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SSG Instance: (ψ,T ) T ,Ai,Bi,Ei,Fi ∈ N

ψ : ∀ {A1,B1} ∃ {E1,F1} . . . ∀ {An,Bn} ∃ {En,Fn}

2 players ∀, ∃Play P:

A1 F1 . . . Bn En

P is winning for ∃ if
∑

P = T

Strategy s for ∃ :

A1

B1

(E1 or F1)

(E1 or F1)

A2

B2

A2

B2

(E2 or F2)

(E2 or F2)

(E2 or F2)

(E2 or F2)

. . .

s is winning if all 2n plays are winning for ∃
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SSG-Problem: Given (ψ,T ) is there a winning strategy for ∃

Complexity

SSG-Problem is PSPACE-complete
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Coming next: Bounded 1-counter automata
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l0 l1 l2

l3l4

+3

−2

+4

[0,5] [4,6]

c
0

Bound b

All guards and updates bounded by b

Reachability: Starting at (l0, 0) can (lt, ct) be reached?
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Counter-stack

automata

≤PTIME ≤PTIME

9/17



c1 : 0, . . . , 3
c2 : 0, . . . , 3

c : 10 01

c2 c1

c2 + 1 c + 3
c1 + 1 c + 1

c2 = 2? 8≤ c≤ 11
c1 = 2? c = 2,6,10,14

Allowed tests: cn = an ∧ cn−1 = an−1 ∧ . . . ∧ ci = ai
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Counter-stack automata

É Multiple counters

É Transitions can:

É increment any counter

É test equality: cn = an ∧ cn−1 = an−1 ∧ . . . ∧ ci = ai

É reset ci only if ci = ai is present

É Each counter is bounded

Counter-stack automata ≤PTIME Bounded 1-counter automata
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( ∀ {A1,B1} ∃ {E1,F1} ∀ {A2,B2} ∃ {E2,F2}, T )

– For every i for which E(i) is defined, we must have ci = E(i).
– For every i ∈ R, we must have c′

i = 0.
– For every i /∈ R, we must have c′

i = ci + Ii.

A run is a sequence of states s0, s1, . . . , sn, where each si can transition to
si+1. To solve the reachability problem for counter-stack automata, we must de-
cide whether there is a run from (l0, 0, 0, . . . , 0) to a target state (lt, t1, t2, . . . , tk).

A counter-stack automaton is b-bounded, for some b ∈ N, if it is impossible
for the automaton to increase a counter beyond b. Formally, this condition re-
quires that, for every state (l, c1, c2, . . . , ck) that can be reached by a run from
(l0, 0, 0, . . . , 0), we have ci ≤ b for all i. We say that a counter-stack automaton
is bounded, if it is b-bounded for some b ∈ N.

Simulation by a bounded one-counter automaton. A bounded counter-
stack automaton is designed to be simulated by a bounded one-counter automa-
ton. To do this, we follow the construction outlined at the start of this section:
we split the bits of the counter c into k chunks, where each chunk represents one
of the counters ci. Note that the boundedness assumption is crucial, because
otherwise incrementing ci may overflow the allotted space, and inadvertently
modify the value of ci+1. See Appendix B for more details of the construction.

Lemma 3. Reachability in bounded counter-stack automata is polynomial-time
reducible to reachability in bounded one-counter automata.

5 Outline Of The Construction

Our goal is to show that reachability in bounded counter-stack automata is
PSPACE-hard. To do this, we will show that subset-sum games can be solved
by bounded counter-stack automata. In this section, we give an overview of our
construction using the following two-round QSS game.

(
∀ {A1, B1} ∃ {E1, F1} ∀ {A2, B2} ∃ {E2, F2}, T

)
.

