TODAY'S GOAL:

Given T.A. I and B, checking if

is undecidable

If B and I were NFA, how would we check:

$$\angle(B) \subseteq \angle(A)$$
?

untimed words over \exists^*
 $\angle(B) \cap \angle(A)^{C} = \emptyset$

For NFA's we can effectively construct automaton of for eld).

We have seen earlier that there are fined automate for which the complement is not timed regular.

- so We cannot employ this technique for timed automata inclusion

Language inclusion is undecidable

Coming Next: Short recap of undecidability

P: an arbitrary boolean program (string)

w: an arbitrary string

P: an arbitrary **boolean program** (string)

w: an arbitrary string

 P_2 returns **Yes** on P_2

 P_2 returns **Yes** on P_2 if P_2 does **not** return **Yes** on P_2

 P_2 returns **Yes** on P_2 if P_2 does **not** return **Yes** on P_2

 P_2 returns **No** on P_2

 P_2 returns **Yes** on P_2 if P_2 does **not** return **Yes** on P_2

 P_2 returns **No** on P_2 if P_2 returns **Yes** on P_2

 P_2 returns **Yes** on P_2 if P_2 does **not** return **Yes** on P_2

 P_2 returns **No** on P_2 if P_2 returns **Yes** on P_2

 P_2 cannot exist \Rightarrow P_1 cannot exist

Turing machine 2-counter machine

Turing machine 2-counter machine

Membership problem for 2-counter machines (MP)

Given a **2-counter machine** M and an arbitrary string w, checking if M accepts w is undecidable

dekrministi

Goal of this lecture

Timed regular languages are **powerful** enough to **encode** computations of **2-counter machine**

We will see:

If there is an algorithm for TA language inclusion, then there is an algorithm for MP

2-counter machine M Yes if M accepts w No otherwise

Coming next...

2-counter machines

Computation: $\langle q_0, w_0, 0, 0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_i, w_i, c_i, d_i \rangle \cdots$

Accept: if some computation ends in $\langle q_F, \star, \star, \star \rangle$

Given M and w

define timed language L_{undec} s.t

M accepts w iff $L_{undec} \neq \emptyset$

Words in L_{undec} encode accepting computations of M on w

Configuration of a 2-counter machine:

$$\langle q, w_k, c, d \rangle$$

Encoding as a word over alphabet:
$$\{a_1, a_2, b_i\}$$
 where $i \in Q \times \{0, ..., |w| + 1\}$

$$b_{(q,k)} a_1^c a_2^d$$

$$\langle q_0, w_{i_0}, 0, 0 \rangle \cdots \langle q_j, w_{i_j}, c_j, d_j \rangle \cdots \langle q_m, w_{i_m}, c_m, d_m \rangle$$

$$b_{(q_j, i_j)} \qquad a_1^{c_j} \qquad a_2^{d_j} \qquad \qquad j+1$$

Encode the
$$j^{th}$$
 configuration in $[j, j+1]$

- ▶ if $c_{j+1} = c_j$, $\forall a_1$ at time t in (j, j+1), $\exists a_1$ at time t+1
- if $c_{j+1} = c_j + 1$,

 $\forall a_1$ at time t in (j+1,j+2) except the last one,

$$\exists a_1$$
 at time $t-1$

• if $c_{j+1} = c_j - 1$,

 $\forall a_1$ at time t in (j, j + 1) except the last one,

$$\exists a_1$$
 at time $t+1$

or counter d

$$\begin{bmatrix}
b_{(q_0,0)} \\
0
\end{bmatrix}
\begin{bmatrix}
b_{(q_1,1)} \\
1
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2
\end{bmatrix}
\begin{bmatrix}
b_{(q_2,2)} \\
2
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_1
\end{bmatrix}
\begin{bmatrix}
a_1 \\
2
\end{bmatrix}$$

Timed word $(\sigma, \tau) \in L_{undec}$ iff

Timed word $(\sigma, \tau) \in L_{undec}$ iff

$$\sigma = b_{i_0} a_1^{c_0} a_2^{d_0} \ b_{i_1} a_1^{c_1} a_2^{c_2} \ \cdots \ b_{i_m} a_1^{c_m} a_2^{c_m} \text{ s.t.}$$

$$\langle q_0, w_{i_0}, c_0, d_0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_m, w_{i_m}, c_m, d_m \rangle \text{ is accepting}$$

