TODAY's GOAL:

Given T.A. A and B. checking if sp ex $x^{\text {ma }} \rightarrow \alpha(B) \subseteq \alpha(A) \curvearrowleft$ Property is undecidable

If B and A were NFA, how would vie check:

$$
\alpha(B) \leq \alpha(x) ?
$$

\longrightarrow untired words over Σ^{*}

$$
<(B) \cap \alpha(t)^{c}=\varnothing
$$

$$
\angle(B) \cap\left\langle(A)^{c} \neq \phi\right.
$$

$$
\angle(B) \subseteq<(A) \quad \text { iff } \quad \angle(B) \cap<(A)^{c}=\varnothing
$$

For NFA's we can effectively construct automaton A ' for $P(A)^{\prime}$.

$$
L\left(A^{\prime}\right)=L(A)^{c}
$$

- We have seen earlier that there are fired aupomata for which the complement is not timed regular.
- So we cannot employ this technique for timed autornata inclusion

Language inclusion is undecidable

Coming Next: Short recap of undecidability

P : an arbitrary boolean program (string)
$w:$ an arbitrary string

P : an arbitrary boolean program (string)
$w:$ an arbitrary string

Can program P_{1} exist?

If P_{1} exists, then P_{2} exists

If P_{1} exists, then P_{2} exists

P_{2} returns Yes on P_{2}

If P_{1} exists, then P_{2} exists

P_{2} returns Yes on P_{2} if P_{2} does not return Yes on P_{2}

If P_{1} exists, then P_{2} exists

P_{2} returns Yes on P_{2} if P_{2} does not return Yes on P_{2}
P_{2} returns No on P_{2}

If P_{1} exists, then P_{2} exists

P_{2} returns Yes on P_{2} if P_{2} does not return Yes on P_{2}
P_{2} returns No on P_{2} if P_{2} returns Yes on P_{2}

If P_{1} exists, then P_{2} exists

P_{2} returns Yes on P_{2} if P_{2} does not return Yes on P_{2}
P_{2} returns No on P_{2} if P_{2} returns Yes on P_{2}
P_{2} cannot exist $\Rightarrow P_{1}$ cannot exist

Turing machine 2-counter machine

Membership problem for 2-counter machines (MP)

Given a, 2-counter machine M and an arbitrary string w, checking if M accepts w is undecidable
deterministic

Goal of this lecture

Timed regular languages are powerful enough to encode computations of 2-counter machine

We will see:
If there is an algorithm for TA language inclusion, then there is an algorithm for MP

Coming next...

2-counter machines

Computation: $\left\langle q_{0}, w_{0}, 0,0\right\rangle\left\langle q_{1}, w_{i_{1}}, c_{1}, d_{1}\right\rangle \cdots\left\langle q_{i}, w_{i}, c_{i}, d_{i}\right\rangle \cdots$
Accept: if some computation ends in $\left\langle q_{F}, \star, \star, \star\right\rangle$

Goal 1

Given M and w

define timed language $L_{\text {undec }}$ s.t

$$
M \text { accepts } w \text { iff } L_{\text {undec }} \neq \emptyset
$$

Words in $L_{\text {undec }}$ encode accepting computations of M on w

Configuration of a 2-counter machine:

$\left\langle q, w_{k}, c, d\right\rangle \quad\left\langle q_{1}, w_{5}, 3,5\right\rangle$

Encoding as a word over alphabet: $\left\{a_{1}, a_{2}, b_{i}\right\}$ where $i \in Q \times\{0, \ldots,|w|+1\}$

$$
b_{\left(a_{1}, v_{5}\right)}^{a_{1} a_{1} a_{1} a_{2} a_{1} a_{2} a_{2} a_{1}}
$$

$$
\left\langle q_{0}, w_{i_{0}}, 0,0\right\rangle \cdots\left\langle q_{j}, w_{i_{j}}, c_{j}, d_{j}\right\rangle \cdots\left\langle q_{m}, w_{i_{m}}, c_{m}, d_{m}\right\rangle
$$