For brevity, we will refer to this instance as (ψ, T ) for the rest of this section.
The construction is split into two parts: the play gadget, and the reset gadget.

u1 e1 u2 e2 w1 w2

c1 + 1, c9 + A1

c2 + 1, c9 + B1

c3 + 1, c9 + E1

c4 + 1, c9 + F1

c5 + 1, c9 + A2

c6 + 1, c9 + B2

c7 + 1, c9 + E2

c8 + 1, c9 + F2

c9 = T

R(c9)

Fig. 1. The play gadget

The play gadget. The play gadget is shown in Figure 1. The construction
uses 9 counters. The locations are represented by circles, and the transitions are

represented by edges. The annotations on the transitions describe the increments,
resets, and equality tests: the notation ci+n indicates that n is added to counter
i, the notation R(ci) indicates that counter i is reset to 0, and the notation ci = n
indicates that the transition may only be taken when ci = n is satisfied.

This gadget allows the automaton to implement a play of the SSG. The
locations u1 and u2 allow the automaton to choose the first and second moves of
the universal player, while the locations e1 and e2 allow the automaton to choose
the first and second moves for the existential player. As the play is constructed,
a running total is stored in c9, which is the top counter on the stack. The final
transition between w1 and w2 checks whether the existential player wins the
play, and then resets c9. Thus, the set of runs between u1 and w2 corresponds
precisely to the set of plays won by the existential player in the SSG.

In addition to this, each outgoing transition from ui or ei comes equipped
with its own counter. This counter is incremented if and only if the corresponding
edge is used during the play, and this allows us to check precisely which play was
chosen. These counters will be used by the reset gadget. The idea behind our
construction is to force the automaton to pass through the play gadget multiple
times. Each time we pass through the play gadget, we will check a different play,
and our goal is to check a set of plays that verify whether the existential player
has a winning strategy for the SSG.

Which plays should be checked? In our example, we must check four plays.
The format of these plays is shown in Table 1.

Play u1 e1 u2 e2

1 A1 E1 or F1 A2 E2 or F2

2 A1 Unchanged B2 E2 or F2

3 B1 E1 or F1 A2 E2 or F2

4 B1 Unchanged B2 E2 or F2

Table 1. The set of plays that the automaton will check.

The table shows four different plays, which cover every possible strategy
choice of the universal player. Clearly, if the existential player does have a win-
ning strategy, then that strategy should be able to win against all strategy
choices of the universal player. The plays are given in a very particular order:
the first two plays contain A1, while the second two plays contain B1. Moreover,
we always check A2, before moving on to B2.

We want to force the decisions made at e1 and e2 to form a coherent strategy
for the existential player. In this game, a strategy for the existential player is
a pair s = (s1, s2), where si describes the move that should be made at ei. It
is critical to note that s1 only knows whether A1 or B1 was chosen at u1. This
restriction is shown in the table: the automaton may choose freely between E1

and F1 in the first play. However, in the second play, the automaton must make
the same choice as it did in the first play. The same relationship holds between
the third and fourth plays. These restrictions ensure that the plays shown in
Table 1 are a description of a strategy for the existential player.
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w2 r′
2

r2

r′
1

r1

u1

t

c7 = 1, c8 = 0

R(c7, c8)

c7 = 0, c8 = 1

R(c7, c8)

c5 = 1, c6 = 0

c
5
=

1, c
6
=

1

R
(c
5 , c

6 )
c3 = 2, c4 = 0

R(c3, c4)

c3 = 0, c4 = 2

R(c3, c4)

c1
=

2,
c2

=
0

c
1
=

2, c
2
=

2

R
(c
1 , c

2 )

Fig. 2. The reset gadget

The reset gadget. The reset gadget, shown in Figure 2, enforces the constraints
shown in Table 1. The locations w2 and u1 represent the same locations as they
did in Figure 1. To simplify the diagram, we have only included meaningful
equality tests. Whenever we omit a required equality test, it should be assumed
that the counter is 0. For example, the outgoing transitions from r2 implicitly
include the requirement that c7, c8, and c9 are all 0.

