Unit-3: Linear-time properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 4: Safety properties

 p_1 : request=1 p_2 : status=busy

 p_1 : request=1 p_2 : s

 p_2 : status=busy

AP-INF = set of infinite words over PowerSet(AP)

Property: Always: if p_1 is true, then in the next step p_2 is true

 $\{\,A_0A_1A_2\cdots\in\operatorname{AP-INF}\mid \text{ if }A_i\text{ contains }p_1,\text{ then }A_{i+1}\text{ contains }p_2\}$

 $\begin{array}{l} \{p_1\} \{p_2\} \{p_1\} \{p_1,p_2\} \{p_2\} \{p_1\} \{p_1,p_2\} \dots \\ \{p_2\} \{p_2\} \{p_2\} \{p_2\} \{p_2\} \{p_2\} \{p_2\} \dots \\ \{\} \{\} \{\} \{\} \} \dots \end{array}$

 p_1 : request=1 p_2

 p_2 : status=busy

AP-INF = set of infinite words over PowerSet(AP)

Property: Always: if p_1 is true, then in the next step p_2 is true

 $\{\,A_0A_1A_2\cdots\in\operatorname{AP-INF}\mid \text{ if }A_i\text{ contains }p_1,\text{ then }A_{i+1}\text{ contains }p_2\}$

Property is written as G ($p_1 \rightarrow Xp_2$)

 p_1 : request=1 p_2 : status=busy

AP-INF = set of infinite words over PowerSet(AP)

Property: Always: if p_1 is true, then in the next step p_2 is true

 $\{\,A_0A_1A_2\cdots\in\operatorname{AP-INF}\mid \text{ if }A_i\text{ contains }p_1,\text{ then }A_{i+1}\text{ contains }p_2\}$

 $\begin{array}{l} \{p_1\} \{p_2\} \{p_1\} \{p_1,p_2\} \{p_2\} \{p_1\} \{p_1,p_2\} \dots \\ \{p_2\} \{p_2\} \{p_2\} \{p_2\} \{p_2\} \{p_2\} \dots \\ \{\} \{\} \{\} \{\} \{\} \dots \\ \vdots \end{array}$

Property is written as G ($p_1 \rightarrow Xp_2$)

Above TS satisfies this property

X operator

- ► G $(p_1 \longrightarrow XXp_2)$:
 - ▶ Always: if p_1 is true then in the next to next step p_2 is true
- ightharpoonup F $(p_1 \wedge X \neg p_1)$:
 - \triangleright Somewhere: p_1 is true and in the next step it becomes false
- ► G $(Xp_2 \rightarrow p_1)$:
 - ▶ Always: if p_2 is true then in the previous step p_1 is true

while a <= 20

a := a+1

b := b+2

while b <= 30

b := b+1

a:=a+2

Check: Whenever $a \ge 10$, in the next to next step $b \ge 12$

$$p_1: a >= 10$$
 $p_2: b >= 12$

$$p_1: a >= 10$$
 $p_2: b >= 12$

Check: G
$$(p_1 \rightarrow XXp_2)$$

$$p_1: a >= 10$$
 $p_2: b >= 12$

Check: G
$$(p_1 \rightarrow XXp_2)$$

NuSMV demo

Coming next: idea of safety properties

Property 1: if p_1 is true, then p_2 should be true in the next step

Property 1: if p_1 is true, then p_2 should be true in the next step

Property 2: if p_1 is true, then p_2 should be true in the next to next step

$$\sim \{p_1\}\{\dots\}\{\neg p_2\}$$
 "something bad"

Property 1: if p_1 is true, then p_2 should be true in the next step

$$\sim \{p_1\}\{\neg p_2\}$$
 "something bad"

Property contains all words where something bad is absent

Property 2: if p_1 is true, then p_2 should be true in the next to next step

AP-INF = set of **infinite words** over *PowerSet*(**AP**)

P: a property over AP

AP-INF = set of **infinite words** over *PowerSet*(AP)

P: a property over AP

P is a safety property if there **exists** a set Bad-Prefixes such that

AP-INF = set of **infinite words** over *PowerSet*(AP)

P: a property over AP

P is a safety property if there exists a set Bad-Prefixes such that
P is the set of all words that do not start with a Bad-Prefix

Invariants are special cases of safety properties

Property: Always p_1 is true

Avoiding bad prefixes

X operator