Encode the $j^{\text {th }}$ configuration in $[j, j+1)$
$\left\langle q_{0}, w_{i_{0}}, 0,0\right\rangle \cdots\left\langle q_{j}, w_{i_{j}}, c_{j}, d_{j}\right\rangle \cdots\left\langle q_{m}, w_{i_{m}}, c_{m}, d_{m}\right\rangle$

Encode the $j^{\text {th }}$ configuration in $[j, j+1)$

- if $c_{j+1}=c_{j}, \quad \forall a_{1}$ at time t in $(j, j+1), \quad \exists a_{1}$ at time $t+1$
- if $c_{j+1}=c_{j}+1$,
$\forall a_{1}$ at time t in $(j+1, j+2)$ except the last one,
$\exists a_{1}$ at time $t-1$
- if $c_{j+1}=c_{j}-1$,

$\forall a_{1}$ at time t in $(j, j+1)$ except the last one,
$\exists a_{1}$ at time $t+1$
(same for counter d)

$$
\left[\begin{array}{c}
b_{\left(q_{0,0}\right)} \\
0 \\
\downarrow
\end{array}\right]\left[\begin{array}{ccc}
b_{\left(q_{1,1}\right)} & a_{1} & a_{2} \\
1 & 1.5 & 1.7
\end{array}\right]\left[\begin{array}{llll}
b_{\left(q_{2,2}\right)} & a_{1} & a_{1} & a_{2} \\
2 & 2.5 & 2.6 & 2.7
\end{array}\right]
$$

$$
\left\langle q_{0}, w_{0}, 0,0\right\rangle \quad\left\langle q_{1}, w_{1}, 1,1\right\rangle \quad\left\langle q_{2}, w_{2}, 2,1\right\rangle
$$

- Notice that there are infinitely many timed words that encode one computation, This is due to the choice of time stamps.
$L_{\text {undec }}$: encodes the accepting computations
Timed word $(\sigma, \tau) \in L_{\text {undec }}$ iff
$L_{\text {undec }}$: encodes the accepting computations
Timed word $(\sigma, \tau) \in L_{\text {undec }}$ iff

$$
\begin{gathered}
\sigma=b_{i_{0}} a_{1}^{c_{0}} a_{2}^{d_{0}} \quad b_{i_{1}} a_{1}^{c_{1}} a_{2}^{c_{2}} \cdots \quad b_{i_{m}} a_{1}^{c_{m}} a_{2}^{c_{m}} \text { s.t. } \\
\left\langle q_{0}, w_{i_{0}}, c_{0}, d_{0}\right\rangle\left\langle q_{1}, w_{i_{1}}, c_{1}, d_{1}\right\rangle \cdots\left\langle q_{m}, w_{i_{m}}, c_{m}, d_{m}\right\rangle \text { is accepting }
\end{gathered}
$$

$L_{\text {undec }}$: encodes the accepting computations
Timed word $(\sigma, \tau) \in L_{\text {undec }}$ iff

- $\quad \sigma=b_{i 0} a_{1}^{c_{0}} a_{2}^{d_{0}} b_{i_{1}} a_{1}^{c_{1}} a_{2}^{c_{2}} \cdots b_{i_{m}} a_{1}^{c_{m}} a_{2}^{c_{m}}$ s.t.
$\left\langle q_{0}, w_{i_{0}}, c_{0}, d_{0}\right\rangle\left\langle q_{1}, w_{i_{1}}, c_{1}, d_{1}\right\rangle \cdots\left\langle q_{m}, w_{i_{m}}, c_{m}, d_{m}\right\rangle$ is accepting
- each $b_{i j}$ occurs at time $j \vee a_{1}^{\prime} \leqslant$ and a_{2}^{\prime} ' occur at different time stamps.
$L_{\text {undec }}$: encodes the accepting computations
Timed word $(\sigma, \tau) \in L_{\text {undec }}$ iff

$$
\begin{gathered}
\sigma=b_{i_{0}} a_{1}^{c_{0}} a_{2}^{d_{0}} b_{i_{1}} a_{1}^{c_{1}} a_{2}^{c_{2}} \cdots b_{i_{m}} a_{1}^{c_{m}} a_{2}^{c_{m}} \text { s.t. } \\
\left\langle q_{0}, w_{i_{0}}, c_{0}, d_{0}\right\rangle\left\langle q_{1}, w_{i_{1}}, c_{1}, d_{1}\right\rangle \cdots\left\langle q_{m}, w_{i_{m}}, c_{m}, d_{m}\right\rangle \text { is accepting }
\end{gathered}
$$

