Reachability in two clock timed automata is PSPACE-complete

B. Srivathsan

Chennai Mathematical Institute

CMI Seminar

September 2013

Reachability in two clock timed automata is PSPACE-complete [Fearnley, Jurdziński, ICALP'13]

Bounded 1-counter

automata

≤_{LOGSPACE} 2-clock Timed

automata

[Haase, Ouaknine, Worrell'12]

Subset-Sum Games

SSG Instance: (ψ, T) $T, A_i, B_i, E_i, F_i \in \mathbb{N}$ $\psi : \forall \{A_1, B_1\} \exists \{E_1, F_1\} \dots \forall \{A_n, B_n\} \exists \{E_n, F_n\}$ Play P: 2 players \forall, \exists A_1 SSG Instance: (ψ, T) $T, A_i, B_i, E_i, F_i \in \mathbb{N}$ $\psi : \forall \{A_1, B_1\} \exists \{E_1, F_1\} \dots \forall \{A_n, B_n\} \exists \{E_n, F_n\}$ Play P: 2 players \forall, \exists A_1 F_1

SSG Instance: (ψ, T) $T, A_i, B_i, E_i, F_i \in \mathbb{N}$ $\psi : \forall \{A_1, B_1\} \exists \{E_1, F_1\} \dots \forall \{A_n, B_n\} \exists \{E_n, F_n\}$ Play P: 2 players \forall, \exists A_1 F_1 \dots B_n E_n P is winning for \exists if $\sum P = T$

 $A_1 \qquad F_1 \qquad \cdots \qquad B_n \qquad E_n$ $P \text{ is winning for } \exists \text{ if } \sum P = T$

Strategy s for \exists :

Play P: 2 players \forall , \exists A_1 F_1 \cdots B_n E_n P is winning for \exists if $\sum P = T$

Strategy s for \exists : $A_1 - (E_1 \text{ or } F_1)$ $B_1 - (E_1 \text{ or } F_1)$

Play P: 2 players \forall , \exists A_1 F_1 \cdots B_n E_n P is winning for \exists if $\sum P = T$

Strategy s for \exists : $A_1 - (E_1 \text{ or } F_1) - A_2$ B_2 $B_1 - (E_1 \text{ or } F_1) - A_2$ B_2

Play P: 2 players
$$\forall$$
, \exists
 $A_1 \qquad F_1 \qquad \cdots \qquad B_n \qquad E_n$
P is winning for \exists if $\sum P = T$

Strategy s for
$$\exists$$
:
 $A_1 - (E_1 \text{ or } F_1) - A_2 - (E_2 \text{ or } F_2)$
 $B_2 - (E_2 \text{ or } F_2)$
 $B_1 - (E_1 \text{ or } F_1) - A_2 - (E_2 \text{ or } F_2)$
 $B_2 - (E_2 \text{ or } F_2)$

Play P: 2 players
$$\forall$$
, \exists
 $A_1 \quad F_1 \quad \cdots \quad B_n \quad E_n$
P is winning for \exists if $\sum P = T$

Strategy s for \exists : $A_{1} - (E_{1} \text{ or } F_{1}) - A_{2} - (E_{2} \text{ or } F_{2})$ $B_{2} - (E_{2} \text{ or } F_{2})$ $B_{1} - (E_{1} \text{ or } F_{1}) - A_{2} - (E_{2} \text{ or } F_{2})$ $B_{2} - (E_{2} \text{ or } F_{2})$ s is winning if all 2ⁿ plays are winning for \exists

SSG-Problem: Given (ψ, T) is there a winning strategy for \exists

SSG-Problem: Given (ψ, T) is there a winning strategy for \exists

Complexity

SSG-Problem is PSPACE-complete

Coming next: Bounded 1-counter automata

0 *c*

Bound *b*

Bound *b*

Bound *b*

Bound *b*

All guards and updates bounded by b

Bound *b*

All guards and updates bounded by b

Reachability: Starting at $(l_0, 0)$ can (l_t, c_t) be reached?

