Theorem
Deterministic timed automata are closed under complement

Theorem

Deterministic timed automata are closed under complement

1. Unique run for every timed word

$$
w_{1} \in \mathcal{L}(A) w_{2} \notin \mathcal{L}(A)
$$

Theorem

Deterministic timed automata are closed under complement

1. Unique run for every timed word
2. Complementation: Interchange acc. and non-acc. states

$$
w_{1} \in \mathcal{L}(A) \quad w_{2} \notin \mathcal{L}(A) \quad w_{1} \notin \overline{\mathcal{L}(A)} \quad w_{2} \in \overline{\mathcal{L}(A)}
$$

$\left\{\begin{array}{l}\} \\ \}\end{array}\right.$

Theorem (Lecture 1)

Non-deterministic timed automata are not closed under complement

Many runs for a timed word

Theorem (Lecture 1)

Non-deterministic timed automata are not closed under complement

Many runs for a timed word

$$
w_{1} \in \mathcal{L}(A)
$$

$$
w_{2} \notin \mathcal{L}(A)
$$

Complementation: interchange acc/non-acc + ask are all runs acc. ?

A timed automaton model with existential and universal semantics for acceptance

Alternating timed automata

Lasota and Walukiewicz. FoSSaCS'O5, ACM TOCL'2008

Section 1:
 Introduction to ATA

- X : set of clocks
- $\Phi(X)$: set of clock constraints σ (guards)

$$
\sigma: x<c|x \leq c| \sigma_{1} \wedge \sigma_{2} \mid \neg \sigma
$$

c is a non-negative integer

- Timed automaton $A:\left(Q, Q_{0}, \Sigma, X, T, F\right)$

$$
T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)
$$

$$
T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)
$$

$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$

$$
T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)
$$

$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$

$$
T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))
$$

$$
\begin{aligned}
T: Q \times \Sigma \times \Phi(X) & \mapsto \mathcal{P}(Q \times \mathcal{P}(X)) \\
& \left\lvert\, \begin{array}{l}
\mathcal{B}^{+}(S) \text { is all } \phi::=S\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^{+}(Q \times \mathcal{P}(X)) \\
\left.Q \times P(x)=\left\{\begin{array}{c}
\left(q_{1}, r_{1}\right), \\
\left(q_{2}, r_{2}\right) \\
\vdots \\
{\left[\left(q_{1}, r_{1}\right) \vee\left(q_{2}, r_{2}\right)\right] \times\left(q_{3}, r_{3}\right)}
\end{array} \quad q_{n}, r_{n}\right)\right\}
\end{gathered}
$$

$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$

$$
\mathcal{B}^{+}(S) \text { is all } \phi::=S\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2}
$$

$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^{+}(Q \times \mathcal{P}(X))$

Alternating Timed Automata

An ATA is a tuple $A=\left(Q, q_{0}, \Sigma, X, T, F\right)$ where:

$$
T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^{+}(Q \times \mathcal{P}(X))
$$

is a finite partial function.

Alternating Timed Automat

An ATA is a tuple $A=\left(Q, q_{0}, \Sigma, X, T, F\right)$ where:

$$
T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^{+}(Q \times \mathcal{P}(X))
$$

is a finite partial function.

$$
\Phi(x)=\sum g_{1}, g_{2}
$$

Partition: For every q, a the set
$\left(a, a, g_{1}\right)$

$$
\{[\sigma] \mid T(q, a, \sigma) \text { is defined }\}
$$

$\left(a_{1} a_{1} g_{2}\right)$

gives a finite partition of $\mathbb{R}_{\geq 0}^{X}$

$g_{1} \cup g_{2} \vee g_{3}$ gives all valuations

$$
X=\{x, y\}
$$

Acceptance

Accepting run from q iff:

Acceptance

Accepting run from q iff:

- accepting run from q_{1} and q_{2},

Acceptance

Accepting run from q iff:

- accepting run from q_{1} and q_{2},
- or accepting run from q_{3},

Acceptance

Accepting run from q iff:

- accepting run from q_{1} and q_{2},
- or accepting run from q_{3},
- or accepting run from q_{4} and q_{5} and q_{6}
L : timed words over $\{a\}$ containing no two $a^{\prime} s$ at distance 1 (Not expressible by non-deterministic TA)

Complement of 2: $\exists 2$ a's at distanu 1 apart.