- each $b_{i j}$ occurs at time $j \vee a_{1}^{\prime} s$ and a_{2}^{\prime} occur at differens time stamps.
- if $c_{j+1}=c_{j}, \quad \forall a_{1}$ at time t in $(j, j+1), \quad \exists a_{1}$ at time $t+1$
- if $c_{j+1}=c_{j}+1$,
$\forall a_{1}$ at time t in $(j+1, j+2)$ except the last one,
$\exists a_{1}$ at time $t-1$
- if $c_{j+1}=c_{j}-1$,
$\forall a_{1}$ at time t in $(j, j+1)$ except the last one,
$\exists a_{1}$ at time $t+1$

Goal 1

Given M and w

define timed language $L_{\text {undec }}$ s.t

M accepts w iff $L_{\text {undec }} \neq \emptyset$

Words in $L_{\text {undec }}$ encode accepting computations of M on w
Done!

Goal 2

Given M and w

construct a timed automaton $\mathcal{A}_{\text {undec }}$

for the complement language $\overline{L_{\text {undec }}}$

Goal 2

Given M and w

construct a timed automaton $\mathcal{A}_{\text {undec }}$

for the complement language $\overline{L_{\text {undec }}}$

M accepts w iff $\mathcal{L}\left(\mathcal{A}_{\text {undec }}\right) \neq T \Sigma^{*}$

$\begin{aligned} M \text { acupb } \omega \quad & \Leftrightarrow \quad \text { Lundec } \neq \phi \\ & \Leftrightarrow \quad L_{\text {under }}^{c} \neq T \Sigma^{\prime} \text { (universal) }\end{aligned}$

Goal 2

Given M and w

construct a timed automaton $\mathcal{A}_{\text {undec }}$
for the complement language $\overline{L_{\text {undec }}}$

M accepts w iff $\mathcal{L}\left(\mathcal{A}_{\text {undec }}\right) \neq T \Sigma^{*}$

\rightarrow reduction to universality of TA
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations
Timed word $(\sigma, \tau) \in \overline{L_{\text {undec }}}$ iff
$\overline{L_{\text {under }}}$: words that do not encode accepting computations
Timed word $(\sigma, \tau) \in \overline{L_{\text {undec }}}$ iff
either, there is no b-symbol at some integer point j or, two a_{i}^{\prime}, occur at the same time stamp.
$\overline{L_{\text {under }}}$: words that do not encode accepting computations
Timed word $(\sigma, \tau) \in \overline{\bar{L}_{\text {undec }}} \mathrm{iff}$

- either, there is no b-symbol at some integer point j
or, two $a_{i s}^{\prime}$ occur at the same time stamp. or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*}$

$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point j or, tyo a^{\prime}, ocaur at the same time stamp
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*}$
- or, initial subsequence in $[0,1)$ is wrong
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point j or, tyo a^{\prime}, ocaur at the same time stamp
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*}$
- or, initial subsequence in $[0,1)$ is wrong
- or, some transition of M has been violated in the word
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point j or, tyo a^{\prime}, 0 caur at the same time stamp
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*}$
- or, initial subsequence in $[0,1)$ is wrong
- or, some transition of M has been violated in the word
- or, final b-symbol denotes non-accepting state
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point $j \mathcal{A}_{0}$ or, tyo a^{\prime}, ocaur at the same time stamp A_{0}^{\prime}
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*} \mathcal{A}_{1}$
- or, initial subsequence in $[0,1)$ is wrong $\mathcal{A}_{\text {init }}$
- or, some transition of M has been violated in the word \mathcal{A}_{t} for each transition t of M
- or, final b-symbol denotes non-accepting state $\mathcal{A}_{\text {acc }}$
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point $j \mathcal{A}_{0}$
- tyio a^{\prime}. ocaur at the same time stamp A^{\prime}
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*} \mathcal{A}_{1}$
- or, initial subsequence in $[0,1)$ is wrong $\mathcal{A}_{\text {init }}$
- or, some transition of M has been violated in the word \mathcal{A}_{t} for each transition t of M
- or, final b-symbol denotes non-accepting state $\mathcal{A}_{\text {acc }}$

