Definition 4.1: (q, Z) 4M (q, Z 0) if
for all v 2 Z there exists v0 2 Z 0 such that v ⌘ v0. Observe that (q, Z) 4M (q, Z 0) does
not imply (q, Z 0) 4M (q, Z). Let ZG4M (A) be the the simulation graph obtained using
this simulation 4M .

Example 5.6. Figure 6 shows the simulation graph using 4M for the automaton A2,
with the bounds function M(x) = 1,M(y) = 1.

The uncovered nodes are the ones reached by sequences ✏, a, aa, b, ab. The action b
is disabled from the node aa. The only covered node is aaa, which is covered by aa. The
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q0 q1

a, x = 1, {x}

b, y = 1

Automaton A2

q0, y � x = 0

q0, y � x = 1

q0, y � x = 2

q0, y � x = 3

q1, y � 1 ^ y � x = 0

q1, y � 1 ^ y � x = 1

a

b

a

b

a

b
⇥

Simulation graph ZG4M (A2)

Fig. 6. Automaton A2 from Figure 4 and its simulation graph using the 4M relation over the bounds
M(x) = 1,M(y) = 1
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Mx
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0

Fig. 7. A zone Z and its downward closure #M Z. The thin grey lines give the division into regions with
respect to M [Alur and Dill 1994]

zone reached after aaa is y � x = 3 and the one reached after aa is y � x = 2. Each
valuation in aaa is of the form v : x = i, y = i + 3 where i � 0. This valuation v can
be simulated by v0 : x = i, y = i + 2 which is present in y � x = 2. This helps prune
the graph at y � x = 3 resulting in a finite graph. Let us also see why we could not
have pruned earlier. The zone y � x = 2 is not simulated by y � x = 1 because we
have v2 : x = 0, y = 2 in y � x = 2. The only valuation with x = 0 in y � x = 1 is
v1 : x = 0, y = 1. But v1 6⌘M v2, as already seen in Example 5.3. For similar reasons,
y � x = 2 is not covered by y � x = 0, and y � x = 1 is not covered by y � x = 0.

5.1. Finiteness
The relation 4M satisfies the basic requirement of being a simulation. What about
finiteness? Notice that the equivalence ⌘M does not induce finitely many equivalence
classes since for values less than the bound, we ask for exact correspondence v(x) =
v0(x). Nevertheless, we can prove that the simulation 4M over zones is finite as per
Definition 4.3. Suppose we write #M Z = {v | 9v0 2 Z s.t. v ⌘M v0} for the downward
closure of Z with respect to ⌘M . We call it a “downward” closure because in general
for a simulation 4, we want the set {v | 9v0 2 Z s.t. v 4 v0}, which is the set of all
valuations that can be simulated by Z. For this specific case of ⌘M which is in fact a
bisimulation, both the upward and downward closures are identical.

Coming back to the question of finiteness of 4M , it can be shown that the downsets
#M Z are unions of classical regions as defined in [Alur and Dill 1994]. This is illus-
trated in Figure 7.

The proof of this result is non-trivial. It follows from two observations.

— As the constraints in guards use natural numbers, the zones obtained during the
algorithm are also defined using integer constants. Therefore, a region which has all
clocks bounded is either entirely inside the zone or entirely outside it. For example,
in Figure 7, region 2 < x < 3 ^ 0 < y < 1 ^ x > y is completely inside the zone Z,
whereas the region 0 < x < 1 ^ 1 < y < 2 ^ x > y is completely outside.

ACM SIGLOG News 17 July 2022, Vol. 9, No. 3



— Suppose v ⌘M v0. Let v1 be region equivalent to v. Then there exists a v01 in the
neighbourhood of v0 such that v01 ⌘M v1. By neighbourhood of v0, we mean the small-
est zone (using integer constants) that contains v0. Therefore, any zone Z containing
v0 also contains its neighbourhood, and so in particular it will contain v01.

From the second point, we can derive that the downset #M Z is a union of regions:
if v 2#M Z, then v1 2#M Z. The second observation above is called the adjustment
lemma (Lemma 18 of [Herbreteau et al. 2016]) and appears in a generalized context.
We state the finiteness of 4M in the following theorem.

THEOREM 5.7. The simulation 4M is finite.