Non. deferministic T.A.

ATA for C 9

T1.

T3.

$$
q_{2}
$$

${ }^{1} a$
Acc. state $\left\{9_{0}, 9,\right\}$

$$
q_{2},\{ \}
$$

Accepring

T1.

Witness for non-acceptance
L : timed words over $\{a\}$ containing no two $a^{\prime} s$ at distance 1 (Not expressible by non-deterministic TA)

ATA:

$$
\begin{aligned}
& q_{0}, a, t t \mapsto\left(q_{0}, \emptyset\right) \wedge\left(q_{1},\{x\}\right) \\
& q_{1}, a, x=1 \mapsto\left(q_{2}, \emptyset\right) \\
& q_{1}, a, x \neq 1 \mapsto\left(q_{1}, \emptyset\right) \\
& q_{2}, a, t t \mapsto\left(q_{2}, \emptyset\right) \\
& q_{0}, q_{1} \text { are acc., } q_{2} \text { is non-acc. }
\end{aligned}
$$

Acceptance Game: G $1, w$

$$
\begin{aligned}
& w:=\left(a_{0}, t_{0}\right)\left(a_{1}, t_{1}\right)\left(a_{2}, t_{2}\right) \ldots\left(a_{k+1}, t_{k+1}\right) \ldots\left(a_{n}, t_{n}\right) \\
& 1 \ldots 1-\cdots-1 \\
& \text { Phase } 0 \text { Phase } 1 \\
& \left(q_{k}, v_{k}\right) \\
& \bar{v}=v_{k}+t_{k+1}-t_{k} \quad q_{k} \xrightarrow[a_{k+1}, g_{m}]{\stackrel{a_{k+1}, g_{1}}{a_{k+1} g_{2}}}
\end{aligned}
$$

- Let σ be unique constraint sit. \bar{v} satisfies σ

$$
b=\delta\left(q_{k \pi}, a_{k+1}, \sigma\right)
$$

- $b=b_{1} \cap b_{2}:$ Adam choose e a subfor mull and game continues with to subbermule

$$
\begin{aligned}
-b & =b_{1} v b_{2}: \text { Eve } \\
-b & =(q, r) \in Q \times P(c)
\end{aligned}
$$

- Phase ends with

$$
\left(q_{k+1}, v_{k+1}\right):=\left(q_{,} \underset{\sim}{\operatorname{v}}\left[\mathrm{P}_{\mathrm{kj}}:=0\right]\right)
$$

\rightarrow pho end with $\left(q_{n-1}, y_{n, 1}\right)$

- Eve wive the play it $9_{n H}$ is augpting; othmouic Atom sum.
- $w \in \mathcal{L}(x)$ if Eve ha a strategy to win $\mathcal{G}_{\text {s, }}$. Are $\omega \notin \alpha(x)$.

Acceptance game $G_{\text {Aw: }}$

$$
\mathcal{L}(A)=\left\{w \mid \text { Eve wins } g_{A}, w\right\}
$$

Summary:

- A model involving existential and universal transitions.

Alternating T.A.

- Example
- Acceptanu game $G s_{1} w$.

Closure properties

- Union, intersection: use disjunction/conjunction
- Complementation: interchange 1. acc./non-acc.

2. conjunction/disjunction

$b_{1} \wedge b_{2}$

Complementation:

\downarrow complementation:

$$
\left[\left(q_{1}, r_{1}\right) \vee\left(q_{2}, r_{2}\right)\right] \wedge\left(q_{3}, r_{3}\right) \wedge\left[\left(q_{4}, r_{4}\right) \vee\left(q_{5}, r_{5}\right)\right]
$$

Closure properties

- Union, intersection: use disjunction/conjunction
- Complementation: interchange

1. acc./non-acc.
2. conjunction/disjunction

No change in the number of clocks!