С

$$c_1: 0, \dots, 3$$

 $c_2: 0, \dots, 3$

$$c_1: 0, \ldots, 3$$

 $c_2: 0, \ldots, 3$

$$c: \boxed{\begin{array}{c} 10 \\ c_2 \end{array}} 01$$

$$c_1: 0, \ldots, 3$$

 $c_2: 0, \ldots, 3$

$$c: \boxed{\begin{array}{c} 10 \\ c_2 \end{array}} 01$$

$$c_2 + 1 \longrightarrow c + 3$$

$$c_1: 0, \ldots, 3$$

 $c_2: 0, \ldots, 3$

$$c: \begin{array}{c|c} 10 & 01 \\ \hline c_2 & c_1 \end{array}$$

$$\begin{array}{ccc} c_2 + 1 & \longrightarrow & c + 3 \\ c_1 + 1 & \longrightarrow & c + 1 \end{array}$$

$$c_1: 0, \ldots, 3$$

 $c_2: 0, \ldots, 3$

$$c: \boxed{\begin{array}{c} 10 \\ c_2 \end{array}} 01$$

$$c_2+1 \longrightarrow c+3$$
 $c_2=2? \longrightarrow 8 \le c \le 11$
 $c_1+1 \longrightarrow c+1$

$$c_1: 0, \ldots, 3$$

 $c_2: 0, \ldots, 3$

$$c: \boxed{\begin{array}{c|c} 10 & 01 \\ c_2 & c_1 \end{array}}$$

$$c_2 + 1 \longrightarrow c + 3 \qquad c_2 = 2? \longrightarrow 8 \le c \le 11$$

$$c_1 + 1 \longrightarrow c + 1 \qquad c_1 = 2? \longrightarrow c = 2, 6, 10, 14$$

$$c_1: 0, \ldots, 3$$

 $c_2: 0, \ldots, 3$

$$c: \boxed{\begin{array}{c} 10 \\ c_2 \end{array}} 01$$

Allowed tests: $c_n = a_n \land c_{n-1} = a_{n-1} \land \dots \land c_i = a_i$

Counter-stack automata

- Multiple counters
- Transitions can:
 - increment any counter
 - ▶ test equality: $c_n = a_n \land c_{n-1} = a_{n-1} \land \ldots \land c_i = a_i$
 - reset c_i only if $c_i = a_i$ is present
- Each counter is **bounded**

$(\forall \{A_1, B_1\} \exists \{E_1, F_1\} \forall \{A_2, B_2\} \exists \{E_2, F_2\}, T)$

Fig. 1. The play gadget

$(\forall \{A_1, B_1\} \exists \{E_1, F_1\} \forall \{A_2, B_2\} \exists \{E_2, F_2\}, T)$

Fig. 1. The play gadget

Play	u_1	e_1	u_2	e_2
1	A_1	E_1 or F_1	A_2	E_2 or F_2
2	A_1	Unchanged	B_2	E_2 or F_2
3	B_1	E_1 or F_1	A_2	E_2 or F_2
4	B_1	Unchanged	B_2	E_2 or F_2

Fig. 2. The reset gadget

Pass	Path
1	$w_2 \to r'_2 \to r_2 \to u_1$
2	$w_2 \rightarrow r'_2 \rightarrow r_2 \rightarrow r'_1 \rightarrow r_1 \rightarrow u_1$
3	$w_2 \to r'_2 \to r_2 \to u_1$
4	$w_2 \to r'_2 \to r_2 \to r'_1 \to r_1 \to t$

Fig. 2. The reset gadget

Pass	Path	Play	11.	e.	110	fo
1	$w_2 \rightarrow r'_2 \rightarrow r_2 \rightarrow u_1$	1 149	<i>a</i> ₁	E. or E.	102	Fo or Fo
2	$w_2 \rightarrow r'_2 \rightarrow r_2 \rightarrow r'_1 \rightarrow r_1 \rightarrow u_1$	2	A1	Unchanged	Ro Ro	E_2 or E_2
3	$w_2 \rightarrow r_2^{\tilde{\prime}} \rightarrow r_2 \rightarrow u_1$	3	B_1	E_1 or F_1	A_2	E_2 or F_2 E_2 or F_2
4	$w_2 \to r'_2 \to r_2 \to r'_1 \to r_1 \to t$	4	B_1	Unchanged	B_2	E_2 or F_2

Fig. 1. The play gadget

Fig. 2. The reset gadget

t is reached iff there is a winning strategy for \exists

 \leq_{PTIME}

Given (ψ, T) , the counter stack automaton has:

- ► Locations: $\forall i \in [1, n]$: $u_i, e_i, r_i, r'_i, w_1, w_2, t$
- Counters: k = 2n + 1
- ► Bound: $c_k \leq \Sigma\{A_i, B_i, E_i, F_i\}$ and $c_i \leq 2^n$ for other *i*
- Transitions: Maximum of two between any two locations

Reachability in two-clock timed automata is PSPACE-hard

Reachability in two-clock timed automata is PSPACE-hard

Reachability in timed automata is in PSPACE [Alur, Dill '90]

Result

Reachability in 2-clock timed automata is PSPACE-complete