5.2. Efficient simulation test
The final hurdle is the test (q, Z) 4M (q, Z 0). Notice that it does not really depend
on the state q, and so we will just write Z 4M Z 0 in this section. We ask what is a
witness for Z 64M Z 0? A witness for non-simulation is a valuation v 2 Z such that
its equivalence class with respect to ⌘M does not intersect Z 0. This is illustrated in
Figure 8.

x

y

0 M(x)

M(y)

Z

Z0
v

Fig. 8. We have zone Z 64M Z0 since for v 2 Z there is no equivalent valuation in Z0. The red line depicts
all valuations that are ⌘M equivalent to v.

When there are at most two clocks, it seems possible to check this by looking at
the constraints of Z and Z 0. When there are more than two clocks, it is difficult to
visualize the witness. Quite remarkably, it turns out that if there is a witness v for
Z 64M Z 0, then there are two clocks x, y such that the projection of v (call it v(x, y)) is
a witness for Z(x, y) 64M Z 0(x, y) where Z(x, y) and Z 0(x, y) denote the projections of
Z,Z 0 onto x, y. This means, in order to find a witness v for Z 64 Z 0, it is sufficient to
run Z(x, y) 64 Z 0(x, y) through all projections to two clocks. This immediately gives a
complexity O(|X|

2). The proof of this result and the final simulation test can be found
in Section 5 of [Herbreteau et al. 2016].

Thanks to Theorems 5.5 and 5.7, and the efficient inclusion test, we now have an
algorithm for reachability that can be implemented efficiently: given automaton A,
take M to be the function setting M(x) to the maximum constant that appears in A,
and M(x) = �1 if there is no constraint on x in A, and then run the reachability
algorithm with 4M to compute ZG4M (A).
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6. COMPUTING BETTER CONSTANTS
Now that we have a simulation that can be put to work, what more do we want? A
natural goal is to ask for simulations that can generate smaller simulation graphs. For
this to materialize we require more simulations happening during the computation.
If we stick to M -bounds as parameters, we cannot do better in terms of the simula-
tion relation: the relation ⌘M is the biggest relation that is correct for all automata
conforming to M [Herbreteau et al. 2012; 2016]. Therefore, we either need to extract
more information about the automaton, or look for better constants M , that are still
sufficient for the given automaton.

6.1. Smaller the bounds, better the simulation
Suppose for two bounds M1 and M2, we say M1  M2 if M1(x)  M2(x) for all clocks
x. Notice that M1 induces a coarser equivalence than M2: if v1 ⌘M2 v2, then v1 ⌘M1 v2.
Therefore, if Z 4M2 Z 0 we also have Z 4M1 Z 0, but not the other way around. Due to
this, we can expect more simulations to happen when the bounds are smaller.

Theorem 5.5 suggests that any M -bound that the automaton conforms to is a good
candidate. Just taking the maximum constant in A for each clock is a correct, but
an overly conservative approach. We will describe three approaches to get better M -
bounds.

6.2. State specific bounds via a static analysis
Consider the picture on the right in Figure 5 once again. Both nodes have the same
control state q. The first observation is that for q, it is enough to look at paths starting
from q [Behrmann et al. 2003]. A static analysis of the automaton is performed as a
pre-processing step to compute bounds Mq for each state q of the automaton. At state
q, the function Mq(x) gives the largest constant appearing in a path starting from q
which does not reset x. This is illustrated below. There is a path from q that leads to a
constraint x � 4, without resetting x in between. Hence Mq(x) = 4 (assuming there are
no other paths from q). The constant 5 is irrelevant at q due to the reset of x happening
in between q and the constraint x = 5. Simulations involving state q can make use of
the bound Mq: the simulation check becomes (q, Z) 4Mq (q, Z 0).

q

Mq(x) = 4

x  2 x � 4

{x}

x = 5

Consider automaton A3 in Figure 9. The bound Mq0 associates �1 to y since the path
from q0 to the constraint y = 106 has a reset of y. This gives three uncovered nodes in
the simulation graph corresponding to paths ✏, b, bc. The node (q0, Za) := (q0, y � x = 1)
reached after action a gets covered by (q0, Z✏) := (q0, y�x = 0), the node corresponding
to ✏. Notice that a valuation v := (x = i, y = i+ 1) 2 Za is simulated by v0 := (x = i, y =
i) 2 Z✏ as Mq0(y) = �1. A global bound which is not state-specific associates 106 to y,
resulting in at least 106 nodes at q0.