Section 2:

The 1-clock restriction

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$
- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

Undecidable for two clocks or more

Universality problem \longrightarrow Emptiness problem for for NTA

B
$\alpha[B]$ is universal oft
$\overline{h(B)}$ is amply

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

Undecidable for two clocks or more (ecture3)

Decidable for one clock

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

Undecidable for two clocks or more (via Lecture 3)

Decidable for one clock (via Lecture 4)

Restrict to one-clock ATA

Theorem
Languages recognizable by 1-clock ATA and (many clock) TA are incomparable

1- clock ATA.
NTA with multiple clock e.

Alternation V_{s} Multiple clocks:

Alternation. For every point, \exists another at distance c.

Interleaving,

Need multiple dock,

Example $L:$ no $a^{\prime} s$ at distance 1. \rightarrow 1-cloch ATA. but no NTA.

Example of a language acupted using multiple clock T.A., but not 1. ATの?

Clarification about the expressive power of 1-ATA:
Question:

$$
\text { Let } L_{1}=\left\{\left(a a a, t_{1} t_{2} t_{3}\right) \mid 0<t_{1}<t_{2}<1 .\right.
$$

Can you construct a 1- ATA for L,?

Idea:

$$
\begin{aligned}
& \text { 1-ATA: } \quad\left(q_{0}, a, 0<x<1\right) \longmapsto\left(p_{1},\{x\}\right) \wedge\left(s_{1}, \phi\right) \\
& x^{2}\left(p_{1}, a, \text { type } \longmapsto\left(p_{2}, \phi\right)\right. \\
& \left(s_{1}, a, x<1\right) \longrightarrow\left(s_{2},\{x\}\right) \\
& \left(p_{2}, a, x>1\right) \longmapsto(f, \phi) \\
& \left(s_{2}, a, x<1\right) \longmapsto(f, \phi)
\end{aligned}
$$

$(f, a$, the $) \mapsto($ rejed. $\phi), \quad($ reject, a, true $) \longmapsto($ reject, $\phi)$

$$
\text { 1- ATA: } \begin{aligned}
\left(q_{0}, a, 0<x<1\right) & \longmapsto\left(p_{1},\{x\}\right) \wedge\left(s_{1}, \phi\right) \\
\left(p_{1}, a, t x>^{0}\right) & \longmapsto\left(p_{2}, \phi\right) \\
\left(s_{1}, a, x<1\right) & \longmapsto\left(s_{2},\{x\}\right) \\
\left(p_{2}, a, x>1\right) & \longmapsto(f, \phi) \\
\left(s_{2}, a, x<1\right) & \longmapsto(f, \phi)
\end{aligned}
$$

$(f, a$, the $) \mapsto($ rejed, $\phi), \quad($ reject, a, true $) \mapsto($ reject, $\phi)$
$p 1$

$$
t_{2}-t_{1} \quad p_{2}
$$

$$
\begin{array}{r}
t_{3}-t_{1} \\
>1 \\
f
\end{array} a-\cdots-\left.\right|_{\downarrow}-\cdots-t_{3}-t_{2}<1
$$

A small modification of the previous example:

Question:

$$
\begin{array}{lll}
\text { Let } L_{2}=\left\{\left(a a a, t_{1} t_{2} t_{3} t_{4}\right) \left\lvert\, \begin{array}{lll}
& 0<t_{1}<t_{2}<1 \\
& \left.\begin{array}{llll}
& 1<t_{3}<t_{4} \\
& t_{1}+1<t_{4}<t_{2}+1
\end{array}\right\}
\end{array}\right.\right\}
\end{array}
$$

Can you construct a 1- ATA for L_{2} ?
(1)