We consider the following reachability problem: can (t, 0, 0, . . . , 0) be reached
from (u1, 0, 0, . . . , 0)? The structure of the reset gadget places restrictions on the
runs that reach t. All such runs pass through the reset gadget exactly four times,
and the following table describes each pass:

Pass Path
1 w2 → r′

2 → r2 → u1

2 w2 → r′
2 → r2 → r′

1 → r1 → u1

3 w2 → r′
2 → r2 → u1

4 w2 → r′
2 → r2 → r′

1 → r1 → t

To see why these paths must be taken, observe that, for every i ∈ {1, 3}, each
pass through the play gadget increments either ci or ci+1, but not both. This
means that the first time that we arrive at r2, we must take the transition directly
to u1, because the guard on the transition to r′

1 cannot possibly be satisfied after
a single pass through the play gadget. When we arrive at r2 on the second pass,
we are forced to take the transition to r′

1, because we cannot have c5 = 1 and
c6 = 0 after two passes through the play gadget. This transition resets both c5

and c6, so the pattern can repeat again on the third and fourth visits to r2. The
location r1 behaves in the same way as r2, but the equality tests are scaled up,
because r1 is only visited on every second pass through the reset gadget.

We can now see that all strategies of the universal player must be considered.
The transition between r2 and u1 forces the play gadget to increment c5, and
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The reset gadget. The reset gadget, shown in Figure 2, enforces the constraints
shown in Table 1. The locations w2 and u1 represent the same locations as they
did in Figure 1. To simplify the diagram, we have only included meaningful
equality tests. Whenever we omit a required equality test, it should be assumed
that the counter is 0. For example, the outgoing transitions from r2 implicitly
include the requirement that c7, c8, and c9 are all 0.

We consider the following reachability problem: can (t, 0, 0, . . . , 0) be reached
from (u1, 0, 0, . . . , 0)? The structure of the reset gadget places restrictions on the
runs that reach t. All such runs pass through the reset gadget exactly four times,
and the following table describes each pass:

Pass Path
1 w2 → r′

2 → r2 → u1

2 w2 → r′
2 → r2 → r′

1 → r1 → u1

3 w2 → r′
2 → r2 → u1

4 w2 → r′
2 → r2 → r′

1 → r1 → t

To see why these paths must be taken, observe that, for every i ∈ {1, 3}, each
pass through the play gadget increments either ci or ci+1, but not both. This
means that the first time that we arrive at r2, we must take the transition directly
to u1, because the guard on the transition to r′

1 cannot possibly be satisfied after
a single pass through the play gadget. When we arrive at r2 on the second pass,
we are forced to take the transition to r′

1, because we cannot have c5 = 1 and
c6 = 0 after two passes through the play gadget. This transition resets both c5

and c6, so the pattern can repeat again on the third and fourth visits to r2. The
location r1 behaves in the same way as r2, but the equality tests are scaled up,
because r1 is only visited on every second pass through the reset gadget.

We can now see that all strategies of the universal player must be considered.
The transition between r2 and u1 forces the play gadget to increment c5, and

represented by edges. The annotations on the transitions describe the increments,
resets, and equality tests: the notation ci+n indicates that n is added to counter
i, the notation R(ci) indicates that counter i is reset to 0, and the notation ci = n
indicates that the transition may only be taken when ci = n is satisfied.

This gadget allows the automaton to implement a play of the SSG. The
locations u1 and u2 allow the automaton to choose the first and second moves of
the universal player, while the locations e1 and e2 allow the automaton to choose
the first and second moves for the existential player. As the play is constructed,
a running total is stored in c9, which is the top counter on the stack. The final
transition between w1 and w2 checks whether the existential player wins the
play, and then resets c9. Thus, the set of runs between u1 and w2 corresponds
precisely to the set of plays won by the existential player in the SSG.