6.3. Bounds for each (q, Z) by an on-the-fly method
The second observation is that for node (q, Z), it is in fact sufficient to consider only
the part of the zone graph below (q, Z). Hence there is a bound function M(q,Z) for
each node (q, Z). This is in principle better since there could be a large constant that
appears to be possible from q, but one may never reach it in any run of the timed
automaton. This is illustrated in automaton A4 in Figure 9. Action b is not feasible, no
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a, x = 1, {x}
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Automaton A3

q0 q1

q2

a, x = 1, {x}

b, x � 2 ^ y  1

c, y = 106

Automaton A4

q0 q1

a, x = 1, {x}

b, y = 106

Automaton A5

Fig. 9. Automata examples to illustrate better bounds computation.

matter how many times we do the loop a. Therefore the constraint y = 106 with the big
constant is never reachable in the zone graph. The state specific bounds computation
via static analysis does not recognize this. It would assign a bounds function Mq0 at q0
with Mq0(y) = 106. This would result in a simulation graph with at least 106 nodes.

When we first visit (q, Z), we do not have the subgraph below it and so we do not have
M(q,Z) at that point. In [Herbreteau et al. 2011], an algorithm has been proposed that
incorporates the bounds computation along with the zone graph exploration. Initially
all bounds are assumed to be �1 and they are increased as and when new constraints
are seen during the exploration. From each new transition that is seen, the constants
are propagated backwards along the predecessors until all resets are hit, or the initial
node is reached. For the static analysis bounds we had an Mq and it was clear that
the simulation (q, Z) 4Mq (q, Z 0) would use Mq. Now, when we assign an M(q,Z) for
each (q, Z) which bounds do we use for the simulation between (q, Z) and (q, Z 0): the
bound function M(q,Z) or M(q,Z0)? Recall that when we do a simulation (q, Z) 99K (q, Z 0),
the node (q, Z) is covered and (q, Z 0) is uncovered. The idea of this simulation edge is
that: based on whatever has been seen from (q, Z 0), the node (q, Z) is covered and
exploring (q, Z) will not see anything that is unseen from (q, Z 0). Therefore for the
simulation check, the bound M(q,Z0) are used. The more we explore, the more we learn
about the subgraph from (q, Z 0). Hence these bounds are dynamically changing and the
coverings may need to be revisited and removed. So the algorithm from [Herbreteau
et al. 2011] is more sophisticated than a plain enumeration of zones. It goes through
an exploration phase, followed by a refinement phase to check for bad coverings. The
process is repeated until there are no bad coverings.

6.4. Bounds for each (q, Z) by a lazy approach
One could go a step further. We look at Figure 5 again. Let us now look at the situation
from the point of view of node (q, Z 0). Suppose there is no disabled edge in the part of
the zone graph below (q, Z 0). This means that every sequence that is possible from q
in the automaton has been seen from (q, Z 0). Such a node can simulate any other node
that contains the same control state q. The on-the-fly computation of Section 6.3 would
take into consideration all the constants in the subgraph starting from (q, Z 0). When
there is a non-trivial M -bound, node (q, Z 0) may not simulate every other reachable
node. The best option in such a situation is to associate a trivial M -bound that gives
�1 to every clock.

Consider automaton A5 from Figure 9. If the zone graph is computed, one would
notice that b is feasible from (q0, y � x = 0). Now, on doing a, we reach (q0, y � x = 1).
It is ok to cover (q0, y � x = 1) by (q0, y � x = 0). This is because there are no disabled
edges from (q0, y � x = 0) and hence every control state reachable from q0 has been
seen. There is no point in further exploration from (q0, y � x = 1). When the bounds
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are trivial at (q0, y � x = 0), this covering will indeed happen. So for this automaton,
the algorithm starts with trivial bounds and does not increase them any further.

This was an exceptional situation. What about when there is some disabled edge a
from (q, Z 0)? Node (q, Z 0) cannot simulate node (q, Z) if the latter can do action a. To
let the algorithm know this, we need to pick the guard in a and incorporate it into the
M -bound for (q, Z 0). Now, what about a disabled edge that comes later, say there is a
sequence w from (q, Z 0) leading to a node (qw, Z 0

w) from which action a is disabled.

(q, Z0) (qw, Z0
w)

w
⇥
a

We need to construct a correct M -bound at (q, Z 0) that ensures that (q, Z 0) does not
simulate nodes from which wa is feasible. This is achieved as follows in [Herbreteau
et al. 2013]:

(1) Add constants of a to M(qw,Z0
w).