(2)

$$
\begin{array}{r}
L_{3}=\left\{\left(a^{k}, t_{1} t_{2}, \ldots t_{k}\right) \mid k \geqslant 3:\right. \\
\left.\begin{array}{l}
0<t_{1}<t_{2}<1 \\
\left.\exists j \geqslant 3 \text { s.t. } \begin{array}{rl}
& t_{1}+1<t_{j}<t_{2+1} \\
& t_{3}>1
\end{array}\right\}
\end{array}\right\}
\end{array}
$$

Problem:

The two $a^{\prime} s$ could be different

- This is an intuition that L_{3} cannot be accepted by a 1.ATA.
- However. proving that a language cannot be accepted by a 1.ATA is difficult.
- We will see another example given in the paper, for which there is a proof that it cannot be accepted by a 1- ATA.

$$
\begin{aligned}
L=\left\{\left(a^{k}, t_{1} t_{2} \ldots t_{k}\right) \mid\right. & 0<t_{1}<t_{2}<1 \\
& 1<t_{3}, \ldots . t_{k}<2
\end{aligned}
$$

there is exactly one a between

$$
\left.t_{1}+1 \text { and } t_{2}+1\right\}
$$

- L can be accepted by a deterministic T.A. with 2 clocks.

Goal: To prove that L cannot be accepted by a 1-ATA.

Step 1: Understand some property of DFAs
Step 2: How Step 1 translates to untimed alternating finik automat a
Step 3: Any 1- ATA accepting L behaves like an untimed AFA in the interval $(1,2)$, where clocks are useless.

Step 4: Use Step 1 and 2 in 3 to get a contradiction.

Step 1: Understanding a property of $D F A_{s}$.

- Consider a unary alphabet $\{a\}$, and DFA $B=(Q, 90, \delta, F)$
- For each a^{k}, the DFA gives rise to a function

$$
\begin{aligned}
& f_{k}^{B}: Q \longrightarrow Q \\
& \begin{array}{c}
q_{1} \\
q_{1} \\
q_{2} \\
\vdots \\
q_{n}
\end{array} q_{1}^{\prime}
\end{aligned}
$$

- The number of functions from $Q \longmapsto Q$ is finite.
- Therefore if we look at the sequence:

$$
f_{1}^{B}, f_{2}^{B}, f_{3}^{B}, \ldots \ldots
$$

there exist m, l, set.

$$
f_{m}^{B}=f_{m+l}^{B}
$$

- Moreover:

$$
f_{m+i}^{B}=f_{m+l+i}^{B}
$$

$$
\begin{array}{ll}
q_{1}-q_{i}^{\prime} & q_{1}-q_{i}^{\prime} \\
q_{2}-q_{i} & q_{2}-q_{2}^{\prime}
\end{array}
$$

$$
\begin{aligned}
& q_{1} \xrightarrow{f_{m+1}} \delta\left(q_{1}, a\right)=f_{m+e+1} \\
\geqslant & q_{c}-\delta\left(\varepsilon_{2}^{\prime}, n\right)
\end{aligned}
$$

Consider all DFA with aftmost n states.

- Let

$$
\begin{aligned}
& m=\max \left(m_{1}, \ldots m_{j}\right) \\
& l=l_{1} \cdot l_{2} \cdot l_{3} \ldots \cdot l_{j}
\end{aligned}
$$

Then for every DFA B with $\leqslant n$ states, we have:

Step 2: Translating Step 1 to alternating finite automata.
AF: $\quad\left(Q, \quad q_{0}, \delta, F\right)$

$$
\delta: Q \times \Sigma \longmapsto \mathbb{B}^{+}(Q)
$$

Syntax and semantics similar to ATA: with no guard, no resets

Claim: Every AFA can be converted into an equivalent DFA.

Modified subset construction:

Each node: a set of subsets of Q

- Perform the above operation on each set from the set of subsck.
- Node is accepting is there is a subset containing only accepting states.

Theorem: Every AFA with ' n ' states can be converted into a DFA with $\leq 2^{2^{n}}$ states.

