Reachability in two clock timed automata is PSPACE-complete

B. Srivathsan
Chennai Mathematical Institute

CMI Seminar
September 2013

Reachability in two clock timed automata is PSPACE-complete [Fearnley, Jurdzìnski, ICALP'13]

Bounded 1-counter
automata

2-clock Timed
automata
[Haase, Ouaknine, Worrell' 12]

Subset-sum games
 Bounded 1-counter automata $\leq_{\text {LOGSPACE }}$
 2-clock Timed
 automata

[Fearnley, Jurdzinski'13] [Haase, Ouaknine, Worrell'12]

Subset-Sum Games

SSG Instance: $(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

SSG Instance: $(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play $P: \quad 2$ players \forall, \exists

SSG Instance: $(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play P :
2 players \forall, \exists
A_{1}

SSG Instance: $(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play $P: \quad 2$ players \forall, \exists

$$
A_{1} \quad F_{1}
$$

SSG Instance: $\quad(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play P :
2 players \forall, \exists
A_{1}
F_{1}
...
B_{n}
E_{n}

SSG Instance: $\quad(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play P :
2 players \forall, \exists
A_{1}

$$
\begin{array}{ccc}
F_{1} \quad \cdots & B_{n} \\
P \text { is winning for } \exists \text { if } \sum P=T
\end{array}
$$

$$
B_{n} \quad E_{n}
$$

SSG Instance: $(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play P :
2 players \forall, \exists
$\begin{array}{lllll}A_{1} & F_{1} & \ldots & B_{n} & E_{n}\end{array}$
P is winning for \exists if $\sum P=T$

Strategy s for \exists :

SSG Instance: $\quad(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play P :
2 players \forall, \exists

$$
\begin{array}{cccc}
A_{1} & F_{1} \quad \cdots & B_{n} & E_{n} \\
& P \text { is winning for } \exists \text { if } \sum P=T &
\end{array}
$$

Strategy s for \exists :
A_{1}
B_{1}

SSG Instance: $\quad(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play P :
2 players \forall, \exists

$$
\begin{array}{cccc}
A_{1} & F_{1} \quad \cdots & B_{n} \\
& P \text { is winning for } \exists \text { if } \sum P=T
\end{array}
$$

Strategy s for \exists :

$$
\begin{aligned}
& A_{1}-\left(E_{1} \text { or } F_{1}\right) \\
& B_{1}-\left(E_{1} \text { or } F_{1}\right)
\end{aligned}
$$

SSG Instance: $\quad(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play P :
2 players \forall, \exists

P is winning for \exists if $\sum P=T$

Strategy s for \exists :

$$
\begin{aligned}
& A_{1}-\left(E_{1} \text { or } F_{1}\right)-A_{2} \\
& B_{1}-\left(E_{1} \text { or } F_{1}\right)-A_{2}^{B_{2}} \\
& B_{2}
\end{aligned}
$$

SSG Instance: $(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play P :
2 players \forall, \exists

$$
\begin{array}{ccccc}
A_{1} & F_{1} & \ldots & B_{n} & E_{n}
\end{array}
$$

$$
P \text { is winning for } \exists \text { if } \sum P=T
$$

Strategy s for \exists :

$$
\begin{array}{r}
A_{1}-\left(E_{1} \text { or } F_{1}\right)- \\
A_{2}-\left(E_{2} \text { or } F_{2}\right) \\
B_{2}-\left(E_{2} \text { or } F_{2}\right) \\
B_{1}-\left(E_{1} \text { or } F_{1}\right)- \\
A_{2}-\left(E_{2} \text { or } F_{2}\right) \\
B_{2}-\left(E_{2} \text { or } F_{2}\right)
\end{array}
$$

SSG Instance: $(\psi, T) \quad T, A_{i}, B_{i}, E_{i}, F_{i} \in \mathbb{N}$

$$
\psi: \forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \ldots \forall\left\{A_{n}, B_{n}\right\} \exists\left\{E_{n}, F_{n}\right\}
$$