(2) Propagate these constants backward along w to increase M(q,Z0), picking only a
subset of constraints in w that cause a to be disabled.

There could be various reasons why a is disabled at (qw, Z 0
w): for instance a is x  3

and there is a guard x � 5 in w after which there is no reset. There could be yet
another guard y � 4 in w, but we have the constraint x = y in the zone just before it.
This generates a derived constraint x � 4 which could have caused a to be disabled.
The algorithm from [Herbreteau et al. 2013] makes one choice of guards to pick and
shows them to be sufficient. The bounds computed this way are called lazy M -bounds.
Once again, this lazy approach makes use of an intricate algorithm that starts with
all bounds being �1 and dynamically updates them during the exploration by back-
propagating guards starting from a disabled edge. An example exhibiting exponential
gains with this approach is presented in [Herbreteau et al. 2013].

In summary, the lazy approach triggers the back-propagation of bounds only from
disabled edges, and moreover the propagation algorithm makes an intelligent choice
of constraints to pick.

6.5. Which bounds are the best?
There is a trade-off between the static bounds computation and the dynamic bounds
computation: the computed bounds are smaller in the dynamic case, but there is a
computation overhead involved during the algorithm. The dynamic computed bounds
may prune out a big portion of the state space in which case the performance (in terms
of memory consumption and time) is better compared to the algorithm with the static
analysis bounds. If this does not happen, there is no gain due to dynamic bounds and in
fact the extra computation results in a longer time to completion. There are examples
to show both situations. The default option in tools is the static analysis method for
deriving constants which seems to work well for most of the examples. The general
sentiment seems to be that keeping the algorithm simple gives good performance. But,
we do think that it is an interesting direction to look for better algorithms for the
dynamic bounds computation and perform extensive experimentation to compare the
benefits.

7. DISTINGUISHING LOWER AND UPPER BOUNDS
In Section 5, we have defined a simulation ⌘M on valuations and a relation 4M on
zones which leads to an associated simulation graph ZG4M (A). In the subsequent
Section 6, we have seen methods to get smaller M -bounds. In this section, we will
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present better parameters for the simulation by distinguishing lower bound and upper
bound constraints occurring in the guards.

7.1. The key idea
Suppose for a state q, the set of relevant guards seen by the static analysis method
is {x  2, y � 3}. The M -bound would associate Mq(x) = 2 and Mq(y) = 3. Consider
two valuations v : x = 1, y = 1 and v0 : x = 0.5, y = 1.5. We have v 6⌘M v0 according
to Definition 5.2. But, notice that for any time elapse �, whenever v + � |= x  2, we
have v0 + � |= x  2. This is because v0(x)  v(x). The same property holds for the
other guard y � 3: whenever v + � |= y � 3, we have v0 + � |= y � 3. Now, this happens
because v0(y) � v(y). Therefore, it seems correct to say that v is simulated by v0 when
the guards are restricted to {x  2, y � 3}. This gives a motivation to distinguish lower
and upper bounds to get a coarser simulation relation.

7.2. LU -simulation
In an influential paper [Behrmann et al. 2004; 2006], the authors consider two bound
functions L and U . The L-bound considers the maximum constant among relevant
lower bound guards, and the U -bound considers the maximum constant among rel-
evant upper bound guards. For example, for the set {x  2, y � 3} we will have
U(x) = 2, L(y) = 3 and L(x) = U(y) = �1. A simulation relation v 4LU v0 making
use of the L and U bounds has been defined in [Behrmann et al. 2004; 2006]. Notice
that for the same LU bounds as above, there could be several sets of guards. For exam-
ple {x  2, x  1, y � 3, y � 0} also has the same LU bounds. The simulation relation
v 4LU v0 caters to all possible guard sets that are compatible with given LU bounds.
We will give some intuition for 4LU and then formally recall the definition of v 4LU v0.

We will say that a constraint x ⇠ c conforms to LU when c  U(x) if ⇠2 {<,}

and c  L(x) if ⇠2 {>,�}. An automaton A conforms to LU -bounds if every con-
straint present in A conforms to LU . Suppose v(x) > U(x). Then v can satisfy no upper
constraints, even after time elapse. In this case we are fine with any value for v0(x).
Suppose v(x)  U(x). Then, v could potentially satisfy some relevant upper bound
constraint on x that conforms to U . It is safe to assume v0(x)  v(x). This gives the
condition: v(x)  U(x) implies v0(x)  v(x). Similarly, suppose v(x) > L(x). Then v sat-
isfies all the lower constraints. We need v0(x) > L(x). Finally, if v(x)  L(x), valuation
v already satisfies some lower constraints currently, and so we assume v0(x) � v(x).
This culminates in the following definition.