Consider unary alphabet $\{a\}$.
An AFA A with state set Q gives a function:

$$
\begin{gathered}
f_{k}^{A}: 2^{2^{Q}} \longmapsto 2^{2^{Q}} \\
\left\{\left\{3,\{3,\{3 \ldots:\}\} \xrightarrow{a^{k}}\{\{\{ \},\{ \},\{ \} \ldots \ldots\{1\} .\right.\right. \\
\{\},\{ \}\} \\
\left.\left.\left\{\begin{array}{l}
a^{k} \\
\{
\end{array}\right\}\},\{ \} .\}\right\}\right\} .
\end{gathered}
$$

- Similar to the DFA case, let ' m ', ' X ' be numbers sit.

$$
f_{m+i}^{A}=f_{m+l+i}^{A} \quad \forall i \geqslant 0
$$

for all AFA A with almost $2 n$ states

- Starting from some $\{q\}, a^{m+i}$ goes to an accepting node $a^{\text {mreti }}$ goes to an accepting node.

Recall:

$$
\begin{aligned}
L=\left\{\left(a^{k}, t_{1} t_{2} \ldots t_{k}\right) \mid\right. & 0<t_{1}<t_{2}<1 \\
& 1<t_{3}, \ldots . t_{k}<2
\end{aligned}
$$

there is exactly one a between $t_{1}+1$ and $\left.t_{2}+1\right\}$

Step 1: Understand some property of DFAS
Step 2: How Step 1 translates to untimed alternating finik automat
Step 3: Any 1- ATA accepting \mathcal{L} behaves like an antimed AFA in the interval $(1,2)$, where clocks are useless.

Step 4: Use Step 1 and 2 in 3 to get a contradiction.
$\mid a$, Suppose A is a 1-ATA with ' n ' states accepting ' L '.

- We can assume that every transition is partitioned as:

- For the moment, let us ignore all transitions with $x=0$. We will see later why we can do this.

Construct two tired noorde w_{1} and w_{2} as follows:
w_{1} :

(m, ℓ are as chosen before)
w_{2} : On top of w_{1}, add ' l ' a 's in the interval
$(1.3,1.7)$, but not at 1.5

$$
w_{1} \in L, \quad w_{2} \notin<.
$$

We will show that if A accepts w_{1}, it also accepts w_{2}
w_{1} :

(m, ℓ are as chosen before)

Consider the acceptance game for ot on w_{1}.

- Let (q, v) be a configuration reached at $t=1$.

What are the possible values of x at $t=1$?
$(q, x=1)$
$(q, x=0.7)$
$(q, x=0.3)$

Pick $\quad(q, x=1)$ and investigate the set of sets of consigns. reached from here after reading the entire word.

$$
\begin{aligned}
& \{(q, \quad x=1)
\end{aligned}
$$

- In (1,2) transitions with guard $x=0$ are never used.
- In fact, only those transitions with
either i) $1<x<2$
or ii) $0<x<1$
are used.
- i) is taken until) ' x ' is reset, (ii) is taken after x is reset.
- Therefore, if we maintain an extra bit $0 / 1$ in each state to mark whether x has been reset until now, we can recover the behaviour of it in the interval $(1,2)$.

Therefore, starting from $(q, x=1)$, the rest of the accepting run is identical to the run of an (untired) AFA with $2 n$ stales, starting from $(q, \overrightarrow{0})$ to denom not rat.

- From our choice of ' m ' and ' l ', the same set of sets will be reached, by this untired AFA on the word w_{2} !
- Hence, from $(q, x=1), w_{2}$ will also be accepted.

(M_{1} \& are as chosen before)

Let us now focus on $(q, x=0.7)$ at $t=1$

- Unto $t=1.3$ the word is the same in both w_{1} and w_{2} and hence the same set of configurations will be reached at $t=1.3$
- Configurations at $t=1.3$ are either $(q, x=1)$ or

$$
\left(q, x<{ }^{0.3}\right)
$$

- From $(q, x=1$, apply same argument as before.
- From $(q, x \ll)$, only $(0<x<1)$ transitions will be taken, so it behaves like an untired AF A with ' n ' stales.
- By our choice of ' m ' and ' l ' the same set of set of states is reached after reading w_{1} and w_{2}.