In addition to this, each outgoing transition from ui or ei comes equipped
with its own counter. This counter is incremented if and only if the corresponding
edge is used during the play, and this allows us to check precisely which play was
chosen. These counters will be used by the reset gadget. The idea behind our
construction is to force the automaton to pass through the play gadget multiple
times. Each time we pass through the play gadget, we will check a different play,
and our goal is to check a set of plays that verify whether the existential player
has a winning strategy for the SSG.

Which plays should be checked? In our example, we must check four plays.
The format of these plays is shown in Table 1.

Play u1 e1 u2 e2

1 A1 E1 or F1 A2 E2 or F2

2 A1 Unchanged B2 E2 or F2

3 B1 E1 or F1 A2 E2 or F2

4 B1 Unchanged B2 E2 or F2

Table 1. The set of plays that the automaton will check.

The table shows four different plays, which cover every possible strategy
choice of the universal player. Clearly, if the existential player does have a win-
ning strategy, then that strategy should be able to win against all strategy
choices of the universal player. The plays are given in a very particular order:
the first two plays contain A1, while the second two plays contain B1. Moreover,
we always check A2, before moving on to B2.

We want to force the decisions made at e1 and e2 to form a coherent strategy
for the existential player. In this game, a strategy for the existential player is
a pair s = (s1, s2), where si describes the move that should be made at ei. It
is critical to note that s1 only knows whether A1 or B1 was chosen at u1. This
restriction is shown in the table: the automaton may choose freely between E1

and F1 in the first play. However, in the second play, the automaton must make
the same choice as it did in the first play. The same relationship holds between
the third and fourth plays. These restrictions ensure that the plays shown in
Table 1 are a description of a strategy for the existential player.
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The reset gadget. The reset gadget, shown in Figure 2, enforces the constraints
shown in Table 1. The locations w2 and u1 represent the same locations as they
did in Figure 1. To simplify the diagram, we have only included meaningful
equality tests. Whenever we omit a required equality test, it should be assumed
that the counter is 0. For example, the outgoing transitions from r2 implicitly
include the requirement that c7, c8, and c9 are all 0.

We consider the following reachability problem: can (t, 0, 0, . . . , 0) be reached
from (u1, 0, 0, . . . , 0)? The structure of the reset gadget places restrictions on the
runs that reach t. All such runs pass through the reset gadget exactly four times,
and the following table describes each pass:
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2 w2 → r′
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3 w2 → r′
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4 w2 → r′
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1 → r1 → t

To see why these paths must be taken, observe that, for every i ∈ {1, 3}, each
pass through the play gadget increments either ci or ci+1, but not both. This
means that the first time that we arrive at r2, we must take the transition directly
to u1, because the guard on the transition to r′

1 cannot possibly be satisfied after
a single pass through the play gadget. When we arrive at r2 on the second pass,
we are forced to take the transition to r′

1, because we cannot have c5 = 1 and
c6 = 0 after two passes through the play gadget. This transition resets both c5

and c6, so the pattern can repeat again on the third and fourth visits to r2. The
location r1 behaves in the same way as r2, but the equality tests are scaled up,
because r1 is only visited on every second pass through the reset gadget.

We can now see that all strategies of the universal player must be considered.
The transition between r2 and u1 forces the play gadget to increment c5, and
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The reset gadget. The reset gadget, shown in Figure 2, enforces the constraints
shown in Table 1. The locations w2 and u1 represent the same locations as they
did in Figure 1. To simplify the diagram, we have only included meaningful
equality tests. Whenever we omit a required equality test, it should be assumed
that the counter is 0. For example, the outgoing transitions from r2 implicitly
include the requirement that c7, c8, and c9 are all 0.