Required $\mathcal{A}_{\text {undec }}$: union of $\mathcal{A}_{0},{ }^{\mathcal{A}_{0}^{0}} \mathcal{A}_{1}, \mathcal{A}_{\text {init }}, \mathcal{A}_{t_{1}}, \ldots, \mathcal{A}_{t_{p}}, \mathcal{A}_{\text {acc }}$

Main challenge:

- Coming up with an automaton A_{t}

Assume $t: \quad\left(q, 0, c t t, L, q^{\prime}\right)$

There is a violation of t iff there exists a $b_{\left(q, w_{i}\right)}$ sit. $w_{i}=0$
and one of the following occurs:

- the letter at ${ }^{\prime} j+1$ is not $b\left(q^{\prime}, w_{i-1}\right)$
- there exists an a_{1} in $^{t \in}(j+1, j+2)$, which is not the last for which there is no predecessor at $t-1$.

Crux

With our encoding, can timed automata express that $n \neq m$?

1. $\exists a_{1}$ at time $t \in(j, j+1)$ s.t there is no a_{1} at $t+1$, or
2. $\exists a_{1}$ at time $t \in(j+1, j+2)$ s.t. there is no a_{1} at $t-1$

If we give automate for these two languages, then we can find automate for the transition violations $\left(A_{t}\right)$.
$\exists a_{1}$ at time $t \in(j, j+1)$ s.t there is no a_{1} at $t+1$

$$
x=1, \neg a_{1}
$$

$\exists a a^{\prime} b$ ' and an ' a ', within 1 time unit of the ' b ' sit. there is no ' a_{i}^{\prime} at $t+1$.
$\exists a_{1}$ at time $t \in(j+1, j+2)$ s.t. there is no a_{1} at $t-1$

$\exists a_{1}$ at time $t \in(j+1, j+2)$ s.t. there is no a_{1} at $t-1$

Need only two clocks!
$\overline{L_{\text {undec }}}$: words that do not encode accepting computations

$$
\text { Timed word }(\sigma, \tau) \in \overline{L_{\text {undec }}} \text { iff }
$$

- either, there is no b-symbol at some integer point $j \mathcal{A}_{0}$
- tyro a^{\prime} occur at the same time stamp A^{\prime}
- or, there is a $(j, j+1)$ with a subsequence not of the form $a_{1}^{*} a_{2}^{*} \mathcal{A}_{1}$
- or, initial subsequence in $[0,1)$ is wrong $\mathcal{A}_{\text {init }}$
- or, some transition of M has been violated in the word \mathcal{A}_{t} for each transition t of M
- or, final b-symbol denotes non-accepting state $\mathcal{A}_{\text {acc }}$

Required $\mathcal{A}_{\text {undec }}$ can be constructed using two clocks

AD

(A) $A_{1} A_{\text {init }} A_{t_{1}}$

M accepts w iff $\quad \mathcal{L}\left(A_{\text {undec }}\right) \neq T \Sigma^{*}$

Universality for TA

The universality problem is undecidable for TA with two clocks or more

A theory of timed automata

Put B as the trivial single state automaton accepting $T \Sigma *$

$$
\mathcal{L}(A)=T \Sigma^{*} \quad \text { iff } \quad \mathcal{L}(B) \subseteq \mathcal{L}(A)
$$

Language inclusion

The problem $\mathcal{L}(B) \subseteq \mathcal{L}(A)$ is undecidable when A has two clocks or more

A theory of timed automata