Definition 7.1 (LU -preorder). Let L : X ! N[ {�1} and U : X ! N[ {�1} be two
bounds functions. For valuations v and v0, we define v 4LU v0 if for all clocks x:

— v(x)  U(x) implies v0(x)  v(x)
— v(x)  L(x) implies v0(x) � v(x)
— v(x) > L(x) implies v0(x) > L(x)

It can be shown that the LU -preorder induces a simulation relation for all automata
that conform to the LU -bounds [Behrmann et al. 2006; Herbreteau et al. 2016]. This is
why we call it the LU -simulation. Furthermore, it has been shown that the associated
simulation test over zones Z 4LU Z 0 can be done in O(|X|

2) [Herbreteau et al. 2012;
2016]. Therefore one could very well use the LU -simulation to get a finite simulation
graph, which at times is significantly smaller than the simulation graph using 4M . It
has also been proved that the LU -preorder is optimal while considering all automata
conforming to given LU -bounds [Herbreteau et al. 2012; 2016]. Therefore, in order to
do better, we need more information than just LU .
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Fig. 10. A network of timed automata on the left, and its synchronized product on the right

When the LU -preorder was introduced [Behrmann et al. 2004; 2006], the efficient
simulation test for Z 4LU Z 0 was not known. Instead the authors used an extrap-
olation operation on zones to get a finite graph. Extrapolations can work only in the
presence of static constants whereas in the simulation graph approach, one can use dy-
namic constants as discussed in Section 6. In particular, the lazy bounds computation
of [Herbreteau et al. 2013] uses LU constants.

8. A LOCAL-TIME SEMANTICS TO MAKE USE OF CONCURRENCY
In the entire discussion in the document so far, we have considered a monolithic timed
automaton as the input. In practice, each component of the system is represented as a
timed automaton. The system is then given as a network of timed automata which com-
municate with each other over shared actions. The reachability algorithm described
until now considers a synchronized product of the network for the zone graph com-
putation. All this is done on-the-fly, and so the whole product need not be computed
upfront.

This framework does not exploit valuable information coming due to concurrency.
For example, consider Figure 10. It shows a network and the corresponding synchro-
nized product. Notice that both ab and ba lead to the same state hp1, q1i in the product.

(1) A zone graph computation would lead to two different zones at the state hp1, q1i due
to the different order of clock resets. In general there could be exponentially many
zones (in the number of components) at one control state of the network, plainly
due to the different order of executing the same set of actions. Current methods
can make use of simulations to cut out some of these zones, but that is only due
to chance. The notion of simulations only looks at the future and is not meant to
handle the issue of interleavings.

(2) In the untimed setting, the presence of diamonds due to independent actions has
led to the study of partial-order reductions which have been an influential tech-
nique in explicit-state model checking. In the timed setting the clock resets break
the diamonds, thereby creating a fundamental bottleneck for partial-order reduc-
tions.

To address these issues, a local-time semantics for networks of timed automata has
been proposed [Bengtsson et al. 1998]. In the local-time semantics, each component
in the network moves independently according to its local timeline which contrasts
with the standard semantics where time elapses synchronously in all the components.
When components perform a shared action, they synchronize their local timelines. This
semantics gives good independence properties: for instance, if a and b are actions per-
formed by components Pa and Pb, an execution (a, 2)(b, 1) means a happens when the
local time of Pa is 2 and b happens when local time of Pb is 1. There is no “happens-
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before” between (a, 2) and (b, 1). The local-time semantics leads to a local-zone graph
computation in which performing ab or ba from a local-zone leads to the same local-
zone. This is very attractive since this settles (1) above and tempts us to consider (2),
a partial-order reduction for timed automata. However, there is no free lunch. It turns
out that it is impossible to get a finite simulation for the local-time semantics [Govind
et al. 2022]. A way to prune the local-zone graph computation without using simu-
lations was provided in [Govind et al. 2019]. This already leads to significant gains
in practice due to the tackling of (1). The method proposed in [Govind et al. 2019] is
not amenable to partial-order reduction. This problem is addressed in [Govind et al.
2022]. The impossibility of a finite simulation is an impediment for the application
of partial-order methods. The current solution is to consider a restricted class of net-
works called bounded-spread networks [Govind et al. 2022]. For these networks, a
simulation relation has been defined and a more sophisticated way to use it in the
zone graph computation has been presented. The main advantage of this approach is
that partial-order reductions (and finite simulations) can be applied. Investigating a
suitable partial-order reduction method for the timed setting and evaluating the gains
on the local-zone graph computation is an exciting line of work.