Hence from $(q, x=0.7)$ at $t=1$, if w_{1} is acupted, w_{2} is also aupted.

(M, l are as chosen before)

Finally consider $(q, x=0.3)$ at $t=1$.

- upro $t=1.7$, A will take only $0<x<1$ edges.
- Hence the behaviour is similar to an AFA, and the same set of "states" will be reached for both w_{1} and w_{2} at $t=1.7$

The value of x may be different. However, it will either be $x=1$ for both words, or some value with $x<1$ in both. $0<$

- From configurations with $x<1$ at $t=1.7$, the actual value remains $0<x<1$ for the rest of the word. Hence the true value does not matter.
- This shows that the set of set of states reached after both w_{1} and w_{2} are the same!

If w_{1} is accepted by $A_{1} w_{2}$ is also accepted by t.

Summary of Pant 1:
Expressive power of 1-ATA Vo many clock NTA

Contains 1-clock NTA.
and some 2-clocl NTA: too.

Alternating Timed Automat:

- What we have seen so far?
- Model is closed under union, intersection. complement
- Emptiness is undecidable for general ATA
- Consider 1-clock ATA
\mapsto Expressive power in comparable to many clock NTA.

Today:

- Emptiness is decidable for 1- dock ATA (idea of proof)
- Complexity of the emptiness problem

Algorithm for the emptiness problem for 1- ATA:

Given a 1-clock ATA A, is $\mathcal{L}(A)$ empty?

- Algorithm similar to Ouaknine-Worell algorithm for universality of 1-NTA
- Now we need to handle both universal and existential transitions.

Assumption:

- boolean combinations in the transitions are in
disjunctive normal form

$$
(. \wedge \cdot \wedge \cdot \cdots) \vee(. \wedge \cdot \wedge \cdot \wedge \cdots) \vee \ldots \vee(\cdot \wedge \cdot \wedge \ldots \wedge)
$$

Labelled transition system: $T(A)$
Configuration $p: \quad\left\{\left(q_{1}, v_{1}\right)\left(q_{2}, v_{2}\right), \ldots,\left(q_{k}, v_{k}\right)\right\}$
a set of states
(location of automation, value of clock)

Transitions between configuration:

$$
P \quad \stackrel{t, a}{\longmapsto} p^{\prime}
$$

$$
P=\left\{\left(q_{1}, v,\right) \quad\left(q_{2}, v_{2}\right)\right\}
$$

For each $(q, v) \in P$

- let $v^{\prime}=v+t$

- let $b=\delta(q, a, \sigma)$ for the uniquely determined σ satisfied by v^{\prime}
- Choose one of the disjuncts of b : $\left(q_{1}, r_{1}\right) \wedge\left(q_{2}, r_{2}\right) \wedge \cdots 1\left(q_{k}, r_{2}\right)$

$$
-\operatorname{Next}(q, v):=\left\{\left(q_{i}, v^{\prime}\left[r_{i}:=0\right]\right) \mid i=1, \ldots, k\right\}
$$

Then, $p^{\prime}=U_{(q, v) \in p}$ Next (q, v)

One possible transition in $T(A)$

Good node: All states are accepting

Theorem: $\mathscr{L}(A)$ is non -empty
ifs
T(A) has a path to a good node from the initial configuration

Rest of the algorithm similar to $0 W-05$.

