1. Let $U = a(a+b)^*a$. Which of the following words belong to U^{ω} ?

- i. $(abaabba)^{\omega}$
- ii. $(ab)^{\omega}$
- iii. a^{ω}
- 2. Let $U = a(a+b)^*a$. Which of the following words belong to $\lim U$?
 - i. $(abaabba)^{\omega}$
 - ii. $(ab)^{\omega}$
 - iii. a^{ω}
- 3. Give an example of a regular language U such that $U^{\omega} \not\subseteq \lim U$.
- 4. Prove or disprove the following equations. Justify your answer: if you think the equation is true, provide a proof; otherwise give a specific counterexample to the equation. In the following, fix a finite alphabet Σ and assume that U and V are subsets of Σ^* . The notation V^+ stands for $V^* \setminus \epsilon$.
 - i. $(U \cup V)^{\omega} = U^{\omega} \cup V^{\omega}$
 - ii. $\lim(U \cup V) = \lim U \cup \lim V$
 - iii. $U^{\omega} = \lim(U^+)$
 - iv. $\lim(U \cdot V^+) = U \cdot V^{\omega}$
- 5. Let $\Sigma = \{a, b, c\}$. Give Büchi automata (deterministic or non-deterministic) for the following languages:
 - i. set of all ω -words where *abc* occurs at least once
 - ii. set of all ω -words where *abc* occurs infinitely often
 - iii. set of all ω -words where abc occurs finitely often
- 6. Let $\Sigma = \{a, b\}$. Give a Büchi automaton for the following language:

$$\{ \alpha \in \Sigma^{\omega} \mid \forall i \text{ if } \alpha(i) = a \text{ then } \exists j > i \text{ s.t. } \alpha(j) = b \}$$

Recall that we write α as $\alpha(0)\alpha(1)\alpha(2)\dots$ where $\alpha(i)$ denotes the letter at the i^{th} position.

- 7. Suppose U is the regular language $a(a+b)^*a$. What is the NBA for U^{ω} ?
- 8. Let L be an ω -language. Suppose L is of the form U^{ω} for some U. Does it mean that there is no deterministic Büchi automaton which can recognize L?
- 9. Let \mathcal{A} be an NFA. Let \mathcal{B} be an NBA whose structure is identical to \mathcal{A} . Answer the following:
 - i. Is $\lim(\mathcal{L}(\mathcal{A})) \supseteq \mathcal{L}(\mathcal{B})$?
 - ii. Is $\lim(\mathcal{L}(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{B})$?

10. Let UP be the set of all ω -words over $\{0,1\}$ that are ultimately periodic. Show that UP is not ω -regular.