9. THE TOOL TCHECKER
The basic algorithm using zones and the 4LU simulation, the various ways to obtain
constants and the algorithms using the local-time semantics have been implemented in
the fully open-source tool TChecker [Herbreteau and Point 2019]. In addition to being
a verification tool for real-time systems, TChecker has been a backbone for theoretical
development, with several intuitions coming from experiments. The architecture of the
tool allows easy extension to other verification algorithms and also to richer models of
timed automata, like weighted timed automata, timed automata with diagonal con-
straints and updates, etc. A companion tool UPPAAL-To-TChecker [Point 2022b] can
be used to translate a subset of the UPPAAL input language to the format of TChecker.
The tool can also be used online in the TChecker demonstration page [Point 2022a].

10. CONCLUSION
We have presented an algorithmic framework for reachability in timed automata that
uses zones and simulations (Sections 3 and 4). A concrete simulation relation 4M was
presented in Section 5. We have presented 4M due to its simplicity. The simulation
relation that is implemented in tools is 4LU , which was presented in Section 7. In
Section 6 we have described some methods to get smaller bounds, and hence better
simulation parameters. Finally, in Section 8 we have touched upon an approach using
a local-time semantics that makes use of concurrency.

The basic framework using zone graphs and simulations has been extended to richer
models like timed automata with diagonal constraints and updates [Gastin et al.
2018; 2019; 2020], weighted timed automata [Bouyer et al. 2016], pushdown timed
automata [Akshay et al. 2021], event-clock automata [Akshay et al. 2022], and for
checking richer properties in timed automata like liveness [Herbreteau et al. 2020].
One promising direction is to investigate the simulation approach for other extensions
like parametric timed automata [Alur et al. 1993; André 2021], timed games [Cassez
et al. 2005; Behrmann et al. 2007], probabilistic timed automata [Norman et al. 2013;
Kwiatkowska et al. 2011], etc., all of which have some current tool support.

Coming back to reachability in timed automata, where do we stand currently? Let us
first get a sense of the scale. For a network consisting of 10 components, each with say
10 states and 1 clock, we already get a synchronized product with around 1010 control
states and 10 clocks. The clocks may potentially lead to 210 zones attached to each state.
With current techniques, we have been able to handle a model with 140 components,
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each with about 8 states and 3 clocks (see the Experiments section in [Herbreteau
et al. 2013]). In all there are about 1408 states and 420 clocks in this model, and the
zone based algorithm (using lazy constants) is able to handle this scale. There is still
a long way to go. Majority of the work has focussed on getting fewer zones per control
state and this has seen quite some success. However, the size of the large control state
space is a big burden. For untimed systems, symbolic methods using Binary Decision
Diagrams (BDDs) and SAT have been used to tackle this large (discrete) state space.
Enumerative algorithms have largely cashed in on partial-order reduction methods to
optimize the control state space. Extending these methods to the timed setting does
not seem straightforward.

For timed systems BDD and SAT based solutions [Møller et al. 1999; Behrmann
et al. 1999; Wang 2001; Audemard et al. 2002; Niebert et al. 2002; Ehlers et al. 2010;
Badban and Lange 2011; Roussanaly et al. 2019] have been tried with mixed results.
Partial-order methods for timed automata have in general considered restricted set-
tings: working with a subclass of networks [Govind et al. 2022], limiting partial-order
methods only to parts where independent actions occur in zero-time [Møller et al. 1999;
Larsen et al. 2020; Bønneland et al. 2021], or discovering which actions remain inde-
pendent in the standard global-time semantics, either statically [Dams et al. 1998] or
dynamically [Hansen et al. 2014]. We are not aware of any tool that has managed to
successfully deploy partial-order reduction for timed automata. The recent study of the
local-time semantics gives some hope in this direction.
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