Lower bound

Complexity of emptiness of purely universal 1-clock ATA is not bounded by a primitive recursive function

Lower bound

Complexity of emptiness of purely universal 1-clock ATA is not bounded by a primitive recursive function

$$
\begin{aligned}
\text { Emptiness of purely univerial } 1-A T A & \longrightarrow \text { universality of } 1-N T A \\
A & \longrightarrow A^{c}(1-N T A)
\end{aligned}
$$

\Rightarrow complexity of Ouaknine-Worrell algorithm for universality of 1 -clock TA is non-primitive recursive

Primitive recursive functions

Functions $f: \mathbb{N} \xrightarrow[\mathbb{N}]{\underline{N^{k}}} \longmapsto \mathbb{N}^{l} \quad k \geqslant 0$
Basic primitive recursive functions:

- Zero function: $Z()=0$, Constant function: $C_{n}^{k}\left(x_{1}, \ldots x_{k}\right)=n$
- Successor function: $\operatorname{Succ}(n)=n+1$
- Projection function: $P_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i} \quad h \circ\left(g_{i}, g_{2} \ldots g_{m}\right)$

Operations:

- Composition

- Primitive recursion: if f and g are p.r. of arity k and $k+2$, there is a p.r. h of arity $k+1$:

$$
\begin{aligned}
& h\left(0, x_{1}, \ldots, x_{k}\right)=f\left(x_{1}, \ldots, x_{k}\right) \\
& h\left(n+1, x_{1}, \ldots, x_{k}\right)=g\left(h\left(n, x_{1}, \ldots, x_{k}\right), n, x_{1}, \ldots, x_{k}\right) \\
& l \\
& h\left(n, x_{1} \ldots x_{k}\right), n,\left(x_{1} \ldots x_{k}\right)
\end{aligned}
$$

Composition:

$$
\begin{aligned}
& g_{1}: \mathbb{N}^{k} \rightarrow \mathbb{N} \quad g_{1}\left(x_{1}, \ldots x_{k}\right) \rightarrow y_{1} \\
& \vdots \\
& g_{m}: \mathbb{N}^{k} \rightarrow \mathbb{N} \\
& h: \mathbb{N}^{m} \rightarrow \mathbb{N}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{r}
g_{m}: \mathbb{N}^{k} \rightarrow \mathbb{N} \\
h: \mathbb{N}^{m} \rightarrow \mathbb{N}
\end{array} g_{m}\left(x_{1} \ldots x_{k}\right) \rightarrow y_{m}\right. \\
& \left.h \circ\left(g_{1}, \ldots g_{m}\right)\left[x_{1} \ldots x_{k}\right)\right] \rightarrow h\left[\begin{array}{l}
g_{1}\left(x_{1} \ldots x_{k}\right), \\
g_{2}\left(x_{1} \ldots x_{k}\right) \\
\vdots \\
\left.g_{m}\left(x_{1} \ldots x_{k}\right)\right]
\end{array}\right.
\end{aligned}
$$

will be pr. obtained
by composition.

Addition:

$$
\begin{aligned}
& h \quad f(y)=y \\
& \operatorname{Add}(0, y)=y \quad \operatorname{Add}(n+1, y) \\
&=\operatorname{Succ}(\operatorname{Add}(n, y)) \\
& \operatorname{Succ}\left(P_{1}(\operatorname{Add}(n, y), n, y)\right)
\end{aligned}
$$

$h:$ Suce o P_{1}

Addition:

$$
\begin{aligned}
\operatorname{Add}(0, y) & =y \\
\operatorname{Add}(n+1, y) & =\operatorname{Succ}(\operatorname{Add}(n, y)) \quad(p,(\operatorname{Add}(n, y), n, y))
\end{aligned}
$$

Multiplication:

$$
\begin{aligned}
\operatorname{Mult}(0, y) & =Z() \\
\operatorname{Mult}(n+1, y) & =\operatorname{Add}(\operatorname{Mult}(n, y), y) \\
P_{1}(\operatorname{MuH}(n, y), n, y) & =\operatorname{Mult}(n, y) \\
P_{3} & (\operatorname{Mult}(n, y), n, y)=y
\end{aligned}
$$

$$
\begin{aligned}
\text { Add } 0\left(P_{1}, P_{3}\right) & (\operatorname{Mult}(n, y), n, y) \\
& =\operatorname{Add}\left(P_{1}(), P_{3}(,)\right) \\
& =\operatorname{Add}(\operatorname{Mult}(n, y), y)
\end{aligned}
$$