Play P :
2 players \forall, \exists

P is winning for \exists if $\sum P=T$

Strategy s for \exists :

$$
\begin{aligned}
& A_{1}-\left(E_{1} \text { or } F_{1}\right)-A_{2}-\left(E_{2} \text { or } F_{2}\right) \\
& B_{2}-\left(E_{2} \text { or } F_{2}\right) \\
& B_{1}-\left(E_{1} \text { or } F_{1}\right)-A_{2}-\left(E_{2} \text { or } F_{2}\right) \\
& B_{2}-\left(E_{2} \text { or } F_{2}\right)
\end{aligned}
$$

s is winning if all 2^{n} plays are winning for \exists

SSG-Problem: Given (ψ, T) is there a winning strategy for \exists

SSG-Problem: Given (ψ, T) is there a winning strategy for \exists

Complexity

SSG-Problem is PSPACE-complete

Subset-sum games

Bounded 1-counter automata

2-clock Timed
automata
[Fearnley, Jurdziǹski'13]
[Haase, Ouaknine, Worrell'12]

Coming next: Bounded 1-counter automata

Bound b

Bound b

Bound b

Bound b

All guards and updates bounded by b

Bound b

All guards and updates bounded by b

Reachability: Starting at $\left(l_{0}, 0\right)$ can $\left(l_{t}, c_{t}\right)$ be reached?

Counter-stack

[Fearnley, Jurdziǹski'13]
[Haase, Ouaknine, Worrell'12]

$$
\begin{aligned}
& c_{1}: 0, \ldots, 3 \\
& c_{2}: 0, \ldots, 3
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}: 0, \ldots, 3 \\
& c_{2}: 0, \ldots, 3
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}: 0, \ldots, 3 \\
& c_{2}: 0, \ldots, 3
\end{aligned}
$$

$$
c_{2}+1 \longrightarrow c+3
$$

$$
\begin{aligned}
& c_{1}: 0, \ldots, 3 \\
& c_{2}: 0, \ldots, 3
\end{aligned}
$$

$$
\begin{aligned}
& c_{2}+1 \longrightarrow c+3 \\
& c_{1}+1 \longrightarrow c+1
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}: 0, \ldots, 3 \\
& c_{2}: 0, \ldots, 3
\end{aligned}
$$

$$
\begin{aligned}
& c_{2}+1 \longrightarrow c+3 \\
& c_{1}+1 \longrightarrow c+1
\end{aligned} \quad c_{2}=2 ? \longrightarrow 8 \leq c \leq 11
$$

$$
\begin{aligned}
& c_{1}: 0, \ldots, 3 \\
& c_{2}: 0, \ldots, 3
\end{aligned}
$$

$$
\begin{aligned}
& c_{2}+1 \longrightarrow c+3 \\
& c_{1}+1 \longrightarrow c+1
\end{aligned} \quad \begin{aligned}
& c_{2}=2 ? \longrightarrow 8 \leq c \leq 11 \\
& c_{1}=2 ? \longrightarrow c=2,6,10,14
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}: 0, \ldots, 3 \\
& c_{2}: 0, \ldots, 3
\end{aligned}
$$

$$
\begin{array}{lll}
c_{2}+1 & \longrightarrow c+3 \\
c_{1}+1 & \longrightarrow & c_{2}=2 ? \\
c_{1}=2 ? & \longrightarrow 8 \leq c \leq 11 \\
& \longrightarrow 2,6,10,14
\end{array}
$$

Allowed tests: $c_{n}=a_{n} \wedge c_{n-1}=a_{n-1} \wedge \ldots \wedge c_{i}=a_{i}$

Counter-stack automata

- Multiple counters
- Transitions can:
- increment any counter
- test equality: $c_{n}=a_{n} \wedge c_{n-1}=a_{n-1} \wedge \ldots \wedge c_{i}=a_{i}$
- reset c_{i} only if $c_{i}=a_{i}$ is present
- Each counter is bounded