Timed word $(\sigma, \tau) \in L_{undec}$ iff

$$\sigma = b_{i_0} a_1^{c_0} a_2^{d_0} b_{i_1} a_1^{c_1} a_2^{c_2} \cdots b_{i_m} a_1^{c_m} a_2^{c_m} \text{ s.t.}$$

$$\langle q_0, w_{i_0}, c_0, d_0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_m, w_{i_m}, c_m, d_m \rangle \text{ is accepting}$$

• each b_{ij} occurs at time j • Q_i and q_i occur at different time stamps.

Timed word $(\sigma, \tau) \in L_{undec}$ iff

$$\sigma = b_{i_0} a_1^{c_0} a_2^{d_0} b_{i_1} a_1^{c_1} a_2^{c_2} \cdots b_{i_m} a_1^{c_m} a_2^{c_m} \text{ s.t.}$$

$$\langle q_0, w_{i_0}, c_0, d_0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_m, w_{i_m}, c_m, d_m \rangle \text{ is accepting}$$

- ▶ each b_{i_j} occurs at time j ▶ a_i 's and a_i 's occur at different time stamps.
- ▶ if $c_{j+1} = c_j$, $\forall a_1$ at time t in (j, j+1), $\exists a_1$ at time t+1
- if $c_{j+1} = c_j + 1$,

 $\forall a_1$ at time t in (j+1,j+2) except the last one,

 $\exists a_1$ at time t-1

• if
$$c_{j+1} = c_j - 1$$
,

 $\forall a_1$ at time t in (j, j + 1) except the last one,

 $\exists a_1$ at time t+1

(same for counter *d*)

Given *M* and *w*

define timed language L_{undec} s.t

M accepts w iff $L_{undec} \neq \emptyset$

Words in L_{undec} encode accepting computations of M on w

Done!

Given M and w

construct a timed automaton A_{undec}

for the **complement** language $\overline{L_{undec}}$

Given *M* and *w*

construct a timed automaton A_{undec}

for the **complement** language $\overline{L_{\it undec}}$

M accepts
$$w$$
 iff $\mathcal{L}(A_{undec}) \neq T\Sigma^*$

M accepts
$$w := \lambda undec \neq \emptyset$$

$$C = \lambda undec \neq T \leq^3 (universal)$$

Given *M* and *w*

construct a timed automaton A_{undec}

for the **complement** language $\overline{L_{undec}}$

M accepts w iff $\mathcal{L}(A_{undec}) \neq T\Sigma^*$

→ reduction to universality of TA

 $\overline{L_{undec}}$: words that do not encode accepting computations

Timed word $(\sigma, \tau) \in \overline{L_{undec}}$ iff

 $\overline{L_{undec}}$: words that do not encode accepting computations

Timed word $(\sigma, \tau) \in \overline{L_{undec}}$ iff

• either, there is no b-symbol at some integer point jor, two all occur at the same time stamp. $\overline{L_{undec}}$: words that do not encode accepting computations

Timed word
$$(\sigma, \tau) \in \overline{L_{undec}}$$
 iff

- either, there is no b-symbol at some integer point j
- or, there is a (j, j + 1) with a subsequence **not** of the form $a_1^* a_2^*$

Timed word
$$(\sigma, \tau) \in \overline{L_{undec}}$$
 iff

- either, there is no b-symbol at some integer point j
- or, there is a (j,j+1) with a subsequence **not** of the form $a_1^*a_2^*$
- or, initial subsequence in [0, 1) is wrong

Timed word
$$(\sigma, \tau) \in \overline{L_{undec}}$$
 iff

- either, there is no b-symbol at some integer point j
- or, there is a (j, j + 1) with a subsequence **not** of the form $a_1^* a_2^*$
- or, initial subsequence in [0, 1) is wrong
- or, some transition of *M* has been **violated** in the word