Addition:

$$
\begin{aligned}
\operatorname{Add}(0, y) & =y \\
\operatorname{Add}(n+1, y) & =\operatorname{Succ}(\operatorname{Add}(n, y))
\end{aligned}
$$

Multiplication:

$$
\begin{aligned}
\operatorname{Mult}(0, y) & =Z() \\
\operatorname{Mult}(n+1, y) & =\operatorname{Add}(\operatorname{Mult}(n, y), y)
\end{aligned}
$$

Exponentiation 2^{n} :

$$
\begin{aligned}
& \operatorname{Exp}(0)= \operatorname{Succ}(Z()) \\
& \operatorname{Exp}(n+1)= \frac{\operatorname{Mult}(\operatorname{Exp}(n), 2)}{} \\
& P_{1}[\operatorname{Exp}(n), n] \\
& C_{2}^{2} \\
& \text { Mut o }\left(P_{1}, C_{2}^{2}\right)
\end{aligned}
$$

Addition:

$$
\begin{aligned}
\operatorname{Add}(0, y) & =y \\
\operatorname{Add}(n+1, y) & =\operatorname{Succ}(\operatorname{Add}(n, y))
\end{aligned}
$$

Multiplication:

$$
\begin{aligned}
\operatorname{Mult}(0, y) & =Z() \\
\operatorname{Mult}(n+1, y) & =\operatorname{Add}(\operatorname{Mult}(n, y), y)
\end{aligned}
$$

Exponentiation 2^{n} :

$$
\begin{aligned}
\operatorname{Exp}(0) & =\operatorname{Succ}(Z()) \\
\operatorname{Exp}(n+1) & =\operatorname{Mult}(\operatorname{Exp}(n), 2)
\end{aligned}
$$

Hyper-exponentiation (tower of n two-s):

$$
\begin{aligned}
H y \operatorname{per} E x p(0) & =\operatorname{Succ}(Z()) \\
\operatorname{HyperExp}(n+1) & =\operatorname{Exp}(H y \operatorname{per} E x p(n))
\end{aligned}
$$

Recursive but not primitive rec.: Ackermann function, Sudan function

Coming next: a problem that has complexity non-primitive recursive

Channel systems

Finite state description of communication protocols
G. von Bochmann. 1978

On communicating finite-state machines
D. Brand and P. Zafiropulo. 1983

Theorem [BZ'83]

Reachability in channel systems is undecidable

Coming next: modifying the model for decidability

Lossy channel systems

Finkel'94, Abdulla and Jonsson'96
Messages stored in channel can be lost during transition

$$
(q, w) \xrightarrow{c!a}\left(q^{\prime} \cdot w^{\prime}\right) \text { where } w^{\prime} \text { is a subword of } a w
$$

$$
(q, w a) \xrightarrow{c^{?} \cdot a}\left(q^{\prime}, w^{\prime \prime}\right) \text { where } w^{\prime \prime} \text { is a subword of wo }
$$

Lossy channel systems

Finkel'94, Abdulla and Jonsson'96

Messages stored in channel can be lost during transition

Theorem [Schnoebelen'2002]
Reachability for lossy one-channel systems is non-primitive recursive

Reachability problem for lossy one-channel systems can be reduced to emptiness problem for purely universal 1-clock ATA

1-clock ATA

- closed under boolean operations
- decidable emptiness problem
- expressivity incomparable to many clock TA
- non-primitive recursive complexity for emptiness

1-clock ATA

- closed under boolean operations
- decidable emptiness problem
- expressivity incomparable to many clock TA
- non-primitive recursive complexity for emptiness
- Other results: Undecidability of:
- 1-clock ATA $+\varepsilon$-transitions
- 1-clock ATA over infinite words