Counter-stack automata $\leq_{\text {PTIME }}$
Bounded 1-counter automata

Counter-stack

```
        automata
```


| Subset-sum | Bounded 1-counter | $\leq_{\text {PTIME }}$ | automata | $\leq_{L O G S P A C E}$ |
| :---: | :---: | :---: | :---: | :---: | | 2-clock Timed |
| :---: |
| games | $\operatorname{automata~}^{\text {auto }}$

[^0]
Counter-stack

[Fearnley, Jurdziǹski'13]
[Haase, Ouaknine, Worrell'12]

$$
\left(\forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \forall\left\{A_{2}, B_{2}\right\} \exists\left\{E_{2}, F_{2}\right\}, T\right)
$$

Fig. 1. The play gadget

$$
\left(\forall\left\{A_{1}, B_{1}\right\} \exists\left\{E_{1}, F_{1}\right\} \forall\left\{A_{2}, B_{2}\right\} \exists\left\{E_{2}, F_{2}\right\}, T\right)
$$

Fig. 1. The play gadget

Play	u_{1}	e_{1}	u_{2}	e_{2}
1	A_{1}	E_{1} or F_{1}	A_{2}	E_{2} or F_{2}
2	A_{1}	Unchanged	B_{2}	E_{2} or F_{2}
3	B_{1}	E_{1} or F_{1}	A_{2}	E_{2} or F_{2}
4	B_{1}	Unchanged	B_{2}	E_{2} or F_{2}

Fig. 2. The reset gadget

Pass	Path
1	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow u_{1}$
2	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow r_{1}^{\prime} \rightarrow r_{1} \rightarrow u_{1}$
3	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow u_{1}$
4	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow r_{1}^{\prime} \rightarrow r_{1} \rightarrow t$

Fig. 2. The reset gadget

Pass	Path
1	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow u_{1}$
2	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow r_{1}^{\prime} \rightarrow r_{1} \rightarrow u_{1}$
3	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow u_{1}$
4	$w_{2} \rightarrow r_{2}^{\prime} \rightarrow r_{2} \rightarrow r_{1}^{\prime} \rightarrow r_{1} \rightarrow t$

Play	u_{1}	e_{1}	u_{2}	e_{2}
1	A_{1}	E_{1} or F_{1}	A_{2}	E_{2} or F_{2}
2	A_{1}	Unchanged	B_{2}	E_{2} or F_{2}
3	B_{1}	E_{1} or F_{1}	A_{2}	E_{2} or F_{2}
4	B_{1}	Unchanged	B_{2}	E_{2} or F_{2}

Fig. 1. The play gadget

Fig. 2. The reset gadget
t is reached iff there is a winning strategy for \exists

\leq PTIME

Given (ψ, T), the counter stack automaton has:

- Locations: $\forall i \in[1, n]: u_{i}, e_{i}, r_{i}, r_{i}^{\prime}, w_{1}, w_{2}, t$
- Counters: $k=2 n+1$
- Bound: $c_{k} \leq \Sigma\left\{A_{i}, B_{i}, E_{i}, F_{i}\right\}$ and $c_{i} \leq 2^{n}$ for other i
- Transitions: Maximum of two between any two locations

Counter-stack

[Fearnley, Jurdziǹski' 13 [Haase, Ouaknine, Worrell' 12]

Reachability in two-clock timed automata is PSPACE-hard

Counter-stack

[Fearnley, Jurdziǹski' 13 [Haase, Ouaknine, Worrell' 12$]$

Reachability in two-clock timed automata is PSPACE-hard

Reachability in timed automata is in PSPACE [Alur, Dill '90]

Result

Reachability in 2-clock timed automata is PSPACE-complete

[^0]: [Fearnley, Jurdziǹski’13]
 [Haase, Ouaknine, Worrell'12]

