Unit-4: Regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 4:

Safety properties described by automata

AP-INF = set of **infinite words** over *PowerSet*(**AP**)

P: a property over AP

P is a safety property if there exists a set Bad-Prefixes such that
P is the set of all words that do not start with a Bad-Prefix

BadPrefixes

BadPrefixes

$$\Sigma = \{\{\}, \{p_1\}, \{p_2\}, \{p_1, p_2\}\}$$

This BadPrefixes set is a regular language

$$\Sigma = \{\{\}, \{p_1\}, \{p_2\}, \{p_1, p_2\}\}$$

This BadPrefixes set is a regular language

$$\Sigma = \{\{\}, \{p_1\}, \{p_2\}, \{p_1, p_2\}\}$$

$$\Sigma = \{\{\}, \{p_1\}, \{p_2\}, \{p_1,p_2\}\}$$

BadPrefixes = words where number of times p_1 occurs is more than that of p_2

$$\Sigma = \{\{\}, \{p_1\}, \{p_2\}, \{p_1, p_2\}\}\$$

BadPrefixes = words where number of times p_1 occurs is more than that of p_2

This BadPrefixes set is not a regular language

Regular safety properties

A safety property is **regular** if the associated **BadPrefixes** set is a **regular** language

Invariants are regular safety properties

Property: Always p_1 is true

$$\sim \{ \neg p_1 \}$$
 "Bad-Prefixes"

$$\Sigma^*\{\neg p_1\}$$

BadPrefixes set for invariant properties is a regular language

Coming next: An algorithm to model-check safety properties

Model

Safety property

Atomic propositions AP = { p_1, p_2 }

 p_1 : request=1 p_2 : status=busy

Model

Safety property

Atomic propositions AP = $\{p_1, p_2\}$

 p_1 : request=1 p_2 : status=busy

Does the model satisfy the safety property?

Step 1: Transition system → automaton

Step 2: Take a synchronous product with property automaton

Step 3: Check if the language of the product automaton is empty

Step 3: Check if the language of the product automaton is empty

If language is empty, there are no bad prefixes

Step 3: Check if the language of the product automaton is empty

If language is empty, there are no bad prefixes

- ► Language empty → model satisfies safety property
- ► Language non-empty → model does not satisfy safety property

- ► Step 1: Convert model to automaton
- ► Step 2: Take synchronous product with **BadPrefixes** automaton
- ► Step 3: Check if language of product is empty

- ► Language empty → model satisfies safety property
- ► Language non-empty → model does not satisfy safety property

Regular safety properties

BadPrefixes is regular

Algorithm