Timed word
$$(\sigma, \tau) \in \overline{L_{undec}}$$
 iff

- either, there is no b-symbol at some integer point j
 or, tylo a's ocum at the same time stamp
- or, there is a (j, j + 1) with a subsequence **not** of the form $a_1^* a_2^*$
- or, initial subsequence in [0, 1) is wrong
- or, some transition of M has been violated in the word
- or, final *b*-symbol denotes **non-accepting** state

Timed word
$$(\sigma, \tau) \in \overline{L_{undec}}$$
 iff

- either, there is no b-symbol at some integer point $j A_0$ or, type a'_{k} occur at the same time stamp A'_{k}
- or, there is a (j,j+1) with a subsequence **not** of the form $a_1^*a_2^*$ A_1
- or, initial subsequence in [0,1) is wrong A_{init}
- ▶ or, some transition of M has been **violated** in the word A_t for each transition t of M
- or, final *b*-symbol denotes **non-accepting** state A_{acc}

Timed word
$$(\sigma, \tau) \in \overline{L_{undec}}$$
 iff

- either, there is no b-symbol at some integer point $j A_0$, $k_0 = a^2 A_0$ occur at the same time stamp A'
- or, there is a (j,j+1) with a subsequence **not** of the form $a_1^*a_2^*$ A_1
- or, initial subsequence in [0, 1) is wrong A_{init}
- ▶ or, some transition of M has been **violated** in the word A_t for each transition t of M
- or, final *b*-symbol denotes **non-accepting** state A_{acc}

Required
$$A_{undec}$$
: **union** of A_0 , A_1 , A_{init} , A_{t_1} , ..., A_{t_p} , A_{acc}

Main challenge:
- Coming up with an automaton At
b(q,ω;) b'
3
))+1
Assume t: (q, 0, C++, 1, 91)
<u>'</u>
<i>→</i>
There is a violation of this there exists a b (q, w.) s.d. wi =0
and one of the following occurs:
- the letter at j+1 is not b (q', will)
- there exists an a_1 in $t \in (j+1, j+2)$, which is not the last for which there is no predecessor at $t-1$.
for Which ture is no gredecessor at t-1.
,

Crux

With our encoding, can timed automata express that $n \neq m$?

- 1. $\exists a_1$ at time $t \in (j, j+1)$ s.t there is no a_1 at t+1, or
- 2. $\exists a_1$ at time $t \in (j+1, j+2)$ s.t. there is no a_1 at t-1
- It we give automate for these two languages, then we can find automate for the transition scolations (Ar).

 $\exists a_1 \text{ at time } t \in (j, j+1) \text{ s.t there is no } a_1 \text{ at } t+1$

 $\exists a_1 \text{ at time } t \in (j+1, j+2) \text{ s.t. there is no } a_1 \text{ at } t-1$

 $\exists a_1 \text{ at time } t \in (j+1, j+2) \text{ s.t. there is no } a_1 \text{ at } t-1$

Need only two clocks!

Timed word
$$(\sigma, \tau) \in \overline{L_{undec}}$$
 iff

- either, there is no b-symbol at some integer point j A_0 , A_1 by A_2 because at the same time stamp A_1
- or, there is a (j, j + 1) with a subsequence **not** of the form $a_1^* a_2^* A_1$
- or, initial subsequence in [0, 1) is wrong A_{init}
- \triangleright or, some transition of M has been violated in the word A_t for each transition t of M
- \triangleright or, final b-symbol denotes non-accepting state \mathcal{A}_{acc}

Required A_{undec} can be constructed using **two** clocks

M accepts
$$w$$
 iff $\mathcal{L}(A_{undec}) \neq T\Sigma^*$

Universality for TA

The universality problem is **undecidable** for TA with **two** clocks or more

A theory of timed automata

Alur and Dill. TCS'94

Put B as the trivial single state automaton accepting $T\Sigma *$

$$\mathcal{L}(A) = T\Sigma^* \quad \text{iff} \quad \mathcal{L}(B) \subseteq \mathcal{L}(A)$$

Language inclusion

The problem $\mathcal{L}(B) \subseteq \mathcal{L}(A)$ is **undecidable** when A has **two** clocks or more

A theory of timed automata

Alur and Dill. TCS'94