We consider the following reachability problem: can (t, 0, 0, . . . , 0) be reached
from (u1, 0, 0, . . . , 0)? The structure of the reset gadget places restrictions on the
runs that reach t. All such runs pass through the reset gadget exactly four times,
and the following table describes each pass:
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2 → r2 → r′
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3 w2 → r′
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4 w2 → r′
2 → r2 → r′

1 → r1 → t

To see why these paths must be taken, observe that, for every i ∈ {1, 3}, each
pass through the play gadget increments either ci or ci+1, but not both. This
means that the first time that we arrive at r2, we must take the transition directly
to u1, because the guard on the transition to r′

1 cannot possibly be satisfied after
a single pass through the play gadget. When we arrive at r2 on the second pass,
we are forced to take the transition to r′

1, because we cannot have c5 = 1 and
c6 = 0 after two passes through the play gadget. This transition resets both c5

and c6, so the pattern can repeat again on the third and fourth visits to r2. The
location r1 behaves in the same way as r2, but the equality tests are scaled up,
because r1 is only visited on every second pass through the reset gadget.

We can now see that all strategies of the universal player must be considered.
The transition between r2 and u1 forces the play gadget to increment c5, and

represented by edges. The annotations on the transitions describe the increments,
resets, and equality tests: the notation ci+n indicates that n is added to counter
i, the notation R(ci) indicates that counter i is reset to 0, and the notation ci = n
indicates that the transition may only be taken when ci = n is satisfied.

This gadget allows the automaton to implement a play of the SSG. The
locations u1 and u2 allow the automaton to choose the first and second moves of
the universal player, while the locations e1 and e2 allow the automaton to choose
the first and second moves for the existential player. As the play is constructed,
a running total is stored in c9, which is the top counter on the stack. The final
transition between w1 and w2 checks whether the existential player wins the
play, and then resets c9. Thus, the set of runs between u1 and w2 corresponds
precisely to the set of plays won by the existential player in the SSG.

In addition to this, each outgoing transition from ui or ei comes equipped
with its own counter. This counter is incremented if and only if the corresponding
edge is used during the play, and this allows us to check precisely which play was
chosen. These counters will be used by the reset gadget. The idea behind our
construction is to force the automaton to pass through the play gadget multiple
times. Each time we pass through the play gadget, we will check a different play,
and our goal is to check a set of plays that verify whether the existential player
has a winning strategy for the SSG.

Which plays should be checked? In our example, we must check four plays.
The format of these plays is shown in Table 1.

Play u1 e1 u2 e2

1 A1 E1 or F1 A2 E2 or F2

2 A1 Unchanged B2 E2 or F2

3 B1 E1 or F1 A2 E2 or F2

4 B1 Unchanged B2 E2 or F2

Table 1. The set of plays that the automaton will check.

The table shows four different plays, which cover every possible strategy
choice of the universal player. Clearly, if the existential player does have a win-
ning strategy, then that strategy should be able to win against all strategy
choices of the universal player. The plays are given in a very particular order:
the first two plays contain A1, while the second two plays contain B1. Moreover,
we always check A2, before moving on to B2.

We want to force the decisions made at e1 and e2 to form a coherent strategy
for the existential player. In this game, a strategy for the existential player is
a pair s = (s1, s2), where si describes the move that should be made at ei. It
is critical to note that s1 only knows whether A1 or B1 was chosen at u1. This
restriction is shown in the table: the automaton may choose freely between E1

and F1 in the first play. However, in the second play, the automaton must make
the same choice as it did in the first play. The same relationship holds between
the third and fourth plays. These restrictions ensure that the plays shown in
Table 1 are a description of a strategy for the existential player.
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– For every i for which E(i) is defined, we must have ci = E(i).
– For every i ∈ R, we must have c′

i = 0.
– For every i /∈ R, we must have c′

i = ci + Ii.

A run is a sequence of states s0, s1, . . . , sn, where each si can transition to
si+1. To solve the reachability problem for counter-stack automata, we must de-
cide whether there is a run from (l0, 0, 0, . . . , 0) to a target state (lt, t1, t2, . . . , tk).

A counter-stack automaton is b-bounded, for some b ∈ N, if it is impossible
for the automaton to increase a counter beyond b. Formally, this condition re-
quires that, for every state (l, c1, c2, . . . , ck) that can be reached by a run from
(l0, 0, 0, . . . , 0), we have ci ≤ b for all i. We say that a counter-stack automaton
is bounded, if it is b-bounded for some b ∈ N.

Simulation by a bounded one-counter automaton. A bounded counter-
stack automaton is designed to be simulated by a bounded one-counter automa-
ton. To do this, we follow the construction outlined at the start of this section:
we split the bits of the counter c into k chunks, where each chunk represents one
of the counters ci. Note that the boundedness assumption is crucial, because
otherwise incrementing ci may overflow the allotted space, and inadvertently
modify the value of ci+1. See Appendix B for more details of the construction.

Lemma 3. Reachability in bounded counter-stack automata is polynomial-time
reducible to reachability in bounded one-counter automata.

5 Outline Of The Construction

Our goal is to show that reachability in bounded counter-stack automata is
PSPACE-hard. To do this, we will show that subset-sum games can be solved
by bounded counter-stack automata. In this section, we give an overview of our
construction using the following two-round QSS game.

(
∀ {A1, B1} ∃ {E1, F1} ∀ {A2, B2} ∃ {E2, F2}, T

)
.

For brevity, we will refer to this instance as (ψ, T ) for the rest of this section.
The construction is split into two parts: the play gadget, and the reset gadget.

u1 e1 u2 e2 w1 w2

c1 + 1, c9 + A1

c2 + 1, c9 + B1

c3 + 1, c9 + E1

c4 + 1, c9 + F1

c5 + 1, c9 + A2

c6 + 1, c9 + B2

c7 + 1, c9 + E2

c8 + 1, c9 + F2

c9 = T

R(c9)

Fig. 1. The play gadget

The play gadget. The play gadget is shown in Figure 1. The construction
uses 9 counters. The locations are represented by circles, and the transitions are
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Fig. 2. The reset gadget

The reset gadget. The reset gadget, shown in Figure 2, enforces the constraints
shown in Table 1. The locations w2 and u1 represent the same locations as they
did in Figure 1. To simplify the diagram, we have only included meaningful
equality tests. Whenever we omit a required equality test, it should be assumed
that the counter is 0. For example, the outgoing transitions from r2 implicitly
include the requirement that c7, c8, and c9 are all 0.

We consider the following reachability problem: can (t, 0, 0, . . . , 0) be reached
from (u1, 0, 0, . . . , 0)? The structure of the reset gadget places restrictions on the
runs that reach t. All such runs pass through the reset gadget exactly four times,
and the following table describes each pass:

Pass Path
1 w2 → r′

2 → r2 → u1

2 w2 → r′
2 → r2 → r′

1 → r1 → u1

3 w2 → r′
2 → r2 → u1

4 w2 → r′
2 → r2 → r′

1 → r1 → t

To see why these paths must be taken, observe that, for every i ∈ {1, 3}, each
pass through the play gadget increments either ci or ci+1, but not both. This
means that the first time that we arrive at r2, we must take the transition directly
to u1, because the guard on the transition to r′

1 cannot possibly be satisfied after
a single pass through the play gadget. When we arrive at r2 on the second pass,
we are forced to take the transition to r′

1, because we cannot have c5 = 1 and
c6 = 0 after two passes through the play gadget. This transition resets both c5

and c6, so the pattern can repeat again on the third and fourth visits to r2. The
location r1 behaves in the same way as r2, but the equality tests are scaled up,
because r1 is only visited on every second pass through the reset gadget.

We can now see that all strategies of the universal player must be considered.
The transition between r2 and u1 forces the play gadget to increment c5, and

t is reached iff there is a winning strategy for ∃
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≤PTIME

Given (ψ,T ), the counter stack automaton has:

É Locations: ∀ i ∈ [1,n]: ui, ei, ri, r′i , w1, w2, t

É Counters: k = 2n + 1

É Bound: ck ≤ Σ{Ai,Bi,Ei,Fi} and ci ≤ 2n for other i

É Transitions: Maximum of two between